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Simple Summary: In multicellular animals, cells autonomously respond to lethal stress by inducing
cell death programs. The most common regulated cell death is apoptosis. Cells protect their neighbors
from damage by their cell contents or infection through this process. Apoptosis can occur as a result
of intrinsic stress or induced by surface receptors, for example, by immune cells. In most cases,
receptor-mediated apoptosis also requires the intrinsic signaling pathway. Intrinsic apoptosis is
controlled by proteins of the B-cell lymphoma 2 (BCL-2) family. Pro-apoptotic BCL-2 proteins are
inhibited by retrotranslocation from the mitochondria into the cytosol until the cell commits to
apoptosis. Increasingly, discoveries show that BCL-2 proteins are regulated by proteins that are not
themselves members of the BCL-2 family. Here, we discuss the selective inhibition of the link between
death receptors activation and intrinsic apoptosis by hexokinases. These enzymes funnel glucose into
the cellular metabolism. Independently, hexokinases retrotranslocate BCL-2 proteins and thereby
protect cells from receptor-mediated apoptosis.

Abstract: The regulated cell death apoptosis enables redundant or compromised cells in ontogeny
and homeostasis to remove themselves receptor-dependent after extrinsic signaling or after internal
stress by BCL-2 proteins on the outer mitochondrial membrane (OMM). Mitochondrial BCL-2 proteins
are also often needed for receptor-mediated signaling in apoptosis. Then, the truncated BH3-only
protein BID (tBID) blocks retrotranslocation of the pro-apoptotic BCL-2 proteins BAX and BAK from
the mitochondria into the cytosol. BAX and BAK in turn permeabilize the OMM. Although the BCL-2
proteins are controlled by a complex regulatory network, a specific mechanism for the inhibition
of tBID remained unknown. Curiously, it was suggested that hexokinases, which channel glucose
into the metabolism, have an intriguing function in the regulation of apoptosis. Recent analysis of
transient hexokinase interactions with BAX revealed its participation in the inhibition of BAX and
also BAK by retrotranslocation from mitochondria to the cytosol. In contrast to general apoptosis
inhibition by anti-apoptotic BCL-2 proteins, hexokinase I and hexokinase 2 specifically inhibit tBID
and thus the mitochondrial apoptosis pathway in response to death receptor signaling. Mitochondrial
hexokinase localization and BH3 binding of cytosolic hexokinase domains are prerequisites for
protection against receptor-mediated cell death, whereas glucose metabolism is not. This mechanism
protects cells from apoptosis induced by cytotoxic T cells.

Keywords: cell death; BCL-2 proteins; cancer; immunotherapy; BH3 profiling

1. Pro-Apoptotic BCL-2 Activities Control the Molecular Decision to Apoptosis

Superfluous, infected, or damaged cells remove themselves from the organism through
apoptosis [1–3]. This cell death program is essential for the survival of multicellular animals
and the most important protective mechanism against tumor development. Apoptotic
cells fragment into vesicles termed “apoptotic bodies” which are completely eliminated
by phagocytosis [4]. Thereby, the dying cell protects neighboring cells from their harmful
contents by being removed from the body.

Intrinsic apoptosis is the most common form of programmed death, involving the per-
meabilization of the outer mitochondrial membrane (OMM) [5]. This pathway is governed
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by proteins of the B-cell lymphoma-2 (BCL-2) family (Table 1). The pro-apoptotic activities
of BCL-2-associated X protein (BAX) and BCL-2 antagonist killer 1 (BAK) can permeabilize
the OMM. Then, proteins from the mitochondrial intermembrane space (IMS) such as
cytochrome c (cyt c) are released, which initiates the caspase (cysteinyl aspartate protease)
cascade that disassembles the cell [6–8]. Therefore, BAX/BAK activation is the first irre-
versible step in intrinsic apoptosis. However, reduced or inhibited caspase activation can
lead to cell survival despite OMM permeabilization [9,10]. Limited OMM permeabilization
of a subset of mitochondria has also been demonstrated to be insufficient to induce apopto-
sis [11,12]. Thus, cells can bypass commitment to apoptosis after BAX/BAK activation. The
efficient activation of the caspase cascade is the principal function of the BCL-2 proteins. If
the underlying mechanisms are impaired, a pathway for tumor formation will be cleared.
Incidentally, this is also true when tumor therapy fails to induce apoptosis in targeted cells.

Table 1. Classification, role, and interactions of BCL-2 family members.

