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Simple Summary: Low-molecular-weight substances are participants in all biochemical processes
occurring in the body. Therefore, by measuring them we can obtain new knowledge about aging
mechanisms. At the same time, various animals, which are distinguished by different life expectancies,
are excellent objects for such studies, and modern science, known as metabolomics, offers efficient
methods to measure them, taking into account their huge diversity. This review describes the aging
data accumulated today, obtained by such methods in various animal models and humans.

Abstract: Organism aging is closely related to systemic metabolic changes. However, due to the
multilevel and network nature of metabolic pathways, it is difficult to understand these connections.
Today, scientists are trying to solve this problem using one of the main approaches of metabolomics—
untargeted metabolome profiling. The purpose of this publication is to review metabolomic studies
based on such profiling, both in animal models and in humans. This review describes metabolites
that vary significantly across age groups and include carbohydrates, amino acids, carnitines, biogenic
amines, and lipids. Metabolic pathways associated with the aging process are also shown, including
those associated with amino acid, lipid, and energy metabolism. The presented data reveal the
mechanisms of aging and can be used as a basis for monitoring biological age and predicting age-
related diseases in the early stages of their development.
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1. Introduction

In recent decades, the lifespan (LS) of people in the world has been steadily increasing
against the backdrop of a declining birth rate [1]. Population aging has become a global
phenomenon and, perhaps, among the most significant social transformations of the 21st
century, resulting in problems for the economy, as well as social problems, in particular for
health care, since aging is often accompanied by disability, cardiovascular diseases, chronic
respiratory diseases, Alzheimer’s disease, arthritis and diabetes [2,3]. Thus, it became
necessary to study the molecular mechanisms of aging to reduce or eliminate the symptoms
associated with it [4].

During aging, many transformations occur in the body at all levels of its organization,
from cell organelles to organ systems, which lead to a wide range of functional and struc-
tural changes. However, this process is far from being fully studied. Over the past 30 years,
gerontological studies have led to impressive advances in understanding the genetic control
of aging [5,6]. Genetic studies pay great attention to the factors that affect both LS and
successful aging, which scientists understand as the absence of chronic diseases and the
ability to function effectively at physiological and psychological levels [7–10]. However,
LS is determined by the complex interaction of many factors (from genetic to numerous
environmental factors) [11]. Basic postgenomic “omics” sciences, such as transcriptomics,
proteomics, and metabolomics, can provide additional information about changes in the
body at “postgenome” molecular levels (from transcripts to low-molecular-weight sub-
stances) [12]. At the same time, metabolomics occupies a special place in scientific studies,
since the metabolome, being the end point of all biological events occurring in the body,
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can provide information about all realized in the organism’s molecular mechanisms of
aging. The metabolome is formed by metabolites, low-molecular-weight substances that
are substrates, intermediates, and products of biochemical reactions occurring in the body.
Metabolites play a key role in energy production, and signal transmission, carry informa-
tion about the state of the body and ongoing processes, and therefore can be biomarkers of
aging or be an integral part of the metabolic signature that reflects the state of the whole
organism in the aging process.

2. Theories of Aging

Considering metabolomics studies of aging, first of all, it is necessary to mention the
theories of aging associated with metabolites, such as the free radical theory and the calorie
restriction theory [4,13,14].

Among the oldest theories of aging is the free radical theory. It was first proposed
by Denham Harman in the 1950s [4,15]. According to this theory, free radicals pose the
greatest danger to DNA. If DNA is irreversibly damaged, this has serious consequences
for human health, as illustrated by several genetic disorders of DNA repair, all of which
lead to the manifestation of signs of premature aging [16]. Damage to large molecules by
free radicals is known as oxidative stress, which was proposed by Harman as a cause of
aging and later as a factor in chronic inflammation. In the 1970s, Harman assumed the
key role of mitochondria in the formation of free radicals that damage cells and proposed
the mitochondrial theory of aging [17]. According to this theory, aging is due to the
cumulative effects of free radicals on mitochondrial DNA. Initially, the theory was largely
not supported by the scientific community. It gained recognition only with the discovery
of superoxide dismutase (SOD, an enzyme that decomposes the superoxide radical) and
hydrogen peroxide produced by mitochondria. Later, in support of the mitochondrial
theory of aging, studies appeared demonstrating that the ectopic expression of “radical
scavengers”, such as catalase and SOD, contributes to an increase in LS in experimental
models [18,19]. In addition, genetic manipulations to increase LS are accompanied by an
increase in the level of antioxidants, for example, in mice [20].

The mitochondrial theory of aging has been questioned since around 2005. Recent
genetic studies show that the LS of the nematodes Caenorhabditis and Drosophila is in-
creased due to the partial inactivation of mitochondrial SOD, the mitochondrial complex
proteins, and mitochondrial ribosomal proteins [21]. Moreover, it was observed that low
levels of reactive oxygen species can improve systemic adaptive mechanisms (“mitohorme-
sis” [22]) and increase the LS of nematodes. It should be noted that, according to new
data, the hypothesis has been put forward that mitohormesis can occur in mammalian
macrophages [23].

The calorie restriction theory suggests that calorie restriction (CR) or intermittent
fasting (IF) effectively increases the LS of model animals. When caloric intake is reduced by
20–30%, LS increases by 20% or more in animals such as mice, flies, fishes, and spiders [4,24].
During CR, a decrease in oxidative stress is observed, which indicates its role in this
theory [25]. During CR, several signaling molecules are activated or inactivated, such
as sirtuin, TOR kinase, and AMP-activated protein kinase. Among the targets for these
signals is the transcription factor FoxO of the Fox family (Forkhead box), which activates a
group of radical scavenger genes and acts as a tumor suppressor [26–29]. The transcription
factor FoxO is also involved in the regulation of proliferation, cell differentiation, apoptosis,
cellular response to stress, as well as aging, and LS [30]. A recent study suggested that FoxO
modulation through signaling molecules induces the elimination of senescent cells in the
body [31]. Interestingly, chemical compounds that mimic CR conditions are effective both in
extending the LS of the organism in experimental models and in treating diseases associated
with aging: resveratrol (sirtuin activator) against obesity, rapamycin (TOR-kinase inhibitor)
as an antitumor drug or immunosuppressant, and metformin (AMP-activated protein
kinase activator) in the treatment of diabetes [32–35].
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Another sirtuin activator is NAD+, a classical coenzyme mediating many redox reac-
tions, whose participation in antiaging therapy has been actively discussed [36,37]. NAD+
plays an important role in the aging process as it participates in various pathways of energy
metabolism. The level of NAD+ decreases with aging, leading to many age-related patholo-
gies. Restoring NAD+ by adding intermediates such as nicotinamide mononucleotide
(NMN) can greatly facilitate age-related functional decline [38].

Little is known about the effect of CR or fasting on human LS. Some epidemiological
studies show that slightly overweight people live longer [39]. In addition to CR, supple-
mentation of food with some metabolites, such as NMN [40], branched-chain amino acid
(BCAA) [41], antioxidants, beta-carotene, vitamin A, or vitamin E [42], is being studied as
an interventional approach against human aging.

