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Simple Summary: The present review is a comprehensive description of reactive oxygen species
(ROS’s) different sources, the re-productive consequences of excessive ROS and oxidative stress, and
the possible treatments of ROS imbalances through antioxidant intake, foods, and dietary patterns to
im-prove male infertility. In summary here we describe that some antioxidants, especially selenium
and zinc,ω-3 fatty acids, CoQ10 and carnitines, have been positively related to sperm quality and
therefore can help improving male sperm quality and fertility. However, excessive use of antioxidants
may be detrimental to the spermatic function and many of the over-the-counter supplements are not
scientifically proven to improve fertility. A long term and innocuous solution could be a balanced
diet, as it takes advantage of the synergy of multiple antioxidants.

Abstract: Infertility affects about 15% of the population and male factors only are responsible for ~25–
30% of cases of infertility. Currently, the etiology of suboptimal semen quality is poorly understood,
and many environmental and genetic factors, including oxidative stress, have been implicated.
Oxidative stress is an imbalance between the production of free radicals, or reactive oxygen species
(ROS), and the capacity of the body to counteract their harmful effects through neutralization by
antioxidants. The purpose of this review, by employing the joint expertise of international researchers
specialized in nutrition and male fertility areas, is to update the knowledge about the reproductive
consequences of excessive ROS concentrations and oxidative stress on the semen quality and Assisted
Reproduction Techniques (ART) clinical outcomes, to discuss the role of antioxidants in fertility
outcomes, and finally to discuss why foods and dietary patterns are more innocuous long term
solution for ameliorating oxidative stress and therefore semen quality results and ART fertility
outcomes. Since this is a narrative review and not a systematic/meta-analysis, the summarized
information in the present study should be considered cautiously.

Keywords: reactive oxygen species; DNA fragmentation; male fertility; semen quality; antioxidants;
foods; nutrients; supplements; dietary patterns; antioxidant paradox
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1. Introduction

Infertility affects about 15% of the population and is defined as the inability to achieve
a pregnancy after one year or more of sexual unprotected intercourse [1]. Male factors
only, including decreased semen quality, are responsible for ~25-30% of cases of infertil-
ity [2]. Currently, the etiology of suboptimal semen quality is poorly understood, and many
environmental and genetic factors, including oxidative stress, have been implicated [3]. Ox-
idative stress is essentially defined as an imbalance between the production of free radicals
-also called reactive oxygen species (ROS)- and the capacity of the body to counteract their
harmful effects through neutralization by antioxidants [4]. At normal physiological levels,
ROS are essential to regulate many processes in reproduction, including sperm maturation
and hyperactivation, acrosome reaction, or fertilization, among others; however, when
ROS concentrations are too high many cellular processes are damaged [5,6]. Accumulating
evidence from human and animal studies indicate that antioxidants and some components
of the diet may play a pivotal role in modulating spermatogenesis by reducing the ROS
presence in spermatozoa and semen plasma, and resetting the normal physiological lev-
els [7]. The ROS-antioxidant-dietary pattern research field began with the studying of
the role of ROS in spermatozoa [5], to researching the role of single-antioxidant in male
generated ROS infertility [8–10], to the more recent analysis involving foods and dietary
patterns [11,12].

Therefore, the aims of the present review are: (i) to summarize the main sources of
ROS in male infertility; (ii) to update the knowledge about the reproductive consequences
of excessive ROS concentrations and oxidative stress on the semen quality parameters and
Assisted Reproduction Techniques (ART) clinical outcomes, including in vitro fertilization
(IVF) and intracytoplasmic sperm injection (ICSI); (iii) to extensively discuss the role of
antioxidants individually, and in combination with other antioxidants, and (iv) discuss
why diet could be a more useful long term solution for improving oxidative stress and
therefore sperm quality results and fertility outcomes.

2. Reactive Oxygen Species Related to Male Infertility

ROS are unavoidable by-products created from cellular respiration. They are unsta-
ble products, having one or more unpaired electrons, making them highly reactive [13].
ROS are ever-present in the body, acting as signal transducers in the complex biochem-
ical cascade required for sperm maturation. At physiological levels, they play a role in
sperm maturation, capacitation, hyperactivation, acrosome reaction, and sperm-oocyte
function [14]. An excessive amount of ROS results in oxidative stress [5]; one of the leading
causes of male infertility [15,16]. There are many different types of ROS in the human body.
This paper will only discuss superoxide (O2

−), hydrogen peroxide (H2O2) and hydroxyl
radical (-OH) as evidence supports the main role they have in human male’s reproduction.
ROS O2

−, a highly reactive molecule, is converted to a less damaging form, H2O2 through
an enzyme group called superoxide dismutases (SODs). ROS H2O2 is converted to -OH, vi
multiple reactions, the Fenton reaction being one of them [17].

Sperm ROS are generated by both endogenous and exogenous sources. Certain chronic
diseases like obesity and diabetes increase the production of endogenous ROS. These
diseases highjack the physiological production of ROS and exacerbate its production. Given
this fact, chronic diseases are placed in the endogenous sources category in this review.

2.1. Endogenous Sources of ROS

Sperm ROS are generated in the mitochondria during aerobic metabolism, via the
electron transfer chain (ETC) when the influx of electrons entering and exiting are mis-
matched [18] and when the natural antioxidant defense is overwhelmed [19]. Complex
I and Complex III generate O2 as a side-product and release it to the matrix. Complex
III also releases this same ROS into the intermembrane space. Alterations in the output
or input will unbalance the equilibrium of the gradients and cause a surge of O2 produc-
tion [20]. This process is schematized in Figure 1. The disruption of the ETC results in the
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accumulation of ROS, causing the fenestration of the outer membrane of the mitochondria,
exposing the DNA and promoting the apoptosis of the cell [21]. ROS can easily damage the
mitochondrial DNA as it is near the ETC and lacks introns, making it easily prone to oxida-
tion. Both the lack of conventional histone proteins and the limited mitochondrial damage
repair capability also aid in making DNA very susceptible to ROS [22]. Furthermore, if the
genetic material is damaged, the production of ATP becomes ineffective.
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Figure 1. Flowchart of the generation of reactive oxygen species (ROS) during cellular respiration driven by the electron
transport chain (ETC) in the mitochondria. Complex I, II, III, and IV constitute the ETC, and ATP synthase completes the
oxidative phosphorylation. Fenton reaction constitutes the donation of an electron to transform H2O2 to two molecules
of hydroxyl radicals. Abbreviations: ADP: Adenosine diphosphate. ATP: Adenosine triphosphate. CoQ: Coenzyme Q,
ubiquinone. Cyt-C: cytochrome complex. FAD: FADH2 reduced form. FADH2: Flavin adenine dinucleotide. Fe2+: Ferrous
ion. Fe3+: Ferric ion. H: Hydrogen. I.M.M.: Internal mitochondrial membrane. NAD: NADH reduced form. NADH:
Nicotinamide adenine dinucleotide. O2: Oxygen. O2

−: superoxide. SOD2: Superoxide dismutase 2 (mitochondrial variety).

2.1.1. Age

Aging, although perfectly physiological, is also associated with an increased produc-
tion of endogenous ROS and therefore with decreased fertility [23]. It is well documented
how fertility diminishes as females age [24,25]. Nevertheless, in males, aging is also
strongly related to a general decline in the male reproductive system functionality, sperm
quality, and fertility. Some authors suggest that sperm motility, among other parameters,
decreases continuously between 22 and 80 years of age [26,27]. As the body ages, the cells
do as well; the role ROS play in the aging of spermatic cells is one that involves DNA
fragmentation, cell structural damage and therefore a decline in cellular function. There
have been several studies that support the aging theory. Different studies have proven the
link between advanced male age and DNA damage chromatin integrity, gene mutations,
and aneuploidies in sperm [28,29]. Subsequently, researchers have recorded an association
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between aging, sperm telomere length and embryo quality in in-vitro fertilization (IVF) [30].
More recently, researchers have focused on the relationship of diminishing telomere length
and how it culminates in lower motility rate, less sperm vitality, less protamination and
more DNA fragmentation [31]. DNA damage is caused by ROS molecules Another finding
that relates to aging and infertility is the decrease in testosterone males experience as they
age, the consequence being evident in the decrease of antioxidant defense in the Leydig
cells [32].

2.1.2. Diseases

Male human infertility may be caused by multiple diseases mediated by ROS. These
pathological states can be noncommunicable diseases, obesity, diabetes, and varicocele
among many others [23].

