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Simple Summary: In this study, four OSCC-specific hub genes were identified using high-throughput
RNA-Seq data from TCGA cohort. The significant genes within tumor and normal samples were
used for weighted PPI network construction based on survival of patients along with their expression
profiles. The analysis revealed the most significant module in the training and test datasets. The
genes from this module were used for pathway enrichment analysis followed by hub gene selection.
These novel biomarkers might have clinical utility for diagnosis and prognosis prediction in OSCC,
providing diagnosis at a very early stage. Moreover, a combination of all these biomarkers might
distinguish the OSCC patients with low risk and high risk for cancer progression and recurrence,
which will provide useful guidance for personalized and precision therapy. However, the results in
the present study were obtained by integrative theoretical analysis, and the findings remain to be
confirmed by further experimental validations.

Abstract: Head and neck squamous cell carcinoma (HNSC) is one of the most common malignant
tumors worldwide with a high rate of morbidity and mortality, with 90% of predilections occurring
for oral squamous cell carcinoma (OSCC). Cancers of the mouth account for 40% of head and neck
cancers, including squamous cell carcinomas of the tongue, floor of the mouth, buccal mucosa, lips,
hard and soft palate, and gingival. OSCC is the most devastating and commonly occurring oral
malignancy, with a mortality rate of 500,000 deaths per year. This has imposed a strong necessity
to discover driver genes responsible for its progression and malignancy. In the present study we
filtered oral squamous cell carcinoma tissue samples from TCGA-HNSC cohort, which we followed
by constructing a weighted PPI network based on the survival of patients and the expression profiles
of samples collected from them. We found a total of 46 modules, with 18 modules having more
than five edges. The KM and ME analyses revealed a single module (with 12 genes) as significant in
the training and test datasets. The genes from this significant module were subjected to pathway
enrichment analysis for identification of significant pathways and involved genes. Finally, the
overlapping genes between gene sets ranked on the basis of weighted PPI module centralities (i.e.,
degree and eigenvector), significant pathway genes, and DEGs from a microarray OSCC dataset were
considered as OSCC-specific hub genes. These hub genes were clinically validated using the IHC
images available from the Human Protein Atlas (HPA) database.

Biology 2021, 10, 760. https://doi.org/10.3390/biology10080760 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-2562-0914
https://orcid.org/0000-0003-1396-4936
https://orcid.org/0000-0001-9357-2216
https://orcid.org/0000-0002-5260-0265
https://orcid.org/0000-0002-0850-5500
https://orcid.org/0000-0002-0602-3719
https://doi.org/10.3390/biology10080760
https://doi.org/10.3390/biology10080760
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10080760
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10080760?type=check_update&version=1


Biology 2021, 10, 760 2 of 16

Keywords: module; survival rate; weighted network; key genes; protein–protein interaction

1. Introduction

Head and neck squamous cell carcinoma (HNSC) arising from the oral mucosal
epithelium, pharynx, and larynx is substantially associated with smoking, tobacco, and
human papillomavirus (HPV); hence, it requires multidisciplinary care [1]. HNSC, being
one of the most common malignant tumors worldwide with a high rate of morbidity and
mortality, has more than 90% of predilections for oral squamous cell carcinoma (OSCC).
Cancers of the mouth account for 40% of head and neck cancers, including squamous
cell carcinomas of the tongue, lips, buccal mucosa, floor of the mouth, hard and soft
palate, and gingival [2,3]. Oral carcinogenesis possesses a series of stages of progression,
which simultaneously entail invasion, metastasis, and precancerous lesions. Hence, there
is deficiency in the control components of tissues to act in their typical capacities, due
to degradation of the cell cycle and the uncontrolled growth of malignant cells. Oral
malignant growth is accepted to be a preventable condition because of the chance of early
detection and treatment [4]. OSCC, the most devastating and commonly occurring oral
malignancy, accounts for 95% of all oral cancer, with a mortality rate of 500,000 deaths
per year [5]. Therefore, distinguishable behavioral and molecular etiopathogenesis may
challenge accurate prognostication and therapeutics and, therefore, better comprehension
of the molecular mechanisms behind the commencement and progression of oral cancer is
of extreme significance.