Thus, theories of aging indicate that aging is accompanied by systemic metabolic
changes. In recent decades of studying aging, numerous enzymes and metabolites have
been discovered that belong to different metabolic pathways and are involved in the regu-
lation of aging [43]. Their important role is known in disorders of protein homeostasis, the
nutrient recognition system (the insulin signaling pathway, mTOR, AMP-activated protein
kinase, and sirtuin signaling pathways), and in mitochondrial dysfunction. However,
there is still no complete picture of the interaction between metabolic processes and aging.
To expand our knowledge of the mechanisms of longevity, methods for simultaneously
measuring many metabolites, such as untargeted metabolomics methods, are best suited.

3. Approaches for Metabolomic Profiling

Metabolomics is the youngest and fastest developing among the “omics” sciences,
which makes it possible to obtain a picture of the current metabolic status of the body
associated with physiological and pathophysiological processes [44,45]. The subject of
metabolomics research is numerous low-molecular-weight substances, both of endoge-
nous and exogenous origin. They are participants in metabolic pathways that can serve
as biomarkers indicating various physiological and/or pathological conditions of the
body [4,46]. Moreover, the metabolome is the final point of cascades of biological events
resulting from the complex interaction of genes, proteins, biochemical reactions, and envi-
ronmental factors [47], which makes metabolic profiles a source of new data for hypotheses
of the molecular mechanisms of aging [43,48–53].

In recent years, panoramic profiling of metabolites has become an effective tool for
studying biological processes associated with aging [44,49]. Metabolomic profiling is a
new method aimed at the simultaneous measurement of a large number of low-molecular-
weight substances in biological samples [54–56]. The strength of metabolite profiling lies in
its untargeted nature, which makes it possible to reveal new knowledge by tracking changes
in the whole variety of metabolites [51]. In addition, untargeted metabolite profiling is
potentially clinically applicable, namely, to monitor the aging processes, as well as to
implement antiaging therapies [57,58].

Information about hundreds or even thousands of metabolites in a biological sample in
a single analysis is provided by nuclear magnetic resonance (NMR) spectroscopy [59,60] and
mass spectrometry (MS), which can be combined with high-performance liquid chromatog-
raphy (LC) or gas chromatography (GC) [61–63]. Mass spectrometers make it possible to
analyze hundreds or thousands of metabolites in a sample in pico- and femtomole concen-
trations, both after preliminary separation of the sample substances using chromatography
or electrophoresis, and without separation by direct infusion mass spectrometry (DIMS),
which involves the direct introduction of the analyzed biomaterial into the ionization source
of the mass spectrometer [64]. This makes MS the main analytical tool in metabolomics [63]
for panoramic analysis, when it is necessary to obtain data on a variety of metabolites
belonging to various chemical classes and metabolic pathways.

As a result of the use of MS, a large array of data is obtained that requires further
bioinformatic processing to identify the necessary information [65]. First of all, MS data
are subjected to standardization or normalization [66,67]. The choice of a further method
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for data processing directly depends on the purpose of the study [68]. The principal
component analysis (PCA) or the independent component analysis (ICA) are used to
reduce the dimension of the data. PCA is preferred for metabolomic analysis and can be
performed by most statistical programs [69,70]. ICA is used in metabolomics when the
choice of a component is not so critical, since it allows one to ignore the technical variability
of mass spectra obtained with different instruments [71]. It is also possible to use several
methods together [72,73].

Sample classification usually requires the use of cluster analysis. To identify biomark-
ers, methods are used that work on groups of samples with predetermined parameters
(for example, whether samples belong to subjects of different ages) [74]. Among the most
commonly used methods for assessing the diagnostic or prognostic power of molecular
biomarkers is the Area Under Receiver-Operator Characteristic Curve (AUC) [75]. When
AUC is greater than 0.5, the biomarker exhibits diagnostic or prognostic properties that in-
crease as AUC approaches 1 (corresponding to 100% diagnostic sensitivity and specificity).

Due to the growing number of metabolomic studies, the development of special soft-
ware for the analysis of metabolite spectra (for example, MET-IDEA [76], MathDAMP [77],
and TagFinder [78]) has become topical. Many manufacturers of mass spectrometric equip-
ment offer their software packages for the analysis of metabolomic data. For example, the
commercial software Metabolic Profiler (Bruker Daltronics, Billerica, MA, USA) allows
pre-processing of the resulting mass spectrometric metabolomic data and comparative
analysis of metabolite profiles.

In addition to identifying biomarkers related to the aging process, the analysis of
the resulting metabolic profiles allows for a systematic analysis of changes in metabolic
pathways. This analysis has been made possible by the development of several databases of
metabolomes of various organisms and specific biological fluids. Metabolite annotations in
such databases include chemical composition, metabolite detection method, concentration
data for normal and pathological conditions, as well as information about metabolic
pathways in which metabolites are involved. Among most well-known databases, there is
HMDB (Human Metabolome Database) (https://hmdb.ca; accessed on 18 September 2022)
is an open-access database containing detailed data (chemical, clinical and biochemical
information) on more than 40,000 metabolites that have already been identified or most
likely can be found in the human body. There are also several popular databases of
metabolites for different organisms, including the KEGG (Kyoto Encyclopedia of Genes and
Genomes) (https://www.genome.jp/kegg; accessed on 18 September 2022), MetaboLights
(https://www.ebi.ac.uk/metabolights; accessed on 18 September 2022), LipidMaps (https:
//www.lipidmaps.org; accessed on 18 September 2022), and Metlin [79]. The currently
known metabolic changes associated with age are in the MetaboAgeDB database [80].

The projection of measured sets of metabolites onto metabolic pathways is among the
popular and widely used analyses, which makes it possible to identify biological insights
at the level of metabolic pathways. Among the common ways to do this is metabolite
set enrichment analysis (MSEA), which allows obtaining a statistical estimate of such
projection [81]. MSEA is conceptually similar to a widely used genetics tool, known as
gene set enrichment analysis (GSEA), and, in general, MSEA gives the probability that
the measured metabolites correspond to a certain metabolite set, for example, a specific
metabolic pathway (Figure 1).

https://hmdb.ca
https://www.genome.jp/kegg
https://www.ebi.ac.uk/metabolights
https://www.lipidmaps.org
https://www.lipidmaps.org
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4. Untargeted Metabolomic Profiling in the Study of Aging in Animal Models

Aging is a fundamental biological process whose mechanism is still largely unknown
due to its complexity and multifactorial nature. Animal models simplify the study, so a
significant amount of knowledge has been gained from such studies [82]. The complex
interactions between factors that influence aging and LS, and genes that influence longevity
are easier to study in short-lived, simpler organisms. Yeasts, worms, fruit flies, or mam-
malian models such as mice, dogs, and monkeys have already helped shed light on the
aging process [83]. Based on genetic studies in animal models, several mechanisms of aging
associated with metabolism became known [84–87].

Even though lower organisms are not a directly suitable model for the study of
biological processes and diseases in mammals, they are nevertheless widely used as an
effective model for elucidating the molecular basis of aging. Many intracellular and
intercellular signaling pathways, as well as molecular interactions between body tissues,
have a high degree of homology even among evolutionarily distant organisms [88]. The
main advantages and disadvantages of model organisms are presented in Table 1.
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Table 1. The characteristics of various model organisms for studying aging. Adapted from Allard J.B. et al. [89], Taormina G. et al. [83], and Strange K. [90].