BCL-2 Family
Member

Gene
Name Activity Associated Diseases Interacting BCL-2 Family

Proteins in Cancer

BCL-2 BCL2 Anti-apoptotic Follicular lymphoma 1, BAX, BAD, BIM, tBID, PUMA
high-grade B-cell lymphoma

BCL-xL BCL2L1 Anti-apoptotic Absolute glaucoma, BAX, BAK, BAD, BIM, tBID, PUMA
tongue carcinoma

MCL-1 MCL1 Anti-apoptotic Myeloid leukemia, BAX, BAK, BIM, tBID, NOXA, PUMA
chlamydia

BAX BAX Pro-apoptotic T-cell acute lymphoblastic leukemia, MCL-1, BFL-1, BCL-xL, BCL-2, BCL-w,
colorectal cancer BCL-B, PUMA, BIM, tBID

BAK BAK1 Pro-apoptotic Absolute glaucoma, MCL-1, BFL-1, BCL-xL, PUMA,
BIM, tBID

keratoacanthoma
BID BID Pro-apoptotic Bladder transitional cell papilloma, MCL-1, BFL-1, BCL-xL, BCL-2, BCL-w,

colon adenocarcinoma BCL-B, BAX, BAK

BIM BCL2L11 Pro-apoptotic Interleukin-7 receptor alpha
deficiency, MCL-1, BFL-1, BCL-xL, BCL-2, BCL-w,

lymphoproliferative syndrome BCL-B, BAX, BAK
BAD BAD Pro-apoptotic B-cell lymphoma, BCL-2, BCL-xL, BCL-w

transient cerebral ischemia

In addition to cell intrinsic signaling, extracellular death receptor ligands can trigger
apoptosis. Cytotoxic T cells eliminate tumor cells by this mechanism, which is started or
enhanced by immunotherapy. Extracellular domains of transmembrane receptors such
as Fas (CD95) bind to their trimeric ligands. The apoptotic signal is transmitted by the
clustering of activated receptors and the formation of an intracellular adaptor protein
scaffold. Within this scaffold, the initiator caspase-8 self-activates and initiates the caspase
cascade by substrate cleavage. Processing of one of the caspase-8 substrates, the BCL-2
homology domain 3 (BH3)-only protein BID, links the death receptor apoptosis pathway
to OMM permeabilization. Truncated BID (tBID) can inhibit pro-survival BCL-2 proteins,
thereby activating the pro-apoptotic BCL-2 proteins BAX and BAK [13–15]. BAX/BAK-
dependent permeabilization of the OMM is often necessary to trigger apoptosis by extrinsic
signals [5]. Even cells competent of undergoing apoptosis by receptor-mediated caspase
activation alone show a greatly enhanced apoptotic response by BAX or BAK [16,17].

2. Dynamic Retrotranslocation Determines the Effective BCL-2 Protein Pool

BAX and BAK are antagonized by the large group of anti-apoptotic BCL-2 proteins
with high functional redundancy, including BCL-2, B-cell lymphoma-extra large (BCL-xL),
and myeloid cell leukemia 1 (MCL-1). The BCL-2 protein fold, shared by both pro-apoptotic
and anti-apoptotic family members, creates a hydrophobic surface groove that is occu-
pied by the C-terminal transmembrane domain (TMD) in the cytosolic forms of BAX and
BCL-xL [18,19]. Intermolecular interactions between BCL-2 proteins are primarily me-
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diated by binding of a BH3 domain to another protein’s hydrophobic groove [20]. One
precondition for interaction between BCL-2 proteins, however, is the presence of a lipid
membrane [15]. In cells, BCL-2 proteins localize predominantly to the OMM depending on
their TMDs and interact with this membrane [21].