Obesity

The global epidemic of obesity and lowering sperm counts have concurrently become
health concerns [33]. In 2016, more than 1.9 billion adults were overweight worldwide, of
these, over 650 million were obese [34]. Obesity, defined as a BMI greater than 30 kg/m2,
affects male fertility in multiple fronts: increased scrotal temperature due to increased scro-
tal adiposity, hypogonadism, erectile dysfunction and sperm epigenetic changes, among
others [35,36]. Obesity is directly linked to a decrease in sperm count and lower testos-
terone levels compared to healthy non-obese individuals, among other sperm quality
parameters and hormonal disturbances [35,37]. Recent evidence suggests that weight
has an inverse correlation with sperm count, concentration, motility, vitality, and normal
morphology [35,37]. Likewise, BMI has been proven to affect the integrity of spermato-
zoa’s chromatin, which has a direct influence in the outcome of intrauterine insemination
(IUI) [38,39]. The chronic oxidative stress caused by obesity can also affect the testicles
and seminal vesicles, causing systemic inflammation [40]. In a recent case-control study, a
positive and statistically significant relationship between sperm DNA damage and BMI
was reported [40]. Obesity and the increase in ROS production that comes with it damages
DNA integrity through multiple pathways [41]. Telomeres are highly susceptible to dam-
age by ROS molecules, affecting the viability of all cell types. This was proven by a 2009
randomized control trial (RCT) that found increased telomere lengths in rectal cells after
weight loss in male human individuals [42]. DNA is being constantly repaired; lamentably
in overweight subjects the repair pathways are affected, as proven in a non-randomized
control trial where nucleotide excision repair mechanism efficiency decreased as BMI
increased [43].

Diabetes

The global prevalence of diabetes has continuously increased over the last decades.
In 1980, 108 million people worldwide lived with this disease and in 2015 this number
increased to 415 million. Conservative predictions project that by the year 2045, 9.9% of
the world population will suffer this affliction [44]. Diabetes mellitus is an umbrella term
that includes multiple metabolic disorders that involve insulin resistance and/or deficient
insulin secretion, it is characterized by high levels of blood glucose [45].

In a recent case-control study involving men with a diagnosis of diabetes mellitus
type II, sperm concentration, progressive motility, non-progressive motility, morphology,
viability, and DNA fragmentation were found to be worse compared to the control non-
diabetic group [46]. A 2002 case-control study found lower sperm motility in insulin-
dependent men compared to their healthy counterparts [47]. A recent review broached
the question if antidiabetic drugs had the capability of ameliorating diabetic-related male
reproductive dysfunction [48]. Some of the research that supports this theory uses animal-
based models. In a 2012 study, Akita mice with Type I diabetes were capable of restoring
their previously lost fertility after supplementation of insulin, showing histological changes
in the structural conformation of the testis and increasing testosterone levels [49]. Diabetes
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induced murine models supplemented with insulin showed an increase in testosterone
bioavailability, and spermatogonial differentiation of primary spermatocytes [50]. The
interest in this topic goes back to the previous century; in 1999 a study involving male
newts and recombinant human insulin-like growth factor, illustrated the importance of
this hormone in the differentiation of spermatogonia [51]. A more recent study involving
washed human spermatozoa treated with leptin and insulin showed an increase in sperm
motility, as well as ROS and nitric oxide production [52], pointing to the importance of the
redox balanced system. Besides the hormonal implications this pathology causes, there are
other diabetic-related complications that may cause sexual dysfunction, such as neuropathy
and vascular insufficiency [53].

Cancer

Cancer is one of the leading causes of death worldwide; it was estimated that by the
year 2020, 1.8 million Americans would have been diagnosed and 606,520 would have
died because of this disease [54]. One of the standard definitions of this disease is the
rapid creation of abnormal cells that grow beyond their usual boundaries and can then
invade adjoining parts of the body and spread to the organs (the latter process is referred
to as metastasizing) [55]. Cellular function is strictly redox regulated; signaling and gene
expression are just a couple of processes involved in this balance [56]. An altered redox
state has been proven to change the regulation of normal and malignant cell growth [57].
The redox balance is as important in cancer cells as it is in healthy ones; while cells
with slightly higher than normal ROS concentrations are related to the etiology of cancer,
excessive amounts induce apoptosis. Tumor suppressors regulate the expression of ROS,
for example the genome’s guardian (p53) can stimulate or depress ROS levels which in turn
can cause apoptosis. ROS levels can also alter the signaling involved in cellular regulation
and proliferation. Tumor suppressors are affected by ROS and in turn oxidative stress
can also affect tumor suppression, cancer thus involves a cyclical pattern of deleterious
feedback [58]. Neoplastic and germ cells share multiple characteristics that are not present
in other cells. Some of these processes can perfectly exemplify how an innocuous process
for reproduction can turn into a cancerous growth: Immune evasion, meiosis stimulation,
migration (similar to metastasis), and global hypomethylation to name some examples [59].
Understanding the overlap of cancer and fertility may help us further out knowledge of
both fields.

Varicocele

The most common semi-reversible cause of male infertility is varicocele, defined as
the elongation and enlargement of the pampiniform plexus’ veins. Varicocele is identified
in 15% of healthy men and 35% of men with primary infertility. An excessive production
of ROS is linked to this pathological state [60]. This pathology involves the dilation of the
veins in the pampiniform plexus, causing obstruction in the testis tubules and therefore
increasing the temperature locally. It is important to note that testicles are privy to a
temperature exemption in the body, generally being 2 Cº/3.6 Fº cooler than the rest of
the body, in order to function properly. Men with varicocele have higher levels of ROS,
increase of DNA fragmentation and DNA methylation changes in spermatic cells [61,62].
These alterations may take place during spermatogenesis and spermiogenesis, as men with
varicocele have alterations in Sertoli cells. Spermatozoa from men with varicocele are more
susceptible to retain cytoplasmic droplets, which are associated with ROS production and
subsequently, DNA damage and therefore defective sperm [63].

2.2. Exogenous Sources of ROS

ROS can also be caused by exogenous sources; these may be intrinsic to life as in-
fections and some may be associated with less ideal environmental circumstances like
radiation or pollution.
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2.2.1. Infections

Infections such as chlamydia, tuberculosis, syphilis, leprosy and mumps orchitis can
have significant consequences in male fertility. These diseases both in their acute and
chronic presentations can impede a pregnancy from ever occurring [64]. Inflammation
and the excess of leukocytes in the seminal plasma (leukocytospermia) also increases the
generation of ROS molecules in seminal plasma. The consequences of genitourinary inflam-
mation caused by bacteria or viruses continue to be studied [65]. A chronic inflammation
may compromise the testicles causing atrophy or it may involve an obstruction of the
epididymis [66]. Any kind of immune response occurring in the testicles can be poten-
tially damaging to sperm cells. Given the fact that approximately 10 to 20% of infertile
men have elevated seminal leukocyte parameters [67], infections and its involvement in
male fertility continue to be an interesting research topic. Recent publications regarding
infections and male fertility include: papillomavirus and its links with asthenozoospermia,
increased presence of antisperm antibodies and disruption of the ROS-mediated acrosomal
reaction [68], and the relationship of seminal microbiome and fertility in men [69].

2.2.2. Pollution

Environmental pollution is a contributing factor to the decrease in sperm quality [70].
There are many possible contaminants; there are pollutants in the air, the water, the soil
and in the foods. Endocrine disruptive chemicals are substances that alter the normal
hormone biosynthesis and therefore directly affect reproduction. These chemicals range
from pesticides, industrial solvents, to pharmaceutical agents. The age of exposure to
these chemicals, the latency of this exposition, and individual genetical predispositions can
determine what kind of disruption will occur. Some of the possible side-effects to this kind
of exposure are dimorphism, decreasing hormone synthesis, altered DNA methylation in
germ cells, etc. [71].

There is strong evidence related to the decrease in fecundability and increased sponta-
neous pregnancy loss in couples exposed to sulfur dioxide, fine particulate matter and/or
nitrogen dioxide [72]. Men that were more exposed to these toxics, whether it be occupation-
related or living proximity, have an increased frequency of sperm abnormalities. Air pollu-
tants are capable of generating ROS, oxidative stress, and therefore sperm DNA damage,
that translates in a decrease in sperm fertilization potential [73].