Characteristics C. elegans Drosophila
Fishes Rodents

Dogs HumansPacific
Salmon Pike Carp Mice Rats

Similarity to the
human genome ~25% ~50% >70% >70% >70% ~83% ~90% ~85% 100%

Genome size
11/12

chromosomes
21,305 genes

8 chromosomes
14,065 genes

52–74
chromosomes

Up to 40,000 genes
18 chromosomes

~22,000 genes 104 chromosomes 40 chromosomes
29,083 genes

42 chromosomes
~25,000 genes

78 chromosomes
36,322 genes

46 chromosomes
63,494 genes

Lifespan 1 2–3 weeks 4–6 weeks Several years 7–10 years 20 years 1–3 years 2–3 years 6–16 years ∼80 years

Age of puberty 1 50 h 10 days 2–5 years 3–5 years 2–5 years 9–12 weeks 1.5–3 months 14–18 months 10–16 years

Number of
offspring 1 300–1400 offspring ∼120 eggs no more than

20,000 eggs
from 18 000

up to 220 000 eggs
up to

1.5 million eggs 6–12 cubs 8–10 cubs 3–8 cubs 1–2 children

Advantages

- low cost of
animals and
maintenance
- no ethical
requirements
- short LS
- easy to work with
- genetically
tractable
- strains can be
archived by
cryopreservation

- low cost of
animals and
maintenance
- no ethical
requirements
- the breadth of LS
variation
- rapid onset of
puberty and high
fertility
- a wide range of
phenotypes
- some
intracellular
processes are
similar or
homologous to
human cells

- vertebrates
- no need for ethical requirements
- the breadth of LS variation
- most intracellular processes and many physiological processes
are similar to mammals
- high fertility

- mammals
- high similarity with the human genome
- most cellular processes and
physiological processes are similar to
humans
- available for many genetic
manipulations
- a wide range of phenotypes
- strains archived by cryopreservation of
embryos and sperm

- mammals
- high similarity
with the human
genome
- most cellular
processes and
physiological
processes are
similar to humans

- research is most
relevant for
improving health

Disadvantages

- relatively simple
anatomy
- lacks distinct
endocrine tissues
and various other
tissue types
- evolutionarily
very distant from
humans

- strains needed
maintain
constantly
- evolutionarily
distant from
humans

- evolutionarily distant from humans
- long LS

- the expensive cost of animals and
maintenance
- the need for ethical requirements
- relatively long LS
- over-reliance on pre-clinical models:
many drugs that are effective in mice
and rats do not work in humans

- the very
expensive cost of
animals and
maintenance
- the need for
ethical
requirements
- long LS

- limited ability to
do experiments
- the need for
ethical
requirements
- long LS
- “diversity of
aging”

1 mean; LS, lifespan.
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The advantages of animal models are cost reduction, ease of maintenance of the
studied organisms, and the possibility of modeling experiments in a laboratory [91–93].
The short LS of simple organisms is another key advantage in aging research, allowing
both parallel and serial experiments to be carried out within a reasonable time frame [83].
Certainly, a direct extrapolation of the biological mechanisms found in invertebrates, fishes,
etc., on mammalian organisms may not be entirely correct, but it sheds light on the diversity
of molecular bases of LS and longevity that exists in nature.

In the process of evolution, under the influence of external factors, different types of
animals formed different strategies for survival, which is reflected in their survival curves
(Figure 2). The study of species with different survival strategies certainly expands our
understanding of the aging process. The difference in strategy is usually taken into account
when designing a study and interpreting the results. For example, Drosophila relates to
species with a type II survival curve in which the proportion of living organisms falls
almost linearly over time. Throughout life, the chances of dying due to predators, diseases,
accidents, etc., are usually constant. Therefore, fly samples for the study of aging can be
obtained throughout life [94]. A human belongs to the type I survival curve, in which the
proportion of people is high in early and middle age and decreases as a human approaches
old age, and mortality is maximum in old age. Therefore, cohorts for the study are formed
with this fact in mind, for example, a group of older people versus young people in a
comparative study [95].
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Regarding metabolomics, several studies of aging were performed in animal models,
both mammalian (mice, rats, dogs) [62,82,97,98] and non-mammalian (vertebrate and inver-
tebrate) [94,99–105] (Table 2). As a rule, early works are an integral part of complex studies,
which include, in addition to metabolomics, histological, biochemical, and genetic studies.

Thus, for studying aging, there are different model organisms, with their own ad-
vantages and disadvantages (Table 1). Some are simple for modeling experiments, but
evolutionarily far from humans, others are close in biology to humans but difficult to re-
search. All this together justifies the existence of various models. However, the difference in
models leads to different designs for untargeted metabolomic studies, including sampling
timing, sample preparation protocols, and metabolite measurement method (Table 2). To
review the available data and, as a result, to draw general conclusions about the role of
metabolites in the aging process, the results obtained on different animal models—from
worms to humans, are further considered.
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Table 2. Objects, methods, and main results of the studies presented in this review.

Object of Study Research Materials Age of Objects Profiling Methods Metabolites and Metabolic Pathways that Change with Aging References

C. elegans

Whole worms day 4 (young adult),
day 10 (the mean length of LS) GC–MS

Purine and pyrimidine metabolism, free hydrophobic amino
acids, S-adenosylmethionine metabolism, sorbitol, free fatty

acids, cellular redox balance, amino acid biosynthesis
[99]

Whole worms young adult and day 10 NMR spectroscopy,
LC–MS

Glutathione metabolism, glutamate metabolism, purine and
pyrimidine metabolism, taurine and hypotaurine metabolism,

tricarboxylic acid cycle
[100]

Whole worms days 1, 3, 5, 7, 9 and 10 LC–MS Metabolism of fatty acids, amino acids, and phospholipids [101]

Drosophila

Whole flies every 2–6 days
throughout the life DIMS Carbohydrates, amino acids, carnitines, biogenic amines, lipids [94]

Whole flies days 1–80 LC–MS Lifetime dynamics of many metabolites [51]

Whole flies days 3, 10, 24, 36, 51, 66, 81 LC–MS Metabolism of carbohydrates, glycerophospholipids,
neurotransmitters, amino acids, and the carnitine shuttle [50]

Heads, thoraces, abdomens,
whole flies days 10, 25, and 40 LC–MS Metabolism of amino acids and NAD+ [106]

Whole flies days 4, 10, 24, 45, 69, 80 LC–MS Arginine-ornithine metabolism, tryptophan metabolism [104]

Whole flies day 3, day 30 LC–MS Glycolysis [107]

Heads, muscle tissue day 3, day 30 LC–MS
Carbohydrate metabolism (galactose, starch, sucrose

metabolism), amino acids metabolism (alanine, asparagine,
glutamine, serine metabolism), purine metabolism

[105]

Fishes
Blood plasma

2.4 ± 0.5 1 years
3.4 ± 0.5 1 years
6.7 ± 2.4 1 years
4.3 ± 1.9 1 years
6.1 ± 1.9 1 years
4.0 ± 0.4 1 years

(from groups of short-lived to
long-lived fish species)

DIMS

Dipeptides, di- and triglycerides, fatty acids,
phosphoethanolamines, and phosphatidylcholines [102]

Skeletal muscles Amino acids, lipids, biogenic amines, intermediates of glycolysis,
glycogenolysis, and the citric acid cycle [103]

Mice

Blood plasma, muscle tissue
(quadriceps), liver

13 weeks (“young”),
93 weeks (“old”) GC–MS, LC–MS Metabolism of fatty acids and glucose [62]

Serum 8–129 weeks LC–MS Phospholipids, fatty acids, organic acids, creatine, methionine,
uric acid [108]

Serum, urine
8, 12, 16, and 20 weeks

(mutants with accelerated
aging)

NMR spectroscopy Changes in lipid and energy metabolism, transition to ketosis [82]
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Table 2. Cont.