To this end, BAX and BAK translocate permanently to the OMM [22,23]. At the OMM,
anti-apoptotic BCL-2 proteins inhibit BAX and BAK by constant retrotranslocation into
the cytosol (Figure 1) [22,24–26]. Different shuttling rates of BAX and BAK lead to their
distinct localization in the cell [25,27,28]. The shuttling of BAX and BAK establishes an
equilibrium between protein pools in the cytosol and on the mitochondria. At the same
time, only the mitochondrial population of proteins is available for activation [28]. Retro-
translocation, therefore, determines the cellular response to apoptosis stimulation [29–31].
BCL-2 proteins are also found in other compartments of the cell, yet only retrotranslocation
between mitochondria and cytosol has been studied. For this purpose, the transition out
of the membrane seems to be necessary [32]. Theoretically, the transition between other
compartments and the mitochondria is also conceivable. To the ER, BCL-2 proteins could
pass through the cytosol via retrotranslocation on the one hand and via lateral sorting from
the mitochondria on the other hand [33,34]. In principle, it remains open whether BCL-2
proteins can be transported exclusively via the cytosol or also directly between different
compartments. BAX/BAK retrotranslocation itself depends on recognition of exposed
BH3 motifs by the hydrophobic groove of the pro-survival BCL-2 proteins [28]. BH3-only
proteins, such as tBID, inhibit BCL-2 protein-dependent retrotranslocation of BAX and
BAK [22]. Consequently, the presence of BH3-only proteins slows down the inhibitory
retrotranslocation of BAX and BAK. The resulting increase in effective mitochondrial pro-
tein pools and prolongation of the dwell time of BAX and BAK molecules at the OMM
increases the probability for apoptosis induction [28]. In other words, more stress means
more BAX at the OMM and thus a greater chance for full activation of caspases.
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Figure 1. BCL-2 proteins inhibit apoptosis or commit the cell to mitochondrial apoptosis. (a) Pro-
apoptotic BCL-2 proteins BAX and BAK (blue) constantly translocate to the outer mitochondrial 
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Figure 1. BCL-2 proteins inhibit apoptosis or commit the cell to mitochondrial apoptosis.
(a) Pro-apoptotic BCL-2 proteins BAX and BAK (blue) constantly translocate to the outer mitochon-
drial membrane (OMM). After a change in the protein conformation of BAX or BAK the pro-apoptotic
BCL-2 proteins are recognized by anti-apoptotic BCL-2 proteins, e.g., BCL-xL (green), and retro-
translocate back into the cytosol due to transient interactions between the two types of BCL-2 proteins.
Retrotranslocation stabilizes the inactive forms of BAX and BAK and prevents, therefore, the acti-
vation of BAX or BAK in cells. (b) Lack of retrotranslocation of BAX or BAK commits the cell to
apoptosis. BAX or BAK undergo further conformational changes at increased mitochondrial dwell
times, oligomerize and permeabilize the OMM. The subsequent release of intermembrane space
proteins, such as cytochrome c (cyt c), initiates the caspase cascade that dismantles the cell.

3. Membrane Receptors Guide the Function of BCL-2 Proteins by Activation of
Downstream GTPases

Cellular commitment to apoptosis is directed by the activity and localization of BCL-
2 proteins. In addition to regulatory interactions between members of the BCL-2 family,
proteins outside this family participate in apoptosis regulation. There is increasing evidence
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that the superfamily of GTPases interacts with various members of the BCL-2 family
on different molecular levels. GTPases are characterized by their activation via GTP
binding and their subsequent deactivation after GTP hydrolysis by an intrinsic enzyme
activity [35]. Based on their structure, different subfamilies were identified within the
GTPase superfamily such as the heterotrimeric G proteins (large GTPases) and small
Ras-like GTPases [36].

G protein signaling is heavily tied to the activity of a prominent class of plasma
membrane-embedded proteins, the G protein-coupled receptor (GPCR) family, which en-
gage intracellular G proteins upon ligand binding [37,38]. Despite the huge number of
different GPCRs, only a limited set of G proteins is available to guide (multi-) cellular
survival [39,40]. Activation of G proteins by different GPCRs such as the angiotensin II
receptor type 1, the vasopressin receptor 2, and the N-formyl peptide receptor induces the
activation of executioner caspase-3, leading to apoptosis [41]. This pro-apoptotic effect was
negatable by homologous receptor desensitization, shutting off G protein signaling [41].
Interestingly, cleavage of arrestin-2, an adaptor protein mediating homologous desen-
sitization, by different caspases, reduced cellular resistance to apoptosis and enhanced
tBID-mediated release of cyt c from mitochondria [42]. This indicates a feedback loop,
balancing pro- and anti-apoptotic effects, as well as a temporal scale of G protein signaling,
determining its pro- and anti-survival actions. Yet, this seems to strongly depend on the
cellular system, which is reflected by controversial reports of pro- and anti-apoptotic G
protein signaling as demonstrated for the muscarinic receptor M1 [43,44].

In contrast to the small family of heterotrimeric G proteins, which are characterized by
their enzymatic active Gα subunits, the Ras-like GTPases contain 167 monomeric members,
which are homologous to Gα [45,46]. A summary of known interactions between small
GTPases and BCL-2 family members is given in Table 2 and Figure 2. One way of regulating
cellular survival by small GTPases is by activation of downstream kinases as shown for the
Ras effector kinase Raf-1. Activated Raf-1 subsequently regulates BCL-2 protein function by
interaction with and phosphorylation of the BH3-only proteins BAD and BIM, interfering
with their binding to anti-apoptotic BCL-2 and BCL-xL [47–49]. Similarly to the Ras
subfamily, members of the Rho subfamily of GTPases can protect cells from committing to
apoptosis by regulation of BAD/BCL-xL interactions via downstream kinase signaling as
shown for Rac and Cdc42 [50].