2.2.3. Radiation

The effect radiation has on spermatic cells and their function is documented in multiple
articles. In 2014, a systematic review and meta-analysis broached the question of radiation
emissions coming from mobile telephones and their effects on sperm quality [70]. Radiation
affects tissues in multiple ways, non-thermal interaction, changes to protein conformation
and binding properties, and an increase in ROS production [74]. Some of the more statis-
tically significant findings regarding electromagnetic radiation were diminished sperm
motility [75,76], reduced sperm viability [75–77] and decreased sperm concentration [75].
A more purposeful exposure to radiation occurs during cancer treatment, radiotherapy
specifically; higher “dosages” may affect fertility and even cause sterilization [78]. Previ-
ous preservation of fertility is of great interest for cancer patients [79,80], and should be
discussed with a physician prior to any treatment. It is interesting to mention that radiation
may affect sperm cells though mechanisms different than ROS however, here we only
mentioned a few examples related to electromagnetic radiation and radiotherapy.

2.3. Measuring ROS

ROS are instable substrates, measuring them poses a difficult challenge. Indirect
ways of measuring ROS are useful. Thiols, mainly present in cysteine residues, are highly
susceptible to oxidation and are used as a reliable indirect marker for oxidative stress [81].
Malondialdehyde (MDA), an index of lipid peroxidation may also be used to measure
oxidative stress [82]. A possible way of measuring the effect antioxidants have on oxidative
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stress is measuring total oxidation status (TOS) or total antioxidant capacity (TAC). As each
antioxidant has a different biological composition, induction time of each sample would
have to be determined prior to analysis [83].

3. Reproductive Consequences of ROS and Oxidative Stress

The previously described pathologies and conditions can alter the levels of ROS
molecules from a normal physiological level to a pathological level. The consequences can
be seen both in the sperm cells or in the reproductive outcomes.

3.1. Sperm Cells

Semen analysis has typically been used as the gold standard for measuring men’s
fertility. The oxidative stress caused by the excessive production of ROS directly affects
the quality of the sperm by damaging sperm’s plasma membrane. An increase in sperm
OS could significantly impairs sperm function causing a decrease of sperm motility and
vitality, among others [4,84–87]. These impairments could also result in male infertility via
mechanisms involving the induction of peroxidative damage to the sperm plasma mem-
brane, DNA damage, and apoptosis [88,89]. There are multiple physiological processes
that require the use of low and controlled concentrations of ROS, such as capacitation,
acrosome reaction, sperm-oocyte fusion, that can get compromised by an increase of ROS
in sperm cells and seminal plasma [90]. Uncontrolled levels of OS therefore can be detri-
mental not only for fertilization rates, but also in pregnancy and live birth rates [16,91].
It is important to note that when measuring ROS and DNA fragmentation levels in a
seminogram the technique used (e.g., TUNEL, Comet, SCSA, SCD, etc.) may cause vastly
different results [92]. Washed sperm cell suspensions have the unfortunate consequence
of getting rid of the natural antioxidant pathways that could very well protect the sperm
from ROS. Oxidative stress cannot be attributed uniquely to the production of sperm cells
because ROS molecules are generated throughout multiple different organs in the male
reproductive system. For example, polymorphonuclear leukocytes are cells with a major
role in the generation of ROS in male infertility [16]. Sperm parameters quality, through
a seminogram, only show a superficial state of the spermatic cells [93] and may not be a
good predictor of a successful pregnancy [16]. The potential of each sperm cell to function
properly may be affected by ROS molecules. Notice that the large and convoluted path
of the sperm form the testicles to the Fallopian tube ampulla must be seen as a whole;
fractioning this process may cause a failure in fully understating the complex interaction of
ROS and antioxidants [16]. One of the challenges of solving male infertility is the lack of
mastery of the redox system and how it relates to ideal sperm function [93].

3.2. In-Vitro Fertilization (IVF) / Intracytoplasmic Sperm Injection (ICSI) Outcomes

Up to 5% of IVF attempts result in unpredictable failure despite normal sperm param-
eters [94]. In more than half of these attempts there are also no oocyte anomalies [95]. A
possible explanation to this phenomenon could be the higher presence of DNA fragmen-
tation in the spermatic cells; evidence has shown a link between this damaged DNA and
lower conception rates in IUI and IVF efforts. In humans, an association between high
DNA fragmentation/sperm oxidative stress with higher recurrent spontaneous abortions
has also been documented [96]. The main cause of DNA fragmentation in spermatozoa is
the excessive amount of ROS molecules and by consequence, oxidative stress [97]. These
free radicals can also be generated because of the mandatory in vitro manipulation of the
semen during the pre-IVF/ICSI. In fact, several studies found that this manipulation sperm
cells are being exposed to high level of supraphysiological ROS causing a significant impact
on IVF outcomes [98,99]. A coexistence with DNA fragmentation and low sperm motility,
low sperm count and higher amount of spermatozoa abnormal forms also explain the low
success in pregnancy and delivery [100].
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ICSI is also affected for an excessive presence of ROS molecules in seminal plasma and
sperm. A probable explanation is the damaged cell development generated by oxidative
stress, causing apoptosis and embryo fragmentation. These results suggested that the
routine use of sperm DNA testing is therefore well-justified, since it may help improve
the efficiency of ART treatments and/or counsel a given couple on the most suitable
treatment [101]. A recent systematic review in nonhuman mammals concluded that there
exists a negative relationship between sperm oxidative stress and fertilization rates after
ICSI treatments [60].

4. Antioxidants

Antioxidants are biological or chemical compounds with the ability to scavenge free
radicals and stop the chain reaction that eventually leads to oxidative stress. Infertile men
are more likely to have pathological levels of seminal ROS as a result of increased ROS
production compared to fertile controls [102]. The relationship between antioxidant use
and sperm quality parameters has been vastly studied: there is strong evidence regarding
its use in male infertility, particularly in basic semen parameters [9,10,103–107]. Some
antioxidants (sodium, potassium, calcium, copper, magnesium, and manganese [108,109])
have insufficient evidence to support their ROS-related infertility role. Inositol is also
a promising antioxidant, with in-vitro supplementation studies showing improvement
of sperm parameters [22,110]. As the evidence for these antioxidants is mainly from
descriptive articles or in-vitro they were not included in this review. Vitamin A is also not
discussed as there is not strong enough evidence from clinical studies of its individual
antioxidant effect in male human fertility. Further studies of these antioxidants are needed
to strengthen their case as potential actors in improving male fertility.

This review will focus on antioxidants with enough evidence of interactions at a
spermatic level or in male and couples’ fertility. These male-fertility-related antioxidants
are grouped in four categories: physiological enzymatic factors, non-enzymatic factors,
micronutrients, and others (Table 1).

Table 1. Antioxidants related to male fertility by biological nature.

4.1 Physiological enzymatic factors
Superoxide Dismutase (SOD)

Catalase (CAT)
Glutathione Peroxidase (GPX)

4.2 Non-enzymatic factors
Q-10 coenzyme (CoQ10)

Carnitines
Lycopene

4.3 Micronutrients
4.3.1 Vitamins

Vitamin C
Vitamin E

Vitamin B9 (Folic Acid)

4.3.2 Minerals Zinc
Selenium

4.4 Others

N-acetyl-cysteine (NAC)
Melatonin

Alpha-lipoic acid (ALA)
ω-3 fatty acid (Omega3)

The aforementioned antioxidants will be showed in relation to sperm quality/male
fertility by biological nature and their main positive associations or effects, dosage &
duration of supplementation, noting the perceived gaps in evidence (summary of the
evidence in Table 2).
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4.1. Physiological Enzymatic Factors

The first group, physiological enzymatic factors, includes: SOD, catalase (CAT) and
glutathione peroxidase (GPX).