Nowadays, bioinformatics provide a platform for clinical researchers and molecular
biologists to switch effortlessly between the clinical practice, laboratory bench, and the use
of these sophisticated computational tools, thereby maximizing the advantages brought by
computational biology. In last decades, high-throughput (HT) data-based studies such as
The Cancer Genome Atlas (TCGA) have enabled the drawing of detailed molecular maps
of several cancer diseases, including HNSC, and enhanced discovery of key genes in the
pathogenesis of cancer and other diseases, including HNSC [6–8]. Similarly, numerous
studies have exhibited the function of the RNA sequencing technique in cancers including
HNSC, and exposed differential gene expression patterns of prognostic and therapeutic
potential [9–11]. Detection of altered gene expression patterns in cancer helps in finding
key biological pathways, leading to improved insightful understanding of molecular
mechanisms of the disease and can be used in precise therapeutic attention in management
of the disease [12–14]. In this continuation, there is lot of study in the field of HNSC
already done and differentially expressed genes (DEGs) have been identified using several
techniques. Here, in our work, we identified DEGs with the inclusion of the impression
of survival of patients as well as co-expression of genetic profiles with the integration of
protein–protein interaction (PPI). Consideration of co-expression is done because, typically,
genetic variations in cancer cells which enable altered gene expression patterns can be
identified long before the cancer phenotype has established. However, to date, no single
gene has shown ample diagnostic utility, and therefore diagnosis and treatment will need
to consider the combined influence of many genes [15,16]. There are ten hallmarks of cancer
seen during the multistep development of human tumors. These are: self-sustenance in
growth signals; resistance to anti-growth signals; eluding apoptosis; unbounded replicative
immortality; sustained and uninterrupted angiogenesis; metastasis to distant sites and
invasion of local tissues; abnormal metabolic pathways; genome instability; evasion of
immune system; and inflammation [17].

Hence, this intensive work has been contributed to illuminate the etiology of OSCC
and the important role of a single genetic abnormality in pathogenesis; the molecular
mechanisms involved in carcinogenesis and progression required for better understanding
of potential diagnostic and therapeutic targets, key functional pathways associated with
oncogenesis, and the perturbations of interactions in the complex network still remain
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complicated. Thus, we conducted this study for the identification of specific biomarkers
of OSCC, by creating weighted PPI of DEGs followed by detection of modules in an up-
dated weighted PPI network algorithm where weight indicated the differential co-efficient
of co-expression on survival (shorter vs. longer), which may contribute to developing
effective diagnostic, therapeutic, and prognostic strategies. Furthermore, we identified
hub genes from significant modules based on topological characteristics of the weighted
PPI network, gene enrichment, and pathway analyses. Finally, four significant signature
genes (ISG15, OASL, IFI6, and RSAD2) related to patient survival were identified based
on gene expression profiling data extracted from TCGA database. Out of the four, ISG15
had the highest weighted degree and eigenvector measure which is associated to OSCC
and highly significant. These findings emphasized that untangling the network-based
survival-associated module may contribute to biomarker-guided preclinical and modality
of clinical therapeutic development.

2. Materials and Methods
2.1. TCGA RNA-Seq Data Extraction and Differential Expression Analysis

Messenger RNA (mRNA) HTSeq raw count data (based on IlluminaHiSeq platform) of
TCGA-HNSC cohort was retrieved from UCSC Xena browser (https://xenabrowser.net/,
accessed on 1 June 2021) [18]. These samples were then verified with respect to mRNA-
Seq HNSC samples present in TCGA GDC data portal (https://portal.gdc.cancer.gov/,
accessed on 1 June 2021) and samples pertaining to OSCC-specific areas (i.e., floor of
mouth, base of tongue, gum, palate, other and unspecified parts of mouth, and other
and unspecified parts of tongue) were retained. The clinical survival data of these OSCC
samples were retrieved from Xena and only overlapping samples from both the count and
survival datasets were retained. The raw counts corresponding to solely primary solid
tumor and normal solid tissue samples were back-log-transformed to obtain raw integer
counts. DESeq2 R package [19] was used for obtaining normalized and log2-transformed
expression values through variance stabilizing transformation (VST) of mRNA integer
count data. The ARSyNseq function in the NOISeq R package [20] was used for batch effect
correction in normalized expression values with unknown batch setting. The biomaRt
package [21,22] was used for mapping the Ensembl IDs to their corresponding HGNC
symbol(s). Expression values of a gene mapping to multiple Ensembl IDs were taken as an
average to avoid redundancy [13,14,23]. DEGs were detected using Limma R package [24]
corresponding to a threshold of |log2(fold change)| > 2 with Benjamini–Hochberg (BH)-
adjusted p-value < 0.05.