In addition to employing downstream effectors to modulate cell survival, small GT-
Pases also regulate BCL-2 proteins by direct interactions, potentially linking metabolic
pathways to cellular survival [51]. Rac-1, a crucial participant in insulin-dependent glucose
uptake and metabolism, was shown to interact with BCL-2 on mitochondria, increasing the
pro-survival effects of the BCL-2 protein [52,53]. Besides Rac-1, the GTPase Ras engages
the N-terminal BH4 domain of BCL-2 at the OMM using its C-terminal CAAX motif, which
enables BCL-2 to suppress the apoptotic influence of Ras signaling [54].

Table 2. Overview of BCL-2 family interactions with the superfamily of small GTPases, regulating
cellular commitment to apoptosis.

GTPase
Superfamily Mode of Action

Ras
Raf-1-dependent phosphorylation of pro-apoptotic BAD/BIM [47–49]

Ras binding to BCL-2, increasing its anti-apoptotic effect [54]
Activation of hexokinase I by K-Ras4A binding [55]

Rho
Rac-1 binding to BCL-2, increasing its anti-apoptotic effect [50]

PAK-dependent phosphorylation of pro-apoptotic BAD by Rac/Cdc42 [50]
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Figure 2. Interactions of small GTPases with the BCL-2 family, influencing BCL-2 protein function.
Anti-apoptotic BCL-2 proteins such as BCL-2 (orange) shuttle between the cytoplasm and the outer
mitochondrial membrane (OMM). BCL-2 protein function is regulated by members of the GTPase
family. GTPases from the Rac and Ras subfamilies (light green and green, respectively) can bind to
OMM-integrated BCL-2, enhancing its anti-apoptotic function. The anti-apoptotic effect of BCL-2
function is enhanced by inhibition of BAD through phosphorylation in a Rac/Cdc42 (dark blue)-
dependent manner. Further, GTPases such as K-Ras4A (light blue) activate hexokinase I (red) on the
OMM, participating in apoptosis regulation.

Generally, large GTPases such as the heterotrimeric G proteins and small GTPases such
as Ras balance a vast field of signaling pathways, impacting cellular homeostasis. Their
participation in various metabolic pathways indicate an important role in guiding cellular
survival. For example, the K-Ras isoform K-Ras4A was recently found to directly interact
with hexokinase I and hexokinase II, key enzymes of glucose metabolism, on the OMM.
Whereas K-Ras4A was able to bind to hexokinase II, it failed to increase its enzymatic
activity [55]. Contrary, binding of K-Ras4A to hexokinase I increased the enzymatic activity
of hexokinase I [55].

4. Hexokinases: At the Crossroads between Glucose Metabolism and Apoptosis

Hexokinases phosphorylate hexose sugars, primarily glucose, trapping glucose within
the cytoplasm and keeping the intracellular concentration of plain glucose low. Hex-
okinases, therefore, play a critical role in cellular uptake and disposition of glucose by
committing glucose to glycolytic and pentose phosphate pathways or storage. In mam-
malian tissues, four isoforms of hexokinases (I–IV) are found. They are constitutively
expressed in most tissues but differ significantly in their tissue-specific distribution, subcel-
lular localization, and functional properties (Table 3).

Table 3. Classification, functions, and interactions of hexokinases.

HK Tissue Distribution Subcellular
Localization Functions

Suggested
Interactions in Cell

Death Signaling
References

I All mammalian tissues, OMM, cytosol Glucose catabolism, BCL-xL [56]
main isoform in the brain apoptosis regulator BID [56,57] *

BIM [56]
BAX [56]
BAK [56]

VDAC [58,59]



Biology 2022, 11, 412 6 of 15

Table 3. Cont.

HK Tissue Distribution Subcellular
Localization Functions

Suggested
Interactions in Cell

Death Signaling
References

II Heart, skeletal muscle, OMM, cytosol Glucose catabolism, BAX [56,60] *
adipose tissue glycogen synthesis, BAK [56]

apoptosis regulator VDAC [58,59]
PKCε [61]
AKT [62]

PEA15 [63]
TIGAR [64]

III Ubiquitously expressed at low levels, Perinuclear Glucose catabolism
highest expression in lung, kidney compartment

and liver

IV Liver, pancreatic islets, certain Cytosol Glucose catabolism, BAD [65]
parts of the brain and gut intracellular glucose sensor VDAC [66]

* Competitive interaction reported.; HK: hexokinase.