4.1.1. Superoxide Dismutase (SOD)

The SOD group is comprised of three isoenzymes: SOD1/CuZn-SOD, located in the
cytosol and responsible for ~75% of the SOD group’s activity, SOD2/Mn-SOD positioned in
the mitochondrial matrix, and SOD3 /EC-SOD found in the extracellular space, dissolved
in the seminal liquid [111] (Figure 2). Their presence is modulated in response to cellular
stress, specifically the presence of O2

− and lipidic peroxidation [111,112]. The therapeutic
usage of SOD enzymes is limited as these antioxidants are highly unstable, have a high
immunogenicity and a low circulation half-life. Human-made conjugates of this enzymatic
group created with more stability, lower immunogenicity and longer circulating half-life
do exist, although their use is limited to animal experimentation so far [113]. Research
in animal models has established an improvement in ROS-related chronic diseases such
as rheumatoid arthritis [114], osteoarthritis [115], diabetes [116] and diabetic nephropa-
thy [117]. Clinical essays regarding usage of human-altered SOD in male infertility have
yet to be carried out.
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4.1.2. Catalase (CAT)

CAT assists the conversion of H2O2 into molecular oxygen and water. In the male in-
fertility context, CAT has a prostatic origin, being present even in vasectomized individuals.
An increased CAT activity is present in normozoospermic individuals compared to their
infertile counterparts [118]. CAT’s use as a prolonging agent for sperm survival in artificial
insemination in camels has been recorded [119], but its usage in human sperm has yet to
be studied. Studies in humans regarding this enzyme range from cell proliferation [120] to
pain regulation [121].

A significant alteration in humans is the CAT deficiency (or acatalasemia), an autoso-
mal recessive gene mutation that involves individuals having less than ten percent of CAT
enzyme activity [122]. This deficiency was first reported in Japanese patients [123], and
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subsequently, the disease became known by his name. Swiss [124] and Hungarian [125]
families with different mutations in this gene have also been reported. This enzyme’s
decline has been associated with multiple chronic diseases such as diabetes mellitus, and
hypertension, among others [122]. The relationship between this antioxidant and male
human fertility provides a research opportunity for male infertility experts.

4.1.3. Glutathione Peroxidase (GPX)

GPX is a group of enzymes that catalyzes the reduction of hydrogen peroxide to
water and oxygen as well as catalyzing the reduction of peroxide radicals to alcohols and
oxygen. Research has proven this antioxidant plays an essential role in human fertility.
GPX1 levels affect spermatic mRNA, causing poor blastocyst quality, and GPX4 may be
used as a chemical marker of sperm maturation. Both GPX1 and GPX4 are linked with a
higher sperm recovery after cryopreservation [126]. Cryopreservation, although highly
popular in infertility treatments, frequently damages membrane integrity. GPX1 is linked
with retaining motility and bioavailability after a cryopreservation-thawing cycle [127]. In
animals, specifically boars, GPX5 was found in all the organs of the genital tract, and lack
of this antioxidant was associated with embryo-fetal defects, miscarriages and perinatal
mortality [128].

The selenoprotein phospholipid hydroperoxide glutathione peroxidase (PHGPx) is
also part of the family of glutathione peroxidases, serving a role in protecting biomembranes
and apoptosis, among others. The latter is an example of the importance of synergy in the
human body, as selenium must be present for this specific GPx to work [129].

All three enzymes, SOD, CAT, and GPX, work in synergy to reduce free radicals; SOD
converts O2

− to O2 or H2O2, CAT modifies H2O2 to either O2 or H2O, and GPX changes
H2O2 to H2O [130]. These physiological enzymatic factors are affected by the individual’s
health and positively modulating them by an external supplement is not yet possible.

4.2. Non-Enzymatic Factors

Second, antioxidants in the non-enzymatic group are obtained either by endogenous
metabolism or by diet. They mainly function by assisting enzymatic factors. This group
includes Q-10 coenzyme, carnitine, and lycopene.

4.2.1. Q-10 Coenzyme (CoQ, CoQ10)

Q-10 coenzyme, known by its oxidized form ubiquinone or the reduced one ubiquinol,
also styled as CoQ10 [131], plays a crucial role in protecting the cell membrane from
lipidic peroxidation [132]. The very relevant part it takes in the ETC was previously
aforementioned in this article. Its antioxidant properties are well studied, and research
includes therapeutic interventions in heart [133] and skin [134] conditions. In the male
fertility field, a meta-analysis involving CoQ10 supplementation was published by Lafuente
and collaborators in 2013. This research team concluded that only three RCTs had the
quality and relevance to considered [135]. These studies suggest different dosages for
CoQ10 supplementation during different time frames: 200 mg/day during 24 weeks [136],
300 mg/day for 26 weeks [137], and 200 mg/day for 12 weeks [138]. Safarinejad’s study, 300
mg a day for 26 weeks, showed the most significant improvement in sperm concentration
and motility compared with the two others [137]. Pregnancy rate was not increased in
any of these three studies. In 2020, a research group redid the meta-analysis broaching the
topic of CoQ10 supplementation and male fertility as they believed Lafuente’s had used
inappropriate statistical measures [139]. Nevertheless, they agreed on the improvement
of sperm parameters. The fundamental role CoQ10 plays in male fertility and the redox
state is proven by the direct correlation between sperm count, ubiquinol and the inverse
correlation between hydroperoxide-ubiquinol, respectively [140]. The usage of CoQ10
as a protective entity against oxidative stress and DNA damage has been reported in a
2015 clinical study [141]. Nevertheless, more studies with bigger sample sizes and good
methodological designs are needed to further cement this antioxidant’s positive effects.
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A recent study [132] aimed to know if a proper dietary intake of CoQ10 could show the
same improvement as previous studies using supplementation [136–138]. Unfortunately,
the results concluded that the average dietary intake of CoQ10 (mean value of 38.9 mg/day)
in men was insufficient to show the expected improvements that supplementation studies
showed [132]. The acceptable daily intake of CoQ10 is 12 mg/kg/day, with an upper
toxic limit of 1200 mg/day; these values are especially relevant as the use of CoQ10 has
become increasingly popular [142]. This coenzyme may be obtained from the cholesterol
metabolic pathway and the diet, mainly from meats, fish, vegetable oils, and nuts. In a lesser
proportion, CoQ10 is also found in dairy products, vegetables, fruits, and cereals [132].

4.2.2. Carnitines

Carnitines, also known as l-carnitine or by its active form, l-acetylcarnitine, play an
essential role in bioenergy production, acting as a long-chain fatty acid transporter in
the mitochondria, protecting cell membranes, and exerting anti-apoptotic actions [143].
They are highly abundant in the epididymis, where they are constantly secreted [144]. A
naturally occurring deficiency of this antioxidant is called primary carnitine deficiency. This
autosomal recessive disorder is well studied in the Faroe Islands, where several sudden-
death cases motivated a nationwide screening. About 55% of the Faroese population, 26,462
individuals, participated in this study, and a prevalence of 1:297 was detected [145].

The positive relationship between carnitines and sperm quality is widely documented.
A direct relation between carnitines and sperm motility has been proven in multiple
studies [146]. A 2017 study evidenced the positive correlation between seminal l-carnitine
and sperm count levels, motility, and morphology [147]. In a case-control study that
compared fertile and infertile men, the fertile group had higher seminal carnitine levels
(108.43 mg/L), higher sperm counts (66.66 × 106), and higher motility (50.45%) than the
infertile group that showed carnitines values of 80.6 mg/L, sperm counts of 52.56 × 106

and motility of 32.31% [148].
Carnitines are obtained 75% from the diet, and 25% is synthesized from lysine and

methionine [149]. They are mainly obtained from animal-based foods such as red meat,
fish, chicken, and dairy products [150]. The supplemented dosages of l-carnitine range
from 2000 mg/day [151] to 3000 mg/day [112] among intervention studies regarding
male fertility.

4.2.3. Lycopene

Lycopene is the primary carotenoid found in the human body, with high concen-
trations being found in the testes. This lipophilic compound lacks a beta-ionic ring and
therefore does not have vitamin A activity like other carotenoid family compounds [152].
This potent antioxidant has antiproliferative, immunomodulatory, and anti-inflammatory
effects that promote cell differentiation [153]. In fasting, plasma lycopene is mainly found
in line with LDL, HDL, and VLDL concentrations; if there are genetic factors that affect
the cholesterol metabolism, the tissue distribution of this antioxidant may be compro-
mised [154]. Evidence suggests that lycopene plays a significant role in the prevention
and treatment of chronic diseases, as seen in prostate cancer [155], osteoporosis [156], and
atherosclerosis [157].