Object of Study Research Materials Age of Objects Profiling Methods Metabolites and Metabolic Pathways that Change with Aging References

Rats Liver, serum 3–5 months (young),
15–17 months (old) LC–MS

Organic acids and their derivatives, lipids and lipid-like
molecules, glycerophospholipids, arachidonic acid, histidine,

linoleate
[109]

Dogs
Urine

13, 18, 32 weeks,
1, 1.5, and 2 years,

annually after 5 years until the
death

NMR spectroscopy Metabolites associated with energy metabolism [98]

Serum 1 month-16 years NMR spectroscopy Lipids, cholesterols, triglycerides, lipoproteins, protein
glycosylation marker GlycA [110]

Humans

Blood plasma 20–65 years LC–MS, GC–MS

Tricarboxylic acid intermediates, creatine, essential and
non-essential amino acids, urea, ornithine, polyamines, markers
of oxidative stress, lipid metabolism products (including fatty

acids, carnitine, β-hydroxybutyrate, and cholesterol),
dehydroepiandrosterone sulfate (putative antiaging androgen),

xenobiotics (e.g., caffeine)

[111]

Whole blood, blood plasma,
and erythrocytes

29 ± 4 1 years (young),
81 ± 7 1 years (elder)

LC–MS

1,5-anhydroglucitol, dimethylguanosine, acetylcarnosine,
carnosine, ophthalmic acid, UDP-acetylglucosamine,

N-acetylarginine, N6-acetyllysine, pantothenate, citrulline,
leucine, isoleucine, NAD+, and NADP+

[95]

Blood plasma 6 months–82 years LC–MS Metabolism of progestin steroids, xanthine, and long-chain
fatty acids [58]

Blood plasma every two years from
middle-aged adults for 10 years LC–MS Sphingolipids, lipid steroids (including androgens, progestins,

and pregnenolones), amino acids [112]

Blood plasma, serum 17–85 years LC–MS
Lipids (long-chain fatty acids, polyunsaturated fatty acids, and
other fatty acids), amino acids (including glutamine, tyrosine,

histidine)
[113]

Serum 60.51 ± 8.77 1 for females,
61.17 ± 8.79 1 for males

LC–MS, GC–MS Amino acids, lipids (fatty acids, androgenic steroids) [114]

1 mean ±s.d.; DIMS, direct infusion mass spectrometry; LC–MS, liquid chromatography–mass spectrometry; GC–MS, gas chromatography–mass spectrometry; NMR, nuclear magnetic
resonance.
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5. Metabolomic Profiling of Caenorhabditis elegans

Due to the short LS and ease of cultivation in the laboratory, the nematode Caenorhab-
ditis elegans is among the most popular model organisms to investigate the molecular
mechanisms of aging. Other advantages of C. elegans include the fully sequenced genome,
the ease of genetic intervention through bacteria-feeding, and the research-proven effects
of altering either temperature or the amount of food on LS changing [115].

In the research of Copes et al., a global assessment of metabolite levels in young and
old nematodes was carried out using GC–MS and led to the successful identification of
186 metabolites [99]. The data were analyzed using PCA, which showed that most of the
changes in metabolite levels were due to age differences. Metabolomic analysis results
showed that aged C. elegans had reduced levels of purine and pyrimidine metabolites,
reduced levels of free hydrophobic amino acids, altered S-adenosylmethionine metabolism,
elevated sorbitol, elevated free fatty acid levels, and a shift in cellular redox balance.
Moreover, it was found that with age, the pathway of amino acid biosynthesis changes
the most, primarily due to a significant degree of overlap of this pathway with other
metabolic processes. Of the 24 metabolites identified in this pathway, 14 were significantly
altered with age, including 7 amino acids. Of the 14 metabolites that were altered, 11 were
significantly reduced in older nematodes.

Wan et al. used C. elegans hermaphrodites as a model to study changes in metabolic
pathways during aging and how deletion of germline stem cells (GSCs) leads to infertility
and increased LS in long-lived glp-1 mutants [100]. Metabolomic profiling was performed
by combining NMR and LC–MS. Analysis was performed using PCA, hierarchical, and
supervised orthogonal projection to latent structure with discriminant analysis (OPLS-DA).
The results showed that aging is accompanied by metabolome remodeling. Age-changing
metabolic pathways included glutathione metabolism, glutamate metabolism, purine and
pyrimidine metabolism, taurine and hypotaurine metabolism, and the tricarboxylic acid
cycle (TCA cycle). Analysis of the metabolic profiles of long-lived glp-1 mutants showed
that glp-1 mutants regulate the levels of many age-related metabolites to delay aging,
including an increased level of intermediate products of pyrimidine and purine metabolism
and reduced levels of TCA cycle intermediates.

Gao et al. also used C. elegans as a model to analyze age-related changes in the
metabolome and analyzed metabolite profiles throughout life, including larval devel-
opment, reproductive phase, and aging [101]. Metabolomic analysis was performed by
LC–MS/MS, which allowed the detection of more than 600 metabolites. Marked changes
were observed in the levels of fatty acids, amino acids, and phospholipids throughout the
life of the worms. A dramatic shift in lipid metabolism was observed after early adulthood.
The highest levels of most amino acids occurred during development, except aspartic acid
and glycine, which increased in aging worms.

6. Metabolomic Profiling of Drosophila

Drosophila is among the most widely used model organisms for various biomedical
studies. The high homology of intracellular processes with processes in mammalian cells
makes fruit flies an attractive tool for research in cell biology, genetics, and in the study of
human diseases.

Drosophila is a powerful experimental model for testing hypotheses about biomarkers
of aging that was convincingly shown by Zhao et al. (2022) by observing adult cohorts of
20 Drosophila Genetic Reference Panel (DGRP) strains selected to represent the breadth of
LS variation [104]. By comparing LS and age-related functional traits (fertility and activity)
with metabolic profiles obtained using LC–MS, it was shown that the metabolome is a
biological clock that predicts not only the age of flies but also LS. Targeted analysis revealed
two pathways that are highly represented among the features associated with LS. First, they
identified metabolites associated with tryptophan/kynurenine metabolism. The second
group of metabolites includes the amino acids arginine, ornithine, and proline, as well as
their related metabolites.