There is growing evidence that there is a direct link between glucose metabolism
and apoptosis. First discoveries showed physical interactions between hexokinases and
mitochondria [67]. It was later found that mainly hexokinase isoforms I and II bind to the
mitochondria [68]. The subcellular distribution of hexokinase II has been reported to be
dependent on glucose availability, whereas the distribution of hexokinase I is unaffected by
varying glucose levels [69]. The interaction of hexokinases I and II with the mitochondria
is facilitated by an N-terminal binding motif containing a short hydrophobic α-helix that is
likely to be inserted into the OMM [60,70,71]. Truncated hexokinase lacking this hydropho-
bic region is unable to bind to the mitochondria [72]. In fact, it has been shown that a single
mutation at the N-terminal domain of hexokinase II is enough to prevent binding to the
OMM [73]. Hexokinases III and IV lack this hydrophobic N-terminal domain, and thus do
not interact with the mitochondria.

Due to their binding to the OMM, hexokinases I and II have been linked to apoptosis.
Hexokinase II has been shown to inhibit indomethacin-induced cyt c release and caspase-3
activation by preventing BAX from binding to the mitochondria [74]. Overexpression of
hexokinase I has been shown to inhibit staurosporine-induced apoptosis [75]. Furthermore,
overexpression of hexokinase I or II seems to decrease stress-induced accumulation of
mitochondrial BAX, leading to the suggestion that hexokinases and BAX may compete for
common binding sites on the mitochondria [76]. However, activation of BAX, as indicated
by exposure of the carboxy-terminal 6A7 epitope, was not affected [76]. It has thus been
hypothesized that hexokinase II sequesters active BAX in the cytosol, although no such
interaction could be detected by immunoprecipitation [76]. The anti-apoptotic effect of
hexokinase II is in line with a hexokinase II upregulation observed in many types of can-
cer [77]. Consequently, it has been suggested that overexpression of hexokinases in tumor
cells contributes to resistance against chemotherapeutic drugs [78–80]. However, a survival
advantage of tumor cells could not only be attributed to the inhibition of apoptosis by
hexokinases but also to an increased rate of glycolysis and perhaps ATP production. Further
studies showed that the anti-apoptotic effect of hexokinases is significantly reduced when
truncated hexokinase isoforms that lack the N-terminal mitochondrial binding domain are
overexpressed [72]. Interestingly, similar results have been obtained with full-length but
catalytically inactive forms of both hexokinase I and II. These effects could either result from
impaired hexokinase localization or the lack of glucose conversion to glucose-6-phosphate.
In contrast, knockdown of hexokinase I has been reported to increase mitochondrial BAX
and to promote TNF-induced BAX oligomerization [81]. In addition, hexokinase II knock-
down has been suggested to enhance the expression of BAX and caspase-3, while BCL-2
could be downregulated [82]. Further studies revealed that depletion of hexokinase II
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decreases cancer cell proliferation and increases sensitivity to cell death inducers [58,83].
Effects similar to the hexokinase II knockdown have been observed when this enzyme
gets displaced from mitochondria or from interaction sites between mitochondria and ER
(mitochondria-associated membranes; MAMs) by selective peptides [59,84]. Pro-apoptotic
effects could also be achieved by detaching mitochondrial-bound hexokinase I with clotri-
mazole [74,81].

Specific binding of hexokinases to the mitochondria is mediated by the voltage-
dependent anion channel (VDAC), which is the major transport channel mediating the
passage of ions and metabolites across the OMM [85–88]. The interaction with VDACs is
thought to provide hexokinases preferred access to mitochondrially generated ATP [62].
Three isoforms of VDAC have been identified, VDAC1, VDAC2, and VDAC3 [89]. Different
degrees of colocalization between these isoforms and hexokinase I have been revealed
by STED microscopy [90]. Moreover, evidence suggests that distinct hexokinase I pools
exist on the mitochondria that are not colocalized with any of the isoforms [90]. Although
hexokinases seem to bind to the mitochondria without VDAC, knockout of VDAC results
in a significant decrease in mitochondrial hexokinase [91].