Regarding male fertility, lycopene supplementation (25 mg once a day) during 12 weeks
has proven to improve spermatic count and concentration in a recent RCT, with an average
baseline of 49.47 (×106/ejaculate) and 102.45 (×106/ejaculate) postintervention [158]. An-
other RCT aimed to measure oxidative stress in seminal plasma after 20mg of lycopene
supplementation twice a day for 12 weeks, resulting in a decrease in seminal oxidative
stress [159]. Another study, without a control group, measured lycopene supplementation
(10mg twice a day for three months) and IVF conception success, finding that 7 couples
spontaneously conceived during the three-month period before even undergoing IVF [153].
These studies have small samples; larger populations must be studied before drawing
conclusions and extrapolating these recommendations to the general population.
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Tomatoes are rich in lycopene [158], being the most frequently recommended food
source for lycopene increase [155,157,158]. Other red fruits and vegetables such as water-
melons, grapefruit, papaya, apricots, and guavas are good sources of this antioxidant [158].
The human body is incapable of producing it as it is only synthesized by plants [152].

4.3. Micronutrients

Micronutrients are essential for proper bodily function; an adequate intake is necessary,
but excessive amounts may be harmful. This group is subdivided in two categories:
vitamins and minerals. Vitamins are organic micronutrients that may be water or fat-
soluble and minerals are inorganic micronutrients [160].

4.3.1. Vitamins

Vitamins serve an essential role in the human body. The ones most relevant to human
male infertility that will be discussed are vitamin C, vitamin E, and vitamin B9 (folic acid).

Vitamin C

Vitamin C, also known as ascorbic acid, is an electron donor vitamin capable of reduc-
ing metals and regenerating vitamin E from its oxidized form. Unable to be synthesized
by humans, it needs to be obtained from the diet [161]. The nutritional deficiency of
this vitamin, scurvy, possibly the first clinical trial ever made [162], was first described
in sailors.

In sperm cells, vitamin C prevents agglutination and protects against DNA damage
caused by ROS molecules [163]. Despite these crucial functions, the verdict of vitamin C
supplementation in male fertility is not yet in. Some studies have shown little to no effect
in basic semen parameters or DNA fragmentation; only when used in combination with
other antioxidants such as vitamin E or selenium, improvements occur [164,165]. Favoring
vitamin C as an improver of spermatic quality, a 1990 RCT measured the effects on sperm
cells after vitamin C supplementation and evidenced improvement in motility and aggluti-
nation with a dosage of 1000 mg a day when compared to the placebo group [166]. Further
supporting evidence includes a 2016 RCT involving overweight and obese men supple-
mented with vitamin C that asserted semen concentration and motility improved [167],
and a 2019 prospective cohort demonstrated a positive relationship between vitamin C
intake and fertilization rates in couples undergoing ART [168].

Proper body reserves of vitamin C are believed to be around 1500 mg, with scurvy
appearing in values <300 mg [161]. Vitamin C has a sigmoidal dose-concentration relation-
ship, meaning a small supplementation (<30 mg a day) shows a discreet plasma increase,
and a more substantial supplementation (>100 mg a day) does increase vitamin C plasma
parameters until hitting a plateau [169]. Good sources of this vitamin include citric fruits
like kiwis and mangoes, vegetables such as broccoli, tomatoes, and peppers. Higher-grade
evidence research is needed to cement the role this vitamin, standalone, could play in
male fertility.

Vitamin E

Vitamin E is a ubiquitous lipid-soluble antioxidant that protects cell membranes and
prevents lipid peroxidation [144]. Although there are multiple tocopherols and tocotrienols
in the human body, α-tocopherol is the most active one, therefore commonly regarded
as vitamin E [170,171]. Vitamin E cannot be synthesized and must be obtained from the
diet [172]. Deficiency is unusual, and rarely due to lack of intake; genetic abnormalities in
the alpha-tocopherol transfer protein are the primary cause. Vitamin E deficiency presents
itself in the form of neuromuscular abnormalities likely from free radical damage to nerves.
Individuals with this avitaminosis need to be supplemented as no optimized dietary
regimen is enough to reach optimal levels [170].

This antioxidant serves multiple functions in male fertility, such as testosterone biosyn-
thesis and modulation of telomerase activity [172,173]. In a recent original case-control
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study involving rats subjected to noise-generated stress and nicotine exposure, the ame-
liorating effect of vitamin E on sperm viability in subjects under either one of these two
stressors was proven [173]. In humans, a prospective study involving healthy individuals
showed that vitamin E supplementation of 200 mg/day for 3 months improved lipid
peroxidation activity. MDA values decreased, but that did not equate with a reduction
of spermatic malformation. Fertilization rates showed improvement after 1 month of
vitamin E supplementation but did not continue to improve after more than 1-month inter-
vention [174]. These findings are in accordance with similar studies involving spermatic
parameters and vitamin E supplementation [9,10].

Vitamin E is readily available and highly abundant in foods such as nuts, vegetable
oils, seafood, cheese, and eggs [172]. In a recent original study, the amount of α-tocopherol
in circulating plasma and the dietary vitamin E intake of 641 northern German individuals
was assessed. Findings included a reverse trend between a “western” dietary pattern
and lower circulating α-tocopherol concentration, suggesting some unhealthy dietary
patterns could culminate in an inadequate intake of vitamin E [175]. As long as dietary
patterns continue being unknown, the risk Western diets pose to male fertility is a matter
for future research.

Vitamin B9 (Folic Acid)

Vitamin B9 is known as folate or folic acid (the synthetic form of folate). It is a water-
soluble compound [176] essential in DNA metabolism as it is needed in the synthesis of
uracil to thymine, protecting against mutations and DNA strand breaks. DNA methylation
and gene expression are regulated by this vitamin, preventing abnormal chromosomal
replication and mitochondrial DNA deletions [177].

A genetic deficiency of this antioxidant exists; it consists of a defective MTHFR gene
causing a low concentration of MTHFR enzyme responsible for synthesizing folate or
folic acid to l-methylfolate, the biologically active form of vitamin B9. Present in up
to 25% of the population, notably Italian, Hispanic, and Asian populations, it causes a
diminished synthesis of l-methylfoltate [178]. Other types of deficiencies are caused by
chronic alcoholism, malabsorption disorders, higher requirements during pregnancy [176],
or using certain medications such as antimalarials, antifolates, and trimethoprim [179].
Pathological states associated with an inadequate intake are macrocytic megaloblastic
anemia [176], depression (due to the chemical diathesis in the presence of low dopamine,
norepinephrine, and serotonin) [180], dementia, and hyperhomocysteinemia [181].

Its usage in improving male fertility has low-grade evidence. A 2002 RCT showed
supplementing 5 mg/day of folic acid caused improvement in sperm concentration and
normal sperm count, although it was not statistically significant unless used in combi-
nation with zinc [182]. On the opposing side, a recent RCT concluded no improvement
in semen quality parameters nor an increase in live births with the same supplementa-
tion dosage [106]. A 2017 systematic review and meta-analysis on sperm and hormonal
parameters in individuals supplemented with folate stated that the only statistically sig-
nificant improvement found was on sperm concentration [183]. A more recent systematic
review and meta-analysis that evaluated the supplementation of vitamin B9 and its effect
on sperm parameters found no evidence of improvement in concentration, motility, or
morphology [8].

It is abundant in foods such as leafy green vegetables (spinach, broccoli, lettuce) and
some animal products (liver, milk, eggs) [176]. As neural tube defects grew in prevalence,
folic acid supplementation became a public health initiative. Canada and the United
States made folic acid fortification mandatory in certain products such as cereals, a notably
different approach than Netherlands, where mandatory supplementation is forbidden due
to the unforeseen adverse effects on health [184]. High intake of folate in dietary form has
no proven adverse effects, contrary to folic acid, where some gastrointestinal events have
been reported [176].
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Although evidence is not enough to support an improvement in spermatic parameters,
this vitamin still grants more research in this field as up to 23% of men ages 50-70 have
non-optimal folate values, with the cut-off point being <6.8 nmol/L [177], as established by
the CDC [185]. Folate serves as a DNA protector only if values are over >36 nmol/L [177].
The effects of low vitamin B9 on DNA sperm integrity are not yet known to our knowledge.

4.3.2. Minerals

Minerals, also known as trace elements, are essential for plant and animal-based
life [186]. This section will discuss zinc and selenium as they have a relevant role in human
male fertility.

Zinc

Zinc is a micronutrient with reducing properties. It plays a role in signaling, enzy-
matic activities, regulation of normal growth and sexual maturation, as well as managing
mitochondrial oxidative stress [187]. It is estimated that 1/3 of the human population is at
risk of being zinc deficient, the most common cause being low intake [188]. Zinc deficiency
is linked to ailments such as Alzheimer’s disease, blindness, cancer, digestive pathologies,
growth retardation, and inflammation [187].