Biology 2022, 11, 1570 11 of 24

In the research of Maslov et al. (2021), the identification of signs of longevity was
based on a comparative study of the metabolomic composition of twelve Drosophila species
with different LS (D.virilis, D.ananassae, D.saltans, D.simulans, D.austrosaltans, D.bipectinata,
D.yakuba, D.melanogaster, D.willistoni, D.erecta, D.kikkawai, and D.Biarmipes) [94]. The studied
species have an identical body structure and life cycle [116], at the same time, as a result
of a long evolution, they have acquired significant phenotypic differences (size, weight,
etc.) [117]. As an assessment of the degree of aging, relative age was proposed, which
was expressed as a percentage of the maximum LS of the species. Thus, samples of equal
relative age from each species were selected and combined into cohorts for comparative
analysis (long-lived species, medium-lived species, and short-lived species) [94]. DIMS
was used for metabolomic profiling.

The results of a comparative analysis showed a significant difference in metabolites
belonging to different chemical classes: carbohydrates, amino acids, carnitines, biogenic
amines, and lipids [94]. The highest level of differences in metabolites was observed in long-
lived species. It was suggested that this level may be due to the up-regulation of pathways
involving these metabolites. Metabolite set enrichment analysis (MSEA) of metabolic
pathways revealed seven involved metabolic pathways: aminoacyl-tRNA biosynthesis,
valine, leucine, and isoleucine biosynthesis, arginine biosynthesis, arginine and proline
metabolism, alanine, aspartate, and glutamate metabolism, glycine, serine, and threonine
metabolism, and starch and sucrose metabolism [94]. Thus, a comparative analysis of the
metabolic composition made it possible to determine the biological pathways that evolved
between closely related species, and thus suggest that some of these pathways may be
associated with a fast or slow rate of development of age-related processes.

Avanesov et al. (2014) used untargeted LC–MS for metabolomic profiling to study
age-related changes of >15,000 metabolites in D.melanogaster males on a control diet and on
a restricted diet that increased LS [51]. It was shown that with age there is an increase in
the types of age-associated metabolites, which presumably indicates a cumulative effect, as
a result of which multiple damages can have an additive effect on the LS. It is noteworthy
that the number of detected compounds levels off at the end of life, and this pattern is
associated with survival. The authors conclude that aging is characterized by a gradual
remodeling of the metabolome, and the slowdown in this remodeling is associated with
molecular damage and LS [51].

Hoffman et al. (2014) describe the effect of age, sex, genotype, and their interaction
on the metabolomic profiles obtained using LC–MS for 15 D.melanogaster inbred lines [50].
Of all the metabolites analyzed, more than a quarter was significantly associated with
age, sex, genotype, or their interaction, and multivariate analysis showed that individual
metabolomic profiles for these features are highly predictable. Using MSEA, metabolic
pathways associated with age, sex, and genotype were identified, including pathways asso-
ciated with the metabolism of carbohydrates and glycerophospholipids, neurotransmitters,
amino acids, and the carnitine shuttle [50]. The results showed that metabolomic profiles
can reveal both the mechanisms of aging and their relationship with genotype and sex.

In the study of Laye et al. (2015), the same group of researchers, as in the previous
work, analyzed tissue samples on an LC–MS platform with double column chromatog-
raphy (reverse phase and ion exchange columns) [106]. Changes in the metabolome of
the head, thorax, and abdomen were studied in fruit flies of different ages fed either
a nutrient-rich diet ad libitum (AL) or a nutrient-restricted diet (DR). The multivariate
analysis separated the metabolome by diet, different tissues, and age. DR significantly
changed the metabolome and, in particular, slowed down the age-related changes in the
metabolome, preventing a decrease in the stability of homeostasis during aging. MSEA
allowed identifying several known (e.g., amino acid and NAD+ metabolism) and novel
metabolic pathways that are involved in DR influencing aging [106].

Avanesov’s results, similar to those of Laye, show that a diet that increases LS “shifts”
both the transcriptome and the metabolome towards a “younger state” [51,106]. Other sim-
ilarities include age separation using principal component analysis and the identification



Biology 2022, 11, 1570 12 of 24

of similar but not identical sets of metabolites. However, direct comparisons between the
two studies should be made with caution, as there are several important methodological
differences between the studies (including different mass spectrometry protocols and dif-
ferent fly strains). Not to mention, a non-targeted metabolic analysis of flies was performed
by Laye et al. on specific tissues compared to the study by Avanesov et al. where whole
flies were used.

Wang et al. demonstrated a new untargeted MetTracer metabolomics technology
for isotope tracking using LC–MS analysis [105]. This technology allows traceability of
labeled metabolites across the entire metabolome, providing monitoring of metabolic
activity during aging and facilitating understanding of metabolic regulation in living
organisms at the system level. Using Drosophila as a model organism, changes in metabolic
activity were found during aging. Metabolic pathways associated with carbohydrate
metabolism were enriched in metabolites with reduced metabolic activity during aging. In
contrast, metabolic pathways associated with amino acids and purine metabolism were
enriched with metabolites with increased metabolic activity during aging. In addition, a
metabolic shift from glycolysis to serine metabolism and purine metabolism was found as
Drosophila ages. An important conclusion was made in the work about the disturbance of
metabolic coordination between the three metabolic pathways in the tissues of the head
and muscle tissue, as well as between tissues, and such disturbance contributes to the aging
of Drosophila.

7. Metabolomic Profiling of Fishes

Fishes are a promising model for studying the biochemical foundations of aging by
comparative analysis. The existence of fish species with different types of aging makes it
possible to combine several species into analyzed groups and thus successfully exclude
species-specific variability from the analysis [103]. Another advantage of this experimental
model is the possibility of projecting the results of the analysis onto the processes occurring
in mammals since most fish organs are similar to those of other vertebrates [103].

A metabolomic study of the blood plasma of three groups of predatory fishes with
different aging rates was carried out at the Institute of Biomedical Chemistry (Moscow,
Russia) [102,103]. The first group included long-lived fish species (pike (Esox Lucius) and
sterlet (Acipenser ruthenus)), and the second group included species with gradual aging, the
same as observed in many mammalian species of similar size (zander (Sandra lucioperca)
and perch (Perca fluviatilis)) and the third group—species with a very short life cycle
(salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha)) [118]. All studied
fishes were at the adult stage, and the studied groups included fishes both before and
after spawning. Metabolite profiling by DIMS revealed a set of metabolites whose plasma
levels are associated with the rate of aging [102]. The results of this study demonstrate
that the profiles of blood plasma metabolites in fishes with different aging rates differ,
and the revealed differences are largely associated with the rate of aging, which does not
depend on the fish species. It was shown that 23 metabolites are associated with the rate of
aging, 15 of them are dipeptides, di- and triglycerides, fatty acids, phosphoethanolamines,
and phosphatidylcholines. The data obtained are consistent with the already known
pathophysiological mechanisms of aging and the results of previous studies [102].

Another study conducted by the same researchers focused on the analysis of the
metabolic composition of the tissues of the skeletal muscles of fish with different aging
rates [103]. Metabolomic profiling was performed by DIMS. Multivariate analysis revealed
about 80 group-specific metabolites related to amino acids, lipids, biogenic amines, as well
as intermediates of glycolysis, glycogenolysis, and the citric acid cycle, which have under-
gone changes and are possibly involved in biochemical pathways related to aging [103].
Based on the results, the authors conclude that the power of antioxidant protection, the
productivity of anabolic processes, and, possibly, the efficiency of energy metabolism
in skeletal muscles are associated with the fish LS. A decrease in the intensity of these
processes or their damage can lead to the loss of muscle mass and strength with age [103].
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8. Metabolomic Profiling of Rodents

Quite often, metabolite profiling was used to study the signs of aging in mice [62,108],
identifying a set of markers that confirmed that aging is associated with changes in nutrient
sensitivity, lipid, and amino acid metabolism, and redox homeostasis.