2.2. PPI Network and Its Weighted Form

PPI network of the OSCC-associated DEGs was constructed using Search Tool for
the Retrieval of Interacting Genes (STRING, https://string-db.org/, accessed on 1 June
2021) v11.0 database [25], considering interactions with a confidence score > 0.9. The
PPI network consists of nodes of proteins, and their predicted interacting protein edges
are without weight. This PPI is converted into a weighted PPI with the inclusion of
differential coefficients in co-expressions of pairs of proteins in longer and shorter survival
patients. Each weight for a pair of interacting proteins denoted a co-expression coefficient
of differentiation between longer and shorter survival patients in the training dataset. The
data of all patients are randomly divided in two parts; one is known as the training dataset
(60% of the total sample), and the other is known as the test dataset (40% of the total
sample). The weighted PPI network for both datasets separately were constructed utilizing
the methodology adopted from [26], in which each edge was allocated a weight, Dxy, on
the basis of its degree of differential co-expression of a pair genes (genes x and y) between
longer and shorter survival samples, as follows:

Dxy =
|Zr L − ZrS|√

1
nL−3 + 1

nS−3

(1)

https://xenabrowser.net/
https://portal.gdc.cancer.gov/
https://string-db.org/
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where Zr L and ZrS are Fisher’s Z transformation of Pearson’s correlation coefficients
rL(correlation coefficients between x and y genes in longer survival data) and rS (correlation
coefficients between x and y genes in shorter survival data).

Fisher’s Z transformation has been done using the following formula:

Zr =
1
2

ln
(

1 + r
1− r

)
(2)

Consequently, lower value of Dxy concludes similar correlation in both shorter and
longer survival samples, which is not significant; in contrast, higher value of Dxy is signifi-
cant. Thus, weight on each pair is proportional to the correlation with survival of patients,
offering a weighted PPI network for further analysis.

2.3. Module Detection in Weighted PPI Network

The determination of the pool of proteins with high Dxy is another challenge which
is also known as module detection in a weighted PPI network. Therefore, module was
detected using a neighborhood proximity-based algorithm for overlapping community
structure detection in weighted networks [27]. This is a recent improved algorithm for
the weighted network, providing multiple membership of nodes more realistic than the
classical module detection algorithms such as [28–30], etc. This algorithm will provide
communities based on the weight of each pair. This weight is already inbuilt with the
information associated with the survival of patients as well as the correlation of gene
expression between pairs of proteins.

2.4. Survival Analysis of Modules

Furthermore, each module needs exploratory survival analysis in the training and test
datasets to determine the highly significant module based on the survival data. For this, we
did the analysis in two phases. In phase one, we did principal component analysis (PCA) of
the gene expression data of the specific set of genes from a module. This analysis provided
the most representative gene expression in a module [16], known as module eigengene
(ME). The module eigengene (ME) was calculated using singular value decomposition
(SVD), which is explained in [31]. Thus, the samples were split into two groupings based
on the median value of ME. In phase two, survival curves were estimated by the Kaplan–
Meier (KM) method for each group of samples and compared with the log-rank test.
Consequences of both phases observed the significance of survival-based modules in the
training and test datasets separately.

2.5. OSCC-Specific Hub Gene(s) Detection

OSCC-associated survival-based significant module genes were further subjected
to pathway enrichment analysis using the Enrichr database (https://maayanlab.cloud/
Enrichr/, accessed on 1 June 2021) [32]. The Reactome library available within the Enrichr
database was used and the top 10 significant pathways corresponding to p-value < 0.05
were selected. Afterwards, National Center for Biotechnology Information (NCBI)-Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/, accessed on 1 June
2021) [33] was queried by using “OSCC” and “Oral Squamous Cell Carcinoma” as suitable
keywords to extract OSCC-associated mRNA expression profiles. The search results were
further trimmed down by applying inclusion criteria: (1) the dataset should be “expression
profiling by array” type and its samples should belong to “Homo Sapiens”; (2) the dataset
must have processed and raw microarray data; (3) the dataset must have paired tumor
and normal samples; and (4) the dataset must have greater than 20 samples. The GEO2R (
https://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed on 1 June 2021) web-based tool was
used for detecting DEGs between the paired sample groups. The genes were regarded as
differentially expressed corresponding to BH-p-value < 0.01 and |log2(fold change) > 1.5|.
CytoNCA (plugin available within Cytoscape) [34] was used to analyze the centrality
measures of the chosen weighted PPI module. Gene sets ranked on the basis of weighted

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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PPI module centralities, the top 10 significant pathway genes, and DEGs from the OSCC mi-
croarray dataset were used to identify the OSCC-specific hub genes. The protein expression
pattern of these genes in tumor and normal tissues was validated using the Human Protein
Atlas (HPA) database (https://www.proteinatlas.org/, accessed on 1 June 2021) [35–40].