This mineral aids human reproduction in multiple aspects, from a bactericidal effect
that protects prostatic fluid from a potential infectious vaginal ambient [189] to maintain
the energy system and overall stability until fertilization. Zinc also has an important
role in human sperm motility and acrosome reaction [190]. It is widely believed that
zinc incorporated into sperm serves to protect against sperm decondensation, aids sperm
motility, membrane stabilization, and antioxidant capacity [187].

In human male fertility, zinc is involved in multiple aspects, decreasing MDA lev-
els [191], increasing sperm total motility, progressive motility [192], sperm concentration [8],
and chromatin integrity [8,193], as well as normal sperm morphology [194]. Low zinc
in seminal plasma of infertile men has been vastly reported [93,188,195]. A RCT with
asthenzoospermia patients concluded that the supplemented group with zinc sulfate had
a higher conception rate (22.5%) compared to placebo (4.2%) [196]. On the other side of
evidence, some RCTs show no improvement in sperm quality or ART outcomes after zinc
supplementation [106,182].

Seminal plasma can benefit from zinc supplementation; unfortunately zinc antioxidant
activity does not positively correlate with the dietary intake [197]. As no specialized zinc
storage exists in the body, only the daily intake ensures sustained availability [187]. Zinc
can be obtained from nuts, legumes, seafood, fortified cereals, and animal products such as
meat, yogurt, fish, and milk [189]. Although zinc supplementation has shown improvement
in sperm chromatin integrity and increased live birth rates, yet more studies are still needed
to certify the improvements zinc could have in male infertility.

Selenium

Selenium is a trace mineral that can target free radicals to suppress testicular toxicity
and modulate DNA repair [198]. Selenium, a cofactor of GPX, is also involved in cell-
growth, managing cytotoxicity [199], protecting proteins and membranes [200].

The selenium pathway may be defective, with mutations in genes such as SECISBP2,
SEPSSECS, and TRU-TCA1-1. Selenium deficiency clinically presents as photosensitivity,
age-depending hearing loss, and neurodegeneration as the absence of selenoenzymes
results in oxidative stress and, consequently, in DNA damage [200].

Selenium is positively associated with specific semen parameters such as progres-
sive motility, total motility [199,201–204], sperm concentration [202,205], total sperm
count [202,203,205,206] and normal morphology [202]. Higher live births and a higher
pregnancy probability are also associated with higher seminal selenium levels [207]. Nev-
ertheless, supporting selenium’s null effect on sperm parameters, a 2009 RCT showed



Biology 2021, 10, 241 15 of 39

supplementation of high-selenium yeast in men showed no evidence of improvement in
any sperm parameters [208].

Selenium seminal plasma concentration is higher within fertile men [203,208], but
excessive selenium (exceeding the safe upper threshold of 400 µg per day) also impairs
semen quality [205,206], causing semen degradation even in healthy men [208]. The semen
selenium range of 50–69 ng/mL gives the maximum benefit in male fertility [206]. In an
observational study involving 1136 Chinese men, the average semen selenium amount was
found to be 54.32 µg/L [205].

A clinical trial in mice showed that nonsteroidal anti-inflammatory drug-related
testicular toxicity can be avoided with proper selenium supplementation [198], as these
drugs become increasingly frequent, the use of selenium could prove to be an important
tool in preventing testicular toxicity.

Humans’ primary source of selenium is obtained through dietary intake. The amount
of selenium in certain vegetable foods depends on selenium-rich soil [204]. Fish, garlic,
onions and broccoli are some high-selenium foods [209].

4.4. Others

Finally, antioxidants that do not fulfill the necessary characteristics in the other cate-
gories are n-acetyl-cysteine (NAC), melatonin, alpha-lipoic acid (ALA), and w3-fatty acids.

4.4.1. N-Acetyl-Cysteine (NAC)

NAC, a precursor of GPX that was originally used as a mucolytic drug, can easily
penetrate cell membranes [210]. As a derivative of naturally occurring amino acid L-
cysteine [211], NAC can directly confront free radicals and stabilize them by donating an
electron from its outer layer.

Multiple studies involving NAC have proven it helps improve male fertility. The use
of NAC-incubation on in-vitro human testicular cells reduces the apoptotic rate by 68%
compared to controls with no NAC [212]. After NAC supplementation, the TAC of seminal
fluid is proven to increase [213,214], as ROS molecules are diminished [214–217]. Sperm
parameters proven to improve from NAC usage are: volume, motility, count, concentration,
and normal morphology. Negative processes NAC may aid in diminishing are sperm
viscosity, liquefaction time, and DNA fragmentation [8].

The great potential NAC may have on male fertility is proven by numerous clinical
trials on animals. For example, cadmium toxicity in rats can be greatly reduced when cells
are incubated with NAC [218]. Testicular torsion reperfusion generates a vast amount of
ROS; the NAC-supplementation group had lower MDA levels in comparison to the non-
supplemented group with testicular torsion [210]. Goat testes incubated with malathion, an
organophosphate that causes cell death by enhancing ROS production, showed a significant
decrease in apoptosis when incubated with NAC [219]. This low-toxicity drug [210] could
prove to be an even more substantial aid in counteracting male infertility, as time passes
and more studies are conducted, we will discover the full potential NAC may have.

4.4.2. Melatonin

Melatonin is an amphiphilic hormone, and as such, it can easily pass through cell
membranes [220]. Produced by the pineal gland, it helps regulate the sleep-wake cycle [221];
as a pro-sleeping hormone, most of it is secreted during the night [220,221]. Melatonin plays
a role in increasing SOD’s, CAT’s and GPX’s activity [221], scavenging ROS formation [222],
and even abolishing apoptosis [221].

Fertile men have higher melatonin seminal [223,224] and serum levels [224] than
infertile men. This hormone has proven to decrease DNA fragmentation and MDA, and
increase sperm viability [221]. Melatonin was shown as well to protect spermatogonia
stem cells in-vitro [222]. The disruption of the sleep-wake cycle and its relationship with
spermatic parameters was also studied; in a 2020 case-control study men with nigh-shifts
or light exposure during the night, showed diminished sperm concentration and motility
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as well as an increase of abnormal spermatozoa forms [224]. A systematic review and meta-
analysis about melatonin and ART concluded melatonin enriched cultures yield higher
quality embryos [225]; another interesting experimental study measured microRNAs
(miRNAs) in the follicular ambient based on the melatonin profile of female patients,
finding miRNAs to be a good non-invasive marker of good quality embryos and melatonin
supplementation to yield higher quality oocytes [226]. Incubation of sperm cell with 1 mM
of melatonin was also linked with improvement in sperm motility, progression [227] and
cell viability [228].

Melatonin can be found in multiple plants, but most of them have an insufficient
amount to provide to humans [220]; some high-melatonin foods are nuts, red rice, cranber-
ries, and animal products. To obtain effects from diet-based melatonin, these foods must
amount to at least 1 mg of this antioxidant and be consumed close to bedtime to help sleep
onset [229].

There is an interest in the potential melatonin has on male fertility. More research
is still needed, as there is still no high-grade evidence regarding oral supplementation of
melatonin and sperm quality parameters and DNA fragmentation.

4.4.3. Alpha-Lipoic-Acid (ALA)

ALA is a potent biological antioxidant, detoxification agent and chelator of redox-
active metals [230] that can enter the Krebs cycle, and assist in ATP production [231]. ALA
can help create a robust shield on cell’s membranes that can enhance the resistance against
free radicals [231]. This natural short-chain fatty acid can also promote the functionality of
SOD, CAT, and GPX [232]. Also known as thioctic acid, ALA is able to regenerate vitamin
C and E from their respective radical forms and inhibit apoptosis [233].

ALA oral supplementation or cell incubation, is proven to improve sperm quality
parameters [234], such as total sperm count [235], concentration [235], motility [235–237],
viability [236,237] and sperm morphology [232]. In seminal plasma, TAC increases, and
MDA decreases after being supplemented with ALA [235]. Regarding ART, ALA can help
increase fertilization and implantation rates, increase the quantity of good quality embryos
and number of pregnancies, and decrease the occurrence of miscarriages [238]. DNA
fragmentation is also reduced both when sperm is incubated with ALA after thawing [237]
and with non-frozen sperm [236].