Houtkooper et al. (2011) characterized clinical, biochemical, and metabolic changes
in young mice as compared with aged mice, contributing to the determination of the
aging phenotype [62]. C57BL/6J mice were used as they are particularly suitable for the
study of metabolic disorders. In this study, untargeted tissue metabolomics complemented
biochemical and histological data, in vivo phenotyping, and targeted metabolomics data.
Using GC–MS and LC–MS/MS to detect metabolic changes in aging muscle and liver
tissues, a set of metabolites that change with aging, including those involved in fatty
acid and glucose metabolism, was identified. Cross-validation of established pathways
by different approaches (detection of metabolites in metabolomic studies coupled with
gene expression analysis) enhanced the potential value of metabolites as biomarkers and
provided high accuracy in the identification of molecular and biochemical profiles of aging.

Glucose, as well as intermediate products of glycolysis and glycogen metabolism, such
as maltose and maltotetraose, were found in the liver and muscle as biomarkers of aging.
In both liver and muscle, accumulation of glycogen intermediates suggests an alteration in
glycogen metabolism in aged mice, while elevated levels of lactate and reduced glycolytic
intermediates suggest increased anaerobic glycolysis. Changes in glucose and glycogen
metabolism were also indicated by increased levels of glucose, glucose-6-phosphate, and
maltose in muscles since the level of maltose in muscles constantly increases with increased
glycogenolysis [62].

Metabolite profiling can be used not only to determine the metabolic status of an
organism under conditions of interest but also for the molecular phenotyping of organisms
with mutant genotypes. Tomás-Loba et al. (2013) determined the serum metabolite profile
of 117 male and female wild-type mice with different genomes at the age of 8 to 129 weeks
on the LC–MS platform, which made it possible to isolate a metabolic characteristic that
reliably and accurately predicts their age [108]. The overall profile of metabolites was used
in a multivariate predictive model based on the projection to latent structures (projection
to latent structure, PLS), resulting in a reliable metabolomic model of aging in wild-type
mice. 48 biomarkers were identified for which there is a significant correlation with age.
Biomarkers included phospholipids, fatty, and other organic acids, and this is consistent
with the fact that the extraction methods provided the maximum coverage of these families
of compounds [108]. In addition to lipids, age-related biomarkers included other molecules
such as creatine, methionine, and uric acid. It remains an open question whether these
biomarkers play a role in aging or are the result of secondary events such as age-related
diseases or muscle loss [108].

Since there are many causal relationships between aging and DNA damage repair
deficiency, Nevedomskaya et al. (2010) studied ERCC1d/- mutant mice, which have
a modified ERCC1 gene involved in DNA repair after nucleotide deletion, as a result
of which the animals have a premature aging phenotype [82]. Profiling of metabolites
in the blood serum and urine of mutant and wild-type mice was performed using 1H
NMR spectroscopy. Metabolomic profiles of mice aged 8–20 weeks were submitted to
principal components (PCA) and discriminant analysis by the method of Partial Least
Squares (PLS-DA). The metabolomic profiles of mutant and wild-type mice were similar at
a younger age, and the difference between them became more noticeable with age. This
fact indicated that ERCC1d/- mutants develop more or less normally until puberty, but
begin to show accelerated senescence after they reach maturity and therefore they represent
a model for studying the aging process [82]. The main differences between mutant and
wild-type animals were associated with changes in lipid and energy metabolism, transition
to ketosis, and decreased liver and kidney function. Moreover, most of the differences
in serum between wild-type and mutant animals were associated with changes in the
levels of various lipids in ERCC1d/- mutants compared with wild-type mice. Low-density
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lipoproteins (LDL) and very low-density lipoproteins (VLDL) decreased, while high-density
lipoproteins (HDL) increased [82]. These changes resemble the pattern in blood lipoprotein
composition in a state of caloric restriction [119]. NMR analysis also showed that in the
serum of ERCC1d/- mutants, compared with wild-type mice, the levels of glucose and
lactate are reduced [82], indicating that a molecular phenotype is associated with CR. The
authors of the work suggest that in ERCC1d/- mice, a specific “survival” reaction of the
body is activated, similar to that during CR, which primarily affects energy metabolism
and leads to ketosis [120].

Recently, a group of scientists from China used untargeted LC–MS to detect changes
in metabolites in liver tissues and serum in young and old rats, including those after liver
transplantation of young animals [109]. This was done to understand the mechanisms
underlying liver aging, which not only impairs organ function but also systemically harms
the body’s metabolism. A total of 153 liver metabolites and 83 serum metabolites differed
between young and aged non-transplanted rats. Among these metabolites, 7 were observed
in both the liver and serum. Five weeks after the transplantation of the young animal
liver, the levels of 25 metabolites in the transplanted liver were similar to those in the liver
of aged recipients, which was probably the result of the influence of the body of aged
animals on the graft. Among these metabolites were organic acids and their derivatives,
lipids, and lipid-like molecules. Metabolite analysis revealed nine metabolic pathways
including glycerophospholipids, arachidonic acid, histidine, and linoleate. Thus, this study
has identified important metabolites and metabolic pathways associated with age, as well
as the interaction between the liver and the internal environment of the body.

9. Metabolomic Profiling of Dogs

Dogs are not among the most popular models for studying aging, but we have in-
cluded the studies described below nonetheless since these studies allowed us to perform
untargeted metabolomic profiling of large cohorts of pets of different ages.

The aim of the study by Wang et al. (2007) was to investigate the lifetime metabolic
changes in urine in control feeding (CF) or diet-restriction (RD) dogs as long-term caloric
restriction without malnutrition was shown to prolong life and slow age-related morbid-
ity [98]. 1H NMR spectroscopy was used to monitor the metabolomic profiles of urine
samples. Changes in metabolites in both groups (CF and RD) followed the same trajectory,
suggesting that age-related changes predominate in the metabolic profiles of urine, with
aging having a greater effect on metabolism than dietary restriction. Thus, with age, an
increase in creatinine excretion with urine is observed, reaching a maximum at the age of 5
to 9 years and subsequently decreasing in parallel with a decrease in lean body mass [98].
In addition, diet-related metabolic changes were also characterized. Metabolites associ-
ated with energy metabolism, such as creatine, 1-methylnicotinamide, lactate, acetate, and
succinate, were reduced in the urine of dogs with RD. Both aging and dietary restriction
changed the activity of the intestinal microflora, which was manifested in the level of
aromatic metabolites and aliphatic amine compounds. This analysis allowed to track the
metabolic response to two different physiological processes throughout the life of the dogs
and gain a more general idea of the increase in the LS of higher mammals [98].