3. Results
3.1. TCGA RNA-Seq Processing and Differential Expression Analysis

OSCC-specific count data (filtered from TCGA-HNSC cohort) had a total of 352 sam-
ples (i.e., 321 tumor and 31 healthy normal samples). After performing normalization,
log2 transformation, and batch correction, a total of 51,841 Ensembl IDs mapped to their
corresponding HGNC symbol(s). After averaging expression values of a gene mapping
to multiple Ensembl IDs, we were left with a total of 50,683 unique genes and their re-
spective expression values across the samples. We obtained 916 DEGs in accordance with
the aforementioned threshold, i.e., |log2(fold change)| > 2 and BH-p-value < 0.05 using
limma. A total of 266 and 650 DEGs were filtered as up and downregulated, respectively.
Figure 1 shows a 2D PCA plot (on left panel) exhibiting the clusters and variations in
DEGs between tumor and normal samples across the first two principal components (PCs),
whereas the scree plot (on right panel) represents the percentage of explained variances
accounted for by the first five PCs. Figure 2 shows an expression heatmap plot of the top
10 up and downregulated DEGs across (primary solid) tumor and (solid tissue) normal
samples, respectively.

3.2. Construction of Weighted PPI Network and Module(s) Detection

Unweighted PPI network constructed utilizing STRING involved a total of 346 nodes
and 1207 edges corresponding to a confidence score > 0.9. The unweighted PPI was
converted into a weighted PPI network (Figure 3) where weights were created using mRNA
expression profiles from 218 training samples out of 352 total samples. These 218 samples
were considered for the training dataset and remained for the test dataset. A neighborhood
proximity-based algorithm was used to determine the number of modules in the weighted
PPI network. This algorithm yielded a total of 46 modules in the constructed weighted PPI
network, out of which eighteen had more than five nodes. These 18 modules were used for
further analysis. The list of genes in each module can be seen in Supplementary Table S1
(here each row represents a module).

https://www.proteinatlas.org/
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Figure 1. PCA plot in the left panel representing the variation in the expression data between normal and tumor samples. Each point in the plot shows the overall 
expression value of 916 DEGs. The color of each point represents the disease status: green for normal and magenta for tumor. The percentages of total variation 
across the first two principal components (PCs) are shown on the x and y axes, respectively. It can be observed that both the normal and tumor samples are clustered 
independently and distinctly. Scree plot in the right panel showing percentage of explained variances (on y-axis) captured by their corresponding PCs (on x-axis). 

Figure 1. PCA plot in the left panel representing the variation in the expression data between normal and tumor samples. Each point in the plot shows the overall expression value of
916 DEGs. The color of each point represents the disease status: green for normal and magenta for tumor. The percentages of total variation across the first two principal components (PCs)
are shown on the x and y axes, respectively. It can be observed that both the normal and tumor samples are clustered independently and distinctly. Scree plot in the right panel showing
percentage of explained variances (on y-axis) captured by their corresponding PCs (on x-axis).
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shown at the top of the heatmap.

3.3. Module Survival Analysis

We then analyzed all 18 significant modules. ME was calculated for each module as
explained in the Materials and Methods section, and significant module(s) in the training
and test datasets were identified. Module numbers 4, 5, 10, 18, 24, 37, and 41 were
significant (p-value computed using log-rank test) in the training dataset, whereas module
numbers 5 and 36 were significant in the test dataset. Module number 5 was common in
both the training and test datasets. This significant module had 12 genes (list of genes
can be seen in 5th row of Supplementary Table S1). KM plot and log-rank test of module
number 5 for the training and test datasets can be seen in Figure 4A,B and corresponding
statistical values can be seen in Tables 1 and 2, respectively. Weighted PPI network module
comprising 12 nodes and 30 interaction edges can be seen in Figure 5.
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Table 1. Statistical values of log-rank test for the training dataset corresponding to Figure 4A.