ALA can be generated from de novo synthesis; it is enough to supply all body require-
ments. Orally supplied ALA is mostly from supplemental sources as a typical Western diet
does not provide a significant amount [230]. No upper limit for ALA has been concretely
established in humans [230], although it is recorded that an adult can take a dosage up to
2400 mg/day without experiencing negative side-effects [239]. Clinical trials have shown
no side-effects with oral dosages of 600 mg/day [240] to intravenous administration of
1800 mg/day [241]. The interest in generating higher-grade evidence is showed by the
existence of a protocol for a future systematic review and meta-analysis that aims to answer
the question of efficacy and safety of ALA in male fertility [242].

4.4.4. ω-3 Fatty Acids

Know by multiple names such as omega fatty acids (OFA) [243], or by the less broad
term [244] omega-3 polyunsaturated fatty acids (PUFAs) [243], this group has five main
constituents: alpha-linolenic-acid, eicosapentaenoic acid, docosahexaenoic acid stearidonic
acid and docosapentaenoic acid [245]. Alpha-linoleic acid has the capacity to convert to
eicosapentaenoic acid and docosahexaenoic acid, although this ability is limited [245].

Higher OFA intake results in increased normal sperm morphology [246,247], vol-
ume [248], concentration [246,249], motility [246,249] and total sperm count [246,248]. OFA
supplementation has proven to result in higher TAC and lower DNA fragmentation than
non-supplemented groups [250]. A 2019 systematic PRISMA review assessed the evidence
regarding OFA supplementation and the effects on semen quality markers in infertile men.
They concluded that OFA does seem to have a positive effect on sperm quality parameters,
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although they noted that the available RCT’s are very few and overall lack a substantial
number of participants and homogeneous interventions between each RCT. They close with
a call for more research and suggested measuring fecundity as a possible outcome [243].

Epidemiologic evidence demonstrates that the average American consumes 0.17 g/day
of OFA, below the suggested 0.5 g/day [244]. Aquatic organisms are excellent OFA sources;
some examples include cod liver, seal and whale blubber, and salmon [245]. Foods with
high alpha-linoleic-acid content include flaxseed oil, chia seed, walnut oil, fish oil, and
canola oil. As alpha-linoleic-acid conversion to other more bioavailable OFA is limited, an
adequate dietary intake of other OFA’s is important [245]. In a 2020 cross-sectional study,
sperm quality results of an OFA supplementation were measured in two groups according
to the length of the intervention, less than 60 days and more than 60 days. The group with
a lengthier supplementation showed significantly improved sperm quality parameters
than the <60 days group [248]. The latter suggests a more prolonged OFA supplementation
could potentially benefit sperm quality parameters more than a short-term intervention.

Table 2. Main positive associations or effects of single antioxidants related to sperm quality/male fertility by biologi-
cal nature.

Antioxidant &
Doses

Relating to Male
Fertility

Article Specie Level of
Evidence

Dose &
Duration Main Conclusions Gaps in the

Evidence

CoQ10 [112]
RDD: N/A

RSD: 200–300 mg
MDD: 12 mg/kg

[135] Human Review and
Meta-analysis N/A

CoQ10
supplementation
improved sperm

motility and
concentration.

RCTs with
larger sample

size, DNA
fragmentation
consequences,

and ART
outcomes

[139] Human Review and
Meta-analysis N/A

CoQ10 is positively
associated with
sperm motility.

[136] Human RCT 200 mg/day for
24 weeks

CoQ10
supplementation
improved sperm

motility.

[138] Human RCT 200 mg/day for
12 weeks

CoQ10
supplementation
improved TAC

concentrations and
decreased MDA

levels.

[139] Human Clinical trial (no
control group)

300 mg/day fro
26 weeks

CoQ10
supplementation
improved sperm

concentration and
motility.

Carnitines [112]
RDD: N/A

RSD: 3000 mg
MDD: 3000 mg

[146] Human RCT 25 mg/day for
3 months

Carnitines
supplementation
improved sperm

count and motility.

RCTs with
larger sample

size, DNA
fragmentation
consequences,

and ART
outcomes
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Table 2. Cont.

Antioxidant &
Doses

Relating to Male
Fertility

Article Specie Level of
Evidence

Dose &
Duration Main Conclusions Gaps in the

Evidence

[147] Human Observational N/A

Higher seminal
carnitines are

positively associated
with higher sperm

counts, motility and
morphology.

[148] Human Observational N/A

Higher seminal
carnitines are

positively associated
with higher sperm
count and motility.

Lycopene [251]
RDD: Unknown

RSD 4-20 mg
MDD: Unknown

[153] Human Clinical trial (no
control group)

10 mg/twice a
day for 3
months

Lycopene
supplementation
increased seminal

Omega3.
RCTs with

larger sample
size, DNA

fragmentation
consequences,

and ART
outcomes

[158] Human RCT 25 mg/day for
12 weeks

Lycopene
supplementation
improved sperm

count, concentration,
motility; and higher

TAC.

[159] Human RCT
10 mg/twice a

day for 12
weeks

Lycopene
supplementation
decreases seminal
oxidative stress.

Vitamin C [112]
RDD: 90 mg

RSD:200–1000 mg
MDD: 2000 mg

[163] Human Review N/A

Vitamin C is linked
to decrease in

agglutination and
DNA damage
parameters.

Higher grade
evidence, such

as a
meta-analysis,

RCTs with
larger sample

size, DNA
fragmentation
consequences,

and ART
outcomes

[166] Human RCT 1.0 g/day for 60
days

Vitamin C
supplementation
improved semen
agglutination and
increased viability.

[167] Human RCT

1000 mg of
vitamin C were

given every
other day for 6

months

Vitamin C
supplementation
improved sperm

concentration and
motility.

[168] Human Observational N/A

Vitamin C intake
levels is positively

associated with
higher fertilization

rates
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Table 2. Cont.

Antioxidant &
Doses

Relating to Male
Fertility

Article Specie Level of
Evidence

Dose &
Duration Main Conclusions Gaps in the

Evidence

Vitamin E [112]
RDD: 15 mg

RSD: 300–600 mg
MDD: 1000 mg

[172] Human
and others Review N/A

Vitamin E in humans
plays a crucial role in

the modulation of
telomerase activity.

Higher grade
evidence, such

as a
meta-analysis,

RCTs with
larger sample

size, DNA
fragmentation
consequences,

and ART
outcomes

[173] Albino
Wistar Rats RCT 100 mg/kg

/day

Vitamin E
supplementation
improved sperm

motility in nicotine
exposed, stress

induced rats and rats
exposed to both

nicotine and stress.

[252] Albino
Wistar Rats RCT

500 mg/kg, 3
times a week
for 2 weeks

Histological damage
to the testes caused
by aluminum was

diminished by
vitamin E

supplementation.

[174] Human Clinical trial (no
control group)

200mg/day for
3 months

Vitamin E
supplementation
decreased MDA

levels and increased
fertilization rates.

[9] Human RCT 600 mg/d for 3
months

Vitamin E
supplementation

improved sperm cells
morphology in-vitro,

during the zona
binding assay.

[10] Human RCT

100mg/3 times
a day for 6

months or until
pregnancy

Vitamin E
supplementation

decrease MDA levels
and improved sperm

motility.

Vitamin B9 [251]
RDD: 400 mcg
RSD: 400 mcg

MDD: 1000 mcg

[182] Human RCT 5mg/day for 26
weeks

Vitamin B9 and zinc
supplementation
improved sperm

count.
RCTs with

larger sample
size, DNA

fragmentation
consequences,

and ART
outcomes

[183] Human
Systematic

Review and
Meta-analysis

N/A

Vitamin B9 is
positively associated
with higher sperm

concentration in
infertile men.

[8] Human
Systematic

Review and
Meta-analysis

N/A

Vitamin B9 is
positively associated

with sperm
morphology.
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Zinc [112]
RDD: 11 mg

RSD: 30–40 mg
MDD: 40 mg

[8] Human
Systematic

Review and
Meta-analysis

N/A

Zinc
supplementation was
positively associated
with improvements
in sperm chromatin

integrity index,
sperm concentration,
motility, membrane
integrity, fertilizing
capacity, conception,

and pregnancy.

Comparative
studies

determining the
best

dosage-effect in
zinc supple-
mentation.

[93] Human Systematic
Review N/A

Zinc concentration is
significantly higher

in fertile men.