A group from the University of Helsinki (Finland) analyzed 2068 blood serum samples
from healthy domestic dogs of 22 different breeds using untargeted metabolomics based
on NMR spectroscopy [110]. Using generalized linear models, age, breed, sex, neutering,
diet type, and fasting time were found to significantly affect metabolite profiles in dogs. In
particular, age caused the most significant differences in metabolite concentrations, affect-
ing 112 of the 119 metabolites measured. Moreover, the levels of most of them increased
with age, and 21 of 119, mainly lipids and GlycA (a marker of protein glycosylation),
even exceeded the upper limit in dogs older than 14 years. GlycA levels may be elevated
due to subclinical inflammatory processes that are relatively common in older dogs [121].
However, changes in the immune status during aging can also lead to chronic low-level
inflammation, potentially increasing the concentration of GlycA [121]. Almost all choles-
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terols, triglycerides, and lipoproteins showed the highest levels in older dogs, indicating
age-related changes in lipid metabolism [122].

10. Untargeted Metabolomic Profiling in the Study of Human Aging

Compared to model organisms, the study of human aging initially requires a different
approach than working with model organisms. The reasons for this are ethical restrictions,
difficulties in setting up experiments, the complexity and variability of the aging process
itself in humans (the so-called “diversity of aging”) (Table 1). Therefore, untargeted
metabolomic profiling comes to the fore in humans related studies (Table 2).

Lawton et al. (2008) analyzed changes in the human plasma metabolome with age
in an age- and a sex-balanced cohort of 269 people [111]. A metabolomic analysis using
GC- and LC–MS was performed on more than 300 metabolites. In 100 of them, the change
in concentration was associated with age. Much fewer metabolites reflected differences
in sex and race. With age, changes in protein, energy, and lipid metabolism, as well as
changes associated with oxidative stress, were observed. The levels of tricarboxylic acid in-
termediates, creatine, essential and non-essential amino acids, urea, ornithine, polyamines,
and markers of oxidative stress (e.g., oxoproline, hippurate) increased with age. The
levels of compounds associated with lipid metabolism, including fatty acids, carnitine,
β-hydroxybutyrate, and cholesterol, were lower in the blood of young people. Relative
concentrations of dehydroepiandrosterone sulfate (a putative antiaging androgen) were
lowest in the oldest age group. The observed increase in blood concentrations of some
xenobiotics (for example, caffeine) in the blood of elderly people may reflect a decrease in
the activity of cytochrome P450 in the liver [111].

A group of scientists from Japan developed the method for analyzing whole blood,
plasma, and red blood cells [95]. Using LC–MS, an untargeted metabolomic blood analysis
was performed on 15 young (mean age 29 years) and 15 elderly (mean age 81 years) individ-
uals [95]. 14 blood metabolites have been identified that increase or decrease markedly with
age: 1,5-anhydroglucitol, dimethylguanosine, acetylcarnosine, carnosine, ophthalmate,
UDP-acetylglucosamine, N-acetylarginine, N6-acetyllisine, pantothenate, citrulline, leucine,
isoleucine, NAD+, and NADP+. Six of these are enriched in erythrocytes, suggesting that
erythrocyte metabolomics is valuable for human aging research. Age differences are partly
explained by reduced antioxidant production or slower urea metabolism in the elderly.
Additional analysis showed that some age-related compounds correlate with each other,
suggesting that aging affects them simultaneously [95].

Recently, a group from Stanford University (California, USA) published a study
covering the human age from 6 months to 82 years, in which they performed an untargeted
metabolomic analysis of blood plasma with a quantitative determination of 770 metabolites
in a cohort of 268 healthy people, including 125 pairs of twins [58]. LC–MS was used,
including separation by complementary Hydrophilic Interaction Liquid Chromatography
(HILIC) and Reversed-Phase Liquid Chromatography (RPLC). Cluster analysis, machine
learning, and metabolic pathway analysis were used to describe the trajectories of changes
in metabolite concentrations throughout life and to detect metabolic pathways that are
disrupted with age [123]. Six major aging trajectories were identified, some of which
were linked to key metabolic pathways such as progestin steroids, xanthine, and long-
chain fatty acid metabolism. Machine learning models were successful in predicting age
and, in combination with metabolic pathway analysis, were used to study the biological
processes of healthy aging. The models identified metabolites previously described in aging
processes, such as steroids, amino acids, and free fatty acids, as well as new metabolites
and pathways. Interestingly, the metabolic profiles of twins become more dissimilar with
age, suggesting a non-genetic, age-related variability in metabolic profiles in response to
environmental exposure.

A more extensive study in terms of the number of samples was carried out by another
group of American scientists from the University of Wisconsin (Madison, USA) [112]. In
a longitudinal metabolomic study of age and sex, plasma samples from the Wisconsin
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Registry for Alzheimer’s Prevention (WRAP) were used. The cohort included participants
who did not have dementia at the time of inclusion. Metabolomic profiles were obtained
from 2344 fasting plasma samples from 1212 participants at various time intervals. Of the
1097 metabolites tested, 623 (56.8%) were associated with age and 695 (63.4%) with sex.
It was shown that aging affects plasma levels of most metabolites with a broader effect
on metabolites in women than in men. Approximately twice as many metabolites were
associated with age in a stratified analysis of women compared to men. The 68 metabolites
differed significantly by sex, primarily including sphingolipids, which tended to increase
in women and decrease in men with age [112]. Differences in plasma lipid steroid levels,
including androgens, progestins, and pregnenolone, were most significant for both age and
sex. Additionally, whole-genome genotyping suggested that many metabolites are strongly
influenced by a combination of genomic and environmental factors [112].

The results of the study with the WRAP cohort [112], are consistent with the re-
sults of earlier cross-sectional studies performed on plasma samples from participants
in the TwinsUK study (UK Registry of Adult Twins) [113]. In this study, untargeted MS
metabolomic profiling of 1052 serum samples and 5003 plasma samples showed that in
a cross-sectional analysis, 165 of 280 (58.9%) tested serum and plasma metabolites were
associated with age [113]. This study identified a group of 22 metabolites that correlate with
calendar age as well as age-related clinical signs regardless of age. These data illustrate
how metabolomic profiling associated with epigenetic studies can identify some of the key
molecular mechanisms associated with long-term physiological processes affecting human
health and aging.

The German KORA F4 population cohort study, which was also cross-sectional,
used data from 1756 fasting serum samples, including 903 women and 853 men [114].
Metabolomic profiling was performed using LC–MS and GC–MS. The results showed
that 180 of the 507 (35.5%) tested serum metabolites were sex-linked. In the data from
the WRAP cohort study, 98 of these 180 metabolites were present [112], of which 84 were
also significantly sex-linked [113]. Among them, there were 33 amino acids (including
11 common amino acids, which were lower in women, except for glycine and serine),
18 lipids (including five long-chain fatty acids and three medium-chain fatty acids, which
were higher in women, and three androgenic steroids, which were lower in women) and
18 unknown metabolites (all but one of which were lower in women).