Statistical Characteristics Samples for ME (<Median) Samples for ME (>Median)

Hazard Rate 0.0047 0.0040
95% Confidence Interval 0.9615 (Lower limit) 2.1424 (Upper limit)

Hazard Ratio 1.4353
z-value 1.66584

p-value (two-tailed test) 0.09575

Table 2. Statistical values of log-rank test for the test dataset corresponding to Figure 4B.

Statistical Characteristics Samples for ME (<Median) Samples for ME (>Median)

Hazard Rate 0.0072 0.0065
95% Confidence Interval 1.0084 (Lower limit) 2.4600 (Upper limit)

Hazard Ratio 1.5750
z-value 1.88315

p-value (two-tailed test) 0.05968
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3.4. HNSC-Specific Hub Gene(s) Detection

A total of nine module genes out of twelve were involved in the top 10 significant
pathways, and their interactions can be seen via a chord plot in Figure 6. Based on
the specified searching and inclusion criteria, we chose the OSCC mRNA expression
profile possessing accession number GSE37991. It comprised 80 paired samples of OSCC
tumor and adjacent non-tumor tissues. A total of 948 genes were differentially expressed
corresponding to BH-p-value < 0.01 and |log2(fold change)| > 1.5. With the help of
CytoNCA we ranked the top 10 weighted PPI module DEGs based on their degree and
eigenvector centralities. The Venn plot as shown in Figure 7A exhibits the sets comprising
the top 10 ranked genes (based on weighted degree and eigenvector), significant pathway
DEGs (i.e., nine DEGs), and DEGs from the OSCC microarray dataset (validation set).
The overlapping four DEGs (i.e., ISG15, OASL, IFI6, and RSAD2) were termed as the
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OSCC-specific hub genes. Out of all these, ISG15 had the highest weighted degree and
eigenvector measure. A pairwise scatter plot matrix exhibiting the association among these
four upregulated hub genes is shown in Figure 7B. Within the plot, the highest correlation
of 0.872 was observed between ISG15 and IFI6, followed by a correlation of 0.823 between
ISG15 and RSAD2, respectively. We then tried to analyze the protein expression patterns
of these four DEGs (i.e., ISG15, OASL, IFI6, and RSAD2) in normal head and neck tissues
and HNSC tissues by using the HPA database (Figure 8). High immunoexpressions of
ISG15 were observed in both normal and carcinoma tissues. In addition, medium protein
expressions of OASL and IFI6 were seen in normal tissues, however no immunoexpressions
of OASL and low expression of IFI6 were observed in HNSC tissues. Additionally, low and
medium protein expressions of RSAD2 were seen in normal and tumor tissues, respectively.
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Figure 7. OSCC-specific hub genes and association between them. (A) Venn plot showing four overlapping OSCC-specific
hub genes between the top 10 ranked genes (based on weighted degree and weighted eigenvector), top 10 significant
pathway genes (nine), and OSCC microarray DEGs (948). Yellow, violet, red, and green colored areas in the Venn plot
represent gene sets corresponding to weighted eigenvector, weighted degree, pathway DEGs, and OSCC microarray
DEGs. (B) Pairwise scatter plot showing the associations amongst these four upregulated OSCC-specific hub genes. The
upper triangular section represents the Spearman correlation coefficients between these hub genes along with expression
boxplots for each gene. The lower triangular section represents the scatterplot and histogram distribution between these
genes. The diagonal consists of kernel densities for each gene. The asterisk (***) sign indicates the moderate and higher
correlation values.
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and head and neck squamous cell carcinoma (HNSC) tissues (Human Protein Atlas database).

4. Discussion

In the present study, 352 samples were included. Based on gene expression datasets, a
total of 916 DEGs were obtained, consisting of 266 upregulated genes and 650 downregu-
lated genes. Our results revealed that nine DEGs were associated with the top 10 significant
pathways. The most upregulated four DEGs i.e., interferon-stimulated gene 15 (ISG15),
oligoadenylate synthetase-like gene (OASL), interferon alpha-inducible gene 6 (IFI6), and
radical S-adenosyl methionine domain containing 2 gene (RSAD2) were termed as the
OSCC-specific hub genes, of which ISG15 had the highest weighted degree and eigenvector
measure. These genes are mostly anti-viral immunomodulators and are generally linked
with immune and cytokine interferon-mediated signaling pathways. Although mechanistic
insights into the liaison between these hub genes and several types of diseases have been
extensively investigated, their diagnostic, therapeutic and prognostic roles in OSCC still
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remain largely unexplored. Thus, the application of multiple bioinformatic strategies
and publicly available gene expression profiles may provide practicable and definitive
approaches for the better understanding of these tumor biomarkers in OSCC, which may
further help further enlighten tumor molecular genetics.