The structural basis of complex formation between VDAC and hexokinases is yet
to be elucidated. It has been suggested that hexokinase first inserts into the OMM and
then interacts with VDAC on the outer leaflet of OMM [92]. Complex formation between
both proteins seems to be mediated by their N-terminal domains [93,94]. Removal of the
N-terminal domain of hexokinases or VDACs abolishes their interaction [93,95]. Studies
show that their association protects cells against apoptosis [74,75]. A single mutation
is sufficient to largely abolish hexokinase I binding to VDACs and prevent hexokinase
I-mediated protection from cell death [57]. Interaction of hexokinases and VDACs has
also been implicated in aerobic glycolysis (“Warburg effect”) and proliferation of tumor
cells [96]. Strikingly, hexokinases have been reported to bind to VDACs more tightly in
cancer cells compared to control cells [96]. However, the molecular basis of hexokinase-
mediated apoptosis inhibition remained unresolved. VDAC is believed to adopt a closed
state upon activation of apoptosis [97]. It has been suggested that binding of hexokinase
to VDACs leads to channel opening [98,99]. There is also evidence, however, indicating
that hexokinase I induces VDAC1 closure (“low-conducting” state), leading to diminished
metabolic exchange [95,100,101]. Thus, hexokinase-dependent VDAC closure has been
speculated to be an anti-apoptotic event by preventing cyt c release [95]. These discrepancies
may be explained by the assumption that VDACs, besides an open and closed state, can
adopt a partially closed conformation through their interaction with hexokinases [92].
This conformation would still allow some flux of low molecular weight substances while
preventing the release of apoptotic factors. Interestingly, it has been shown that hexokinase-
mediated VDAC closure can be reversed by glucose-6-phosphate [95,102], indicating a
direct link between glucose metabolism and apoptosis perhaps through the influence
of hexokinase localization on apoptosis. It has been further suggested that closing of
VDACs by hexokinases could be inhibited by AKT signaling and overexpressed BCL-2
or BCL-xL [75,97]. However, opposing effects were also reported [64]. Nonetheless, a
competition between hexokinases and BCL-2 proteins for VDAC binding sites has been
proposed [63]. This assumption is consistent with the recent observation that under high
glucose condition the interaction between VDAC1 and BAX is enhanced [103]. These effects
could be partly reversed by overexpression of hexokinase II [103].

In addition, other binding partners of hexokinase II have been identified. The Tp53-
induced Glycolysis and Apoptosis Regulator (TIGAR) is a p53 target gene. TIGAR has
been shown to translocate to the mitochondria under hypoxic conditions, where it forms a
complex with hexokinase II and increases hexokinase activity [104]. Similarly, the phospho-
protein enriched in astrocytes (PEA15) binds to hexokinase II following hypoxia and seems
to increase anti-apoptotic effects [105]. These findings suggest that hexokinase II interacts
with both ubiquitously and tissue-specific expressed binding partners.
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Another regulator of hexokinases is glycogen synthase kinase 3β (GSK3β), which is
a downstream effector of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling path-
way. GSK3β has been suggested to promote apoptosis [56,61]. Activation of GSK3β
seems to induce the dissociation of hexokinase II from the OMM via phosphorylation of
VDAC [74,106]. Inhibition of GSK3β has been shown to increase hexokinase II binding
to the mitochondria and to protect against rotenone-induced apoptosis [106]. In contrast
to the GSK3β-mediated disruption of hexokinase/VDAC interaction, phosphorylation of
VDAC by PKC-ε has been reported to promote hexokinase binding [72,107]. These findings
indicate an intricate regulatory web for the complex formation of hexokinases and VDACs.

5. Hexokinase-Dependent Retrotranslocation Protects Cells against Extrinsic Apoptosis

Although a role for hexokinases has been suspected in the regulation of mitochon-
drial apoptosis for some time, only recently the molecular link has been discovered [108].
Studying transient protein interactions with BAX, hexokinases I and II were identified.
Owing to the pronounced regulation observed in tumors, hexokinase II is likely involved
in cell death regulation. However, it shares mitochondrial association and probably the
mechanism of binding to mitochondria and dissociation with hexokinase I. Hence, it is not
too surprising that both hexokinases are involved in apoptosis control.