11. Summary of Metabolome Profiling Data from Aging Studies

When considering metabolome profiling in aging studies and attempting to draw gen-
eralized conclusions based on currently available data, it is necessary to take into account
the specifics of such studies. The measurement of large sets of metabolites using different
objects, different samples, sample preparation protocols, and measurement equipment
results in different sets of metabolites being measured in untargeted metabolomic studies.
This makes it difficult to generalize findings from different studies. This can be helped by
the projection of identified metabolites in various animal models onto metabolic pathways.
The best way to do this is to use MSEA to project the lists of aging-associated metabolites
presented in this review into metabolic pathways (Figure 3). Even if different metabolites
found in different studies participate in the same metabolic pathway, this indicates their
participation in identical biochemical processes, and such data will confirm each other
and be interpreted in the same way. Figure 3 shows that aging-related metabolites from
different animal models are mostly associated with the same metabolic pathways. For
example, aminoacyl-tRNA biosynthesis is statistically significantly (at p < 0.01) associated
with aging in C. elegans, Drosophila, dogs, and humans. The citrate cycle is also statistically
significantly associated with aging in C. elegance, fishes, mice, and humans. This means
that the aging processes in the models are very similar to each other, from C. elegans to
humans. This supports the use of model objects to understand aging processes, including
for humans.
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MetaboAnalyst program (www.metaboanalyst.ca; accessed on 18 September 2022) (“pathway analy-
sis” option) by projecting metabolites onto metabolic pathways. The lists of metabolites associated
with aging, which are presented in the papers mentioned in this review, were used for projection.
Names of metabolic pathways with statistically significant (p < 0.01) enrichment with projected
metabolites are shown. The p value evaluates whether a measured set of metabolites is repre-
sented in the pathway more than expected by chance within a given list of metabolites (p values
from the pathway enrichment analysis). Metabolic pathways of Homo sapiens (for the “Humans”
and “Dogs” graphs), Mus musculus (for the “Mice” graph), Danio rerio (zebrafish) (for the “Fishes”
graph), Drosophila melanogaster (fruit fly) (for the “Drosophila” graph), Caenorhabditis elegans (for the
“C. elegans” graph) from the KEGG were used to project metabolites. Pathway impact values are from
the pathway topology analysis.

Such an identity allows a generalized conclusion to be drawn from all the results
presented in this review, by jointly projecting all metabolites associated with aging onto
metabolic pathways (Figure 4). In this case, the data of various models confirm and
complement each other, making the generalized conclusion more complete and statistically
reliable. Thus, from Figure 4, it can be concluded that the data of untargeted metabolomic
studies accumulated to date on different models indicate statistically significantly the
involvement in the aging of the 11th metabolic pathways, which are shown in the figure.
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in aging processes. Graph was generated by the metabolite set enrichment analysis (MSEA) using
the MetaboAnalyst program (www.metaboanalyst.ca; accessed on 18 September 2022) (“pathway
analysis” option) by projecting metabolites onto metabolic pathways. The list of all metabolites
associated with aging, which are presented in the papers mentioned in this review, was used for
projection. Names of metabolic pathways with statistically significant (p < 0.01) enrichment with
projected metabolites are shown. The p value evaluates whether a measured set of metabolites is
represented in the pathway more than expected by chance within a given list of metabolites (p values
from the pathway enrichment analysis). Metabolic pathways of Homo sapiens (KEGG) were used to
project metabolites. Pathway impact values are from the pathway topology analysis.

12. Final Remarks

Living systems have a multilevel organization, which in terms of omics science can be
represented as genome > transcriptome > proteome > metabolome. The flow of information
in the organism goes from macromolecules—nucleic acids that form the genome and are
the most static carrier of information, in the direction of low-molecular-weight substances
that form the metabolome—the dynamically changing molecular phenotype of the or-
ganism. The metabolome is largely determined by the biochemical reactions occurring
in the body, the substrates, intermediates, and products which are metabolites that form
the metabolome. At the same time, biochemical reactions are combined into networks—
metabolic pathways. Therefore, any changes, including those occurring during aging
(genetic instability, epigenetic changes, loss of proteostasis, mitochondrial dysfunction,
etc.), are reflected in the molecular phenotype, i.e., in the metabolome, and the analy-
sis of metabolic pathways by measuring the sets of metabolites involved by untargeted
metabolomic profiling is a valuable source of information about all the processes involved
in aging.

Among the metabolites identified by untargeted metabolomic profiling, known metabolic
biomarkers of aging are the first to attract attention [43,95]. For example, among the metabo-
lites identified in humans are 1,5-anhydroglucitol, dimethylguanosine, acetylcarnosine,
UDP-acetylglucosamine, NAD+, and NADP+; among the metabolites identified in both
humans and mice are carnosine and pantothenate; among the metabolites identified in
both humans and Drosophila are N6-acetyllysine and citrulline; among the metabolites
identified in human, fishes, dogs, and Drosophila are isoleucine and leucine. This demon-
strates that in different animal models, from the simplest to humans, the same metabolites
involved in the aging process can be found. Moreover, the projection of metabolites to
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metabolic pathways showed a statistically significant involvement of the same metabolic
pathways in aging. First of all, metabolic pathways related to the metabolism of amino
acids, as well as to the metabolism of lipids, purines, and energy metabolism (cycle TCA
and glycolysis/gluconeogenesis), certainly reflect processes occurring in any organism dur-
ing aging—disorders of DNA and protein homeostasis, disorders of nutrient recognition
system (the insulin signaling pathway, mTOR, AMP-activated protein kinase, and sirtuin
signaling pathways), and mitochondrial dysfunction [43].

Although untargeted metabolomic profiling contributes greatly to determine the in-
volvement of metabolites belonging to different metabolic pathways in the aging processes,
there are still many open questions that need to be addressed to complete a picture of the
molecular mechanisms associated with aging processes. In addition to the models of aging
research described in this review, there are long-lived animals, e.g., as Naked Mole-Rats
(Heterocephalus glaber) [124], African mole-rats (family Bathyergidae) [125], Clownfishes
(genus Amphiprion) [126], Greenland shark (Somniosus microcephalus) [127], which imple-
ment different longevity strategies. Untargeted metabolomics profiling of these animals
will complete the existing data on the involvement of metabolites in aging.

Among the practical applications of metabolic aging research is the creation of a
biological clock. Although a strong association between metabolites and age has been
shown, such clocks have not yet been proposed. Possible reasons for this situation include
the multifactorial nature of aging, a wide variety of metabolites with high variability in
their concentrations, and, as a result, the difficulty of accurately determining age based on
metabolomic profile data. The prospects for metabolomics research of aging are associated
with this direction.

13. Conclusions

Over the years, researchers have used whole-genome sequencing and gene expression
data to identify genes associated with aging. However, there is a gap between gene varia-
tions and LS. In an attempt to fill this gap, scientists turned to postgenomic technologies,
among which metabolomic profiling can be distinguished. Since the metabolome is the
end point of cascades of biological events occurring in the body, metabolomic profiling
can identify the molecular mechanisms that cause physiological changes that affect human
health and aging. The results presented in this review, obtained in studies both in various
model organisms and in humans, showed that metabolites that differ significantly in dif-
ferent age groups relate to carbohydrates, amino acids, carnitines, biogenic amines, and
lipids. Based on these data, metabolic pathways associated with biological age have been
identified, including those related to amino acid, lipid, and energy metabolism. Notably,
the aging-associated metabolites identified in different models are largely related to the
same metabolic pathways. It is assumed that these data can be used to monitor biological
age and predict age-related diseases in the early stages of their development.
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