[196] Human RCT
250 mg/twice a

day for 3
months

Zinc
supplementation
improved sperm
count, motility,
fertilizing and

reduction in the
incidence of

antisperm antibodies.

[193] Human RCT 220 mg/day for
16 weeks

Zinc
supplementation
improved sperm

chromatin integrity.

[188] Human
Systematic

Review and
Meta-analysis

N/A

Higher mean seminal
Zinc levels are found
in fertile men. Zinc
supplementation is

positively associated
with semen volume,
sperm motility and
the percentage of

normal sperm
morphology.

[195] Human Review N/A

Zinc is positively
associated with lower

ROS production in
smokers.

[194] Human Observational
Study N/A

Higher seminal Zinc
is positively

associated with
sperm count and

morphology.
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Article Specie Level of
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Evidence

Selenium [112]
RDD: 55 mcg

RSDl: 100 mcg
MDD: 400 mcg

[199] Human RCT 200 µg /day for
3 months

Selenium
supplementation

improved TAC and
sperm motility.

Higher grade
evidence, such

as a
meta-analysis,

RCTs with
larger sample

size, DNA
fragmentation
consequences,

and ART
outcomes

[202] Human RCT 200 µg /day for
26 weeks

Selenium
supplementation
improved sperm

concentration,
motility, and
morphology.

[201] Human RCT 100 mg/day for
3 months

Selenium
supplementation
improved sperm

count and motility.

[206] Human Observational N/A

Higher seminal
selenium values are
positively associated

with sperm count
and motility.

[204] Human Observational N/A

Higher selenium
intake is positively

associated with
sperm motility.

[205] Human Observational N/A

Seminal selenium is
positively associated

with sperm
concentration and
total sperm count.

[207] Human Observational N/A

Seminal selenium is
positively associated
with pregnancy and

live birth.

NAC [112]
RDD: N/A

RSD: 600 mg
MDD: N/A

[8] Human
Systematic

Review and
Meta-analysis

600 mg/day for
6 months

NAC
supplementation
improved semen

volume, sperm count
and concentration,

sperm motility, and
morphology.

RCTs with
larger sample

size, DNA
fragmentation
consequences,

and ART
outcomes[210] Albino

Wistar Rat RCT
Single dose of

20 mg/kg NAC
intravenous

NAC administration
improved MDA

levels in a
postreperfusion
testicular injury.
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[212] Human Observational N/A

NAC incubation
reduces the apoptotic

rate by 68%
compared to controls

with no NAC.

[213] Human RCT 600 mg/day for
3 months

NAC
supplementation
improved sperm

volume, motility, and
viscosity, as well as

TAC.

[214] Human RCT 600 mg/day for
3 months

NAC
supplementation
improved sperm

morphology, DNA
fragmentation and

protamine deficiency.
TAC significantly

increased and MDA
levels decreased

under this
supplementation.

[215] Human Observational N/A

NAC incubation of
sperm cells is

positively associated
with a decrease in
ROS production.

[216] Human RCT 600 mg/day for
3 months

NAC
supplementation

affects NRF2
expression and

therefore decrease in
ROS.

[217]
Human &

Albino
Wistar Rat

Systematic
Review N/A

NAC
supplementation
improved DNA
fragmentation

indices and ROS
production.

[219]
Goat

(Capra
hircus)

Observational N/A

Sperm NAC
incubation resulted

in positively
associated with a

decrease of testicular
cell apoptosis.
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Melatonin
RDD: Unknown
RSD: Unknown

MDD: Unknown

[221] Human Observational N/A

Sperm melatonin
incubation is positively

associated with less
DNA damage, and
MDA levels; and

higher sperm viability.

RCTs with
larger sample

size, DNA
fragmentation
consequences,

and ART
outcomes, and
studies without

involving
alterations in
the circadian

rhythm.

[223] Human Observational N/A

Mean seminal plasma
melatonin levels are
higher in fertile men,
with higher sperm

motility than infertile
individuals.

[224] Human Observational N/A

Lower melatonin
serum and seminal
levels are present in

men with
oligoasthenoterato-

zoospermia compared
to controls. Melatonin
is positively associated

with sperm motility.

[228] Human Observational N/A

Sperm melatonin
incubation is positively
associated with higher

sperm cell viability.

[227] Human Observational N/A

Sperm melatonin
incubation is positively
associated with sperm
motility and less static

cells.

Alpha lipoic acid
[232]

RDD: Unknow
RSD: 600 mg

MDD: Unknown

[232] Human RCT 600 mg/day for
80 days

ALA improved sperm
motility and

progressive motility,
and less DNA damage.

Higher grade
evidence, such

as a
meta-analysis,

RCTs with
larger sample

size, DNA
fragmentation
consequences,

and ART
outcomes

[234]
Human,
rats and

boars

Systematic
Review NA

ALA incubation in
boars is associated with
higher sperm motility,

less DNA damage.
ALA supplementation
in humans is associated

with a higher TAC.
ALA supplementation
in diabetic rats caused

increased sperm
concentration and

motility compared to
not supplemented

diabetic rats.
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[235] Human RCT 600 mg/day for
12 weeks

ALA
supplementation
improved sperm

count and
concentration, higher

TAC and lower
MDA.

[236] Human Observational N/A

Sperm incubation
with 0.2 mM of ALA

increased sperm
viability and

decreased DNA
damage.

[237] Human Observational N/A

Sperm incubation
with 0.2 and 0.5 mM
of ALA improved the
motility, viability and

morphology of
frozen-thawed

specimens.

Omega3 [251]
RDD: Unknown

RSD: 200 mg DHA
MDD: Unknown

[243] Human Systematic
Review N/A

Omega-3 has a
positive effect on

semen quality
markers in semen of

infertile men.

Higher grade
evidence, such

as a
meta-analysis,

RCTs with
larger sample

size, DNA
fragmentation
consequences,

and ART
outcomes

[246] Human RCT 1.8 g/day for 32
weeks

Omega3
supplements

improved sperm
concentration,

motility and normal
morphology.

[248] Human Observational N/A

Omega3 (fish oil)
supplements are

positively associated
with higher semen

volume, total sperm
count, testis size.

[249] Human
Systematic

Review and
Meta-analysis

NA

Omega3
supplements

improved sperm
concentration and

sperm motility.

[250] Human RCT
500 mg/ 3

times a day for
10 weeks

Omega3
supplements

improved TAC
concentrations and

reduced DNA
fragmentation

Abbreviations: DNA: Deoxyribonucleic acid. DHA: Docosahexanoic acid. MDA: Malondialdehyde. mcg: micrograms. MDD: Maximum
daily Dose. mg: milligrams. N/A: Not applicable. RCT: Randomized Controlled Trial. RDD: Recommended daily dose. ROS: Reactive
Oxygen species. RSD: Recommended supplementation dosage. TAC: Total antioxidant capacity. 5. The synergistic effect of concomitant
antioxidant supplementation
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The use of multiple antioxidants has proven to have a synergic positive effect in
improving seminal quality parameters [112]. An excellent example of this potentializing
effect is proven with the folic acid-zinc combination. As previously stated, individually,
both folic acid and zinc have a low antioxidant effect, but their antioxidant capability
increases when used in combination. In 2002, a research group studied the effects the
combined supplementation of folic acid and zinc had on fertile and infertile men. This
RCT showed a 74% increase in total normal sperm count when comparing preintervention
values to postintervention values [182]. This same group published a follow-up RCT in
2006 where folic acid and zinc supplementation consequences in endocrine parameters
such as testosterone, inhibin B, and FSH (follicle-stimulating hormone) were studied. This
supplementation was not found to cause any endocrine changes, although the increase
in sperm concentration was once again found [253]. A 2017 systematic review and meta-
analysis proposed evaluating the outcome zinc, and folic acid supplementation had on
endocrine and sperm parameters in sub-fertile men [183] Some RCTs described no changes
with supplementation in sperm parameters [193] and others found improvements in
both oxidative stress [254,255] and sperm parameters [182,253–255]. A meta-analysis
showed that combined supplementation of folic acid-zinc had a positive effect on sperm
concentration and morphology on subfertile men, although a significant weakness was
the heterogenic nature of the studies included [183]. Interestingly, a 2020 large RCT
further researched the effects the folic acid-zinc duo causes in male fertility parameters and
concluded it does not significantly improve semen quality or couple’s live rates [106].

Although these authors [106] concluded the use of folic acid and zinc does not