ISG15, a ubiquitin-like protein, is immunomodulatory in function, whereby it stimu-
lates IFN-gamma production and augments the proliferation of natural killer (NK) cells.
The ISGylation process regulates diverse cellular pathways such as cytoskeleton organi-
zation, RNA splicing, chromatin remodeling/polymerase II transcription and regulation,
stress responses, translation, cell proliferation, signal transduction, and apoptosis [41]. Sev-
eral studies have revealed enhanced expression of ISG15 and deregulation of enzymes that
catalyze ISGylation and de-ISGylation in many types of cancers, involving bladder cancer,
breast cancer, prostate cancer, hepatocellular carcinoma, colorectal cancer, nasopharyngeal
carcinoma, gastric cancer, oesophageal squamous cell carcinoma [42], and OSCC [43,44].
Therefore, deregulation in the expression of ISG15 may be expected to have pro-tumor
functions, and thus an increased ISG15 level may promote carcinogenesis, giving the possi-
bility of its use as a high-confidence diagnostic, therapeutic, and immunostimulant tumor
biomarker [41,42].

OASL, one of oligoadenylate synthetase’s (OAS’s) family members, belongs to a
template-independent nucleotidyltransferase family and has interferon-induced antivi-
ral activity, and can therefore aid in cancer immunotherapy. OASL lacks the ability to
synthesize 2′-5′-oligoadenylate, which is different from other OAS family members [45].
The OASL gene has been found to be associated with the regulation of lung cancer cell
sensitivity to acRoots, via the PI3K signal pathway [46]. OASL has also been associated
with proliferation of cancer such as that of the gastric and breast type, and therefore can
play a role in prognostication with potential mechanistic value in breast cancer [47]. Loha-
vanichbutr P et al., using L1/L2-penalized Cox regression models in HPV-negative OSCC,
identified six genes, one of which was OASL, and reported that all these genes play a role
in cell invasion and motility, cell-to-cell signaling, signal transduction, and proliferation,
processes essential to metastasis and cancer progression [48].

IFI6, also known as GIP3, which belongs to the ISG12 gene family, has been reported
as a mitochondrial and apoptotic protein in myeloma, gastric, and breast cancer, and
therefore IFI6-induced mitochondrial redox deregulation bestows metastatic potentials
in these cancers [49]. It has been found that IFI6 can be one of the potential biomarkers
of OSCC [50,51]. A high level of expression of IFI6 has been seen in colorectal cancer,
gastric cancer, breast cancer, myeloma, and tongue squamous cell carcinoma; additionally,
expression is extremely high in multi-drug resistant cancer cells, suggesting that a close
correlation between IFI6 levels and resistance to apoptosis is present [52–54].

RSAD2 is an endoplasmic reticulum (ER)–associated, interferon-inducible anti-viral
protein [55]. It has been identified as a potential biomarker for prognostication in various
cancers including OSCC [56,57].

5. Conclusions

In conclusion, the present study was done to identify DEGs in OSCC, and to ex-
plore the underlying mechanisms of tumorigenesis by using integrated bioinformatics
analysis. We identified four hub genes (ISG15, OASL, IFI6, and RSAD2) with the highest
expression of ISG15, which may fill in as original and novel biomarkers, and remedial
focuses for the exact conclusion and treatment of OSCC later on. When contrasted with
single-dataset examinations, our investigation gives more solid and exact outcomes by
utilizing a few datasets. However, the data in the present study were obtained by analysis
of the theoretical approach of bioinformatics, and the findings remain to be confirmed by
further investigations. Therefore, further experimental validation is warranted to elucidate
and ascertain the clinical value of the identified genes as biomarkers in addition to the
underlying mechanisms. Furthermore, other non-genomic regulatory factors, epigenetic
alterations, and re-arrangement mechanisms may be involved to increase gene expression.
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These outcomes will surely add to the current information on oral carcinogenesis and may
be helpful for future application in the visualization and treatment of OSCC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10080760/s1, Table S1: Number of modules in weighted PPI network and their number
of genes.
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