The analysis of transient hexokinase interactions with BAX revealed involvement in
inhibition of BAX and also BAK by retrotranslocation from mitochondria to the cytosol.
Hexokinases also accelerate BCL-xL retrotranslocation comparable to the anti-apoptotic
BCL-2 protein MCL-1. In turn, overexpression of BCL-xL shifts the localization of hexoki-
nases to the cytosol. In other words, there is evidence for a strong interdependence of the
proteins, which retrotranslocate BAX and BAK. A function of hexokinases in retrotransloca-
tion seems to imply that hexokinases can protect cells from apoptosis in general. However,
this is not the case. In fact, inhibition of only receptor-mediated apoptosis by hexokinases
can be observed. In a reduced cell system lacking the prominent members of the BCL-2
family, hexokinases alone inhibited BAX only to a modest extent [108]. A substantial effect
of hexokinase was observed only when cell survival was dependent on the inhibition of
tBID. The discrepancy between minimal direct effect of hexokinases on BAX activity and
paramount role in specific inhibition of tBID-dependent receptor-mediated apoptosis led to
the discovery of hexokinase-dependent retrotranslocation of tBID [108].

This function of the hexokinases is independent of the phosphorylation of glucose to
glucose-6-phosphate. However, mitochondrial association of the hexokinases is essential
for retrotranslocation. On the mitochondria hexokinases form complexes with VDAC2
similar to pro-survival BCL-2 proteins [32,109]. However, VDAC2 seems to either interact
with pro-survival BCL-2 proteins or hexokinases. Neither BAX nor BAK are present in
stable complexes of VDAC2 with pro-survival BCL-2 proteins or those VDAC2 complexes
containing hexokinases. Thus, stable complexes between BCL-2 proteins in association
with the OMM seem lacking. Only the interaction between tBID and BCL-xL seems to be an
exception to this rule: BCL-xL decreases the rate of tBID retrotranslocation [108]. Therefore,
the mitochondrial pool of both proteins increases due to OMM-embedded tBID/BCL-xL
complexes [110,111]. By stabilizing common complexes, tBID appears to have the excep-
tional ability to reduce the effective BCL-xL protein pool for BAX/BAK retrotranslocation.
It follows that death receptor signaling could be particularly effective in cells addicted to
BCL-xL activity. The tBID-specific hexokinase-dependent retrotranslocation protects cells
particularly from this apoptosis signaling axis.

The dependence on hexokinase localization and the specificity toward receptor-
mediated apoptosis can be explanations as to why this mechanism remained hidden.
Mitochondrial hexokinases inhibit apoptosis by effector inhibition through BAX/BAK retro-
translocation and activator inhibition by retrotranslocating mitochondrial tBID (Figure 3).
Hexokinase-mediated BAX/BAK retrotranslocation potentially counteracts any mitochon-
drial apoptosis signaling. This process occurs in all mammalian cells and depends on the
localization and expression of hexokinases I and II. Elevated levels of specifically hexoki-
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nase II in some tumor entities suggest a more important role. Increased glucose metabolism
was observed to stabilize HKII glucose dependently. The resulting anti-apoptotic effect
could thus contribute to the development of vascular complications of diabetes, diabetic
embryopathy, and insulin resistance. This is also supported by increased HKII expression
levels in cancer-associated adipose tissue [112]. Indeed, apoptosis is linked to decreased
HKII levels and mitochondrial binding in obesity and type II diabetes [113].
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Figure 3. BCL-2 proteins inhibit apoptosis or commit the cell to mitochondrial apoptosis as a result
of receptor-mediated apoptosis or intrinsic stress. (a) Hexokinase-dependent effector inhibition
functions in analogy to BCL-2 protein-mediated retrotranslocation are involved in cell protection
from any signal that can potentially trigger apoptosis. This mechanism is universally expected
in mammalian cells but seems to be of lesser importance compared to the role of anti-apoptotic
BCL-2 proteins. Constant OMM association of pro-apoptotic BCL-2 proteins (blue) is counteracted
when BAX and BAK are recognized after a major conformational change by hexokinases (red) and
retrotranslocated into the cytosol. In the absence of retrotranslocation of BAX or BAK, apoptosis
is initiated through oligomerization of BAX and/or BAK and permeabilizes the OMM leading to
cytochrome c (cyt c) release and caspase activity. Therefore, hexokinases prevent OMM permeabiliza-
tion and commitment to apoptosis. (b) Additional inhibition of the activator tBID by hexokinases
specifically protects cells from receptor-mediated apoptosis by cytotoxic T cells. In response to
ligands death receptors, e.g., Fas or TRAIL-R, trimerize and initiate the formation of a caspase-8
(dark green) activating scaffold. Caspase-8 activity results in BID (green) cleavage. Mitochondrial
tBID inhibits BAX/BAK (blue) retrotranslocation by competing with BAX and BAK for pro-survival
BCL-2 protein, e.g., BCL-xL (orange), interactions. Therefore, tBID shifts BAX and BAK towards the
active forms by forming OMM-embedded complexes with BCL-xL. Mitochondrial hexokinase I/II
(red) selectively retrotranslocate tBID into the cytosol. Therefore, hexokinases prevent BAX/BAK
activation in response to death receptor-mediated apoptosis.

Nevertheless, in experiments, hexokinases protected tumor cells significantly less than
anti-apoptotic BCL-2 proteins [108]. Crucial to cell survival after death receptor signaling,
however, is the retrotranslocation of tBID. Hexokinase-dependent retrotranslocation of tBID
can prevent cell death in cells that require mitochondria for receptor-mediated apoptosis
(type II). Even if mitochondrial signaling is not essential for receptor-mediated apoptosis
(type I), the proportion of apoptotic cells is likely reduced. Thus, inhibition of the activator
tBID reduces apoptosis triggered by cytotoxic T cells. This mechanism is also likely to be
more pronounced in tumors with high hexokinase levels. Future studies should investigate
the role of hexokinase-dependent retrotranslocation in immune evasion.
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In addition to association with mitochondria, the cytosolic domains of hexokinases are
also required for interaction and retrotranslocation of BCL-2 proteins. tBID retrotransloca-
tion can be inhibited by BH3 mimetics. The role of the BH3 motif is supported by reduced
interactions between hexokinases and BAX variants of the BH3 motif [108]. The retro-
translocation of BAX, BAK, and tBID, the inhibitory effect of BH3 mimetics, the binding to
tBID, BIM, and BAX, and the disruptive effect of BAX-BH3 variants on hexokinases suggest
that hexokinases interact with BCL-2 proteins via the BH3 motif. Binding of hexokinases
to the BH3 motif may explain why hexokinases can retrotranslocate BAX, BAK, and tBID.
Differences in the BH3 motif or secondary binding sites could impede BIM shuttling. De-
spite structural and functional differences, hexokinases and pro-survival BCL-2 proteins
retrotranslocate BCL-2 proteins.

Hexokinase-dependent retrotranslocation of tBID is a direct countermeasure to death
receptor-dependent initiation of OMM permeabilization. This additional layer of apoptosis
regulation contributes to cell-to-cell differences in apoptosis induction [114]. Recently, it was
suggested that tBID permeabilizes the OMM in the absence of BAX and BAK [115]. Indeed,
such a special role of tBID among BH3-only proteins would explain why a tBID-specific
inhibitory mechanism is necessary to protect the healthy cell. Hexokinase-dependent resis-
tance to death receptor ligands, such as TRAIL and FasL, provides further complexity to the
design of successful anti-tumor strategies. Apoptosis induction by cytotoxic T cells requires
inhibition of hexokinase-dependent BCL-2 protein retrotranslocation when progression
relies on caspase-mediated BID cleavage. Observations of cell type-specific differential
apoptosis induction by tBID and BIM could be caused by differential hexokinase-dependent
tBID retrotranslocation [116,117]. Varying hexokinase activities could create apparent dif-
ferences in tBID and BIM activities in some cell types while lacking from others [118].

Hexokinases also directly inhibit commitment to apoptosis by BAX/BAK retrotranslo-
cation. Strikingly, hexokinases enhance BAX/BAK retrotranslocation to the same rates as
pro-survival BCL-2 proteins, while protection from BAX in cells lacking BCL-2 proteins
is considerably lower [108]. Therefore, the dominant effect of apoptosis inhibition by hex-
okinases results from tBID shuttling. Hexokinase-dependent tBID retrotranslocation frees
pro-survival BCL-2 proteins to retrotranslocate BAX and BAK into the cytosol in a ‘primed
to death’ scenario [119,120]. BAX/BAK retrotranslocation especially following intrinsic
stress-induced signaling is dominated by pro-survival BCL-2 proteins. Interestingly, BID
has also been reported as a substrate of caspase-2 in response to ER stress or DNA damage
signaling [65,66]. Nonetheless, hexokinase-dependent apoptosis inhibition seems specific
to death receptor signaling [108].

6. Conclusions

The BCL-2 protein family interacts with a variety of different protein species to reg-
ulate the cellular fate. Hexokinases provide a link from glucose metabolism to cell sur-
vival. Mitochondrial hexokinases inhibit apoptosis by two different mechanisms: effector
inhibition through BAX/BAK retrotranslocation and activator inhibition by tBID retro-
translocation specifically preventing mitochondrial apoptosis engagement following death
receptor signaling. Hexokinase-dependent retrotranslocation safeguards, therefore, cells
from apoptosis induced by cytotoxic T cells and could reduce apoptosis in obesity and
type II diabetes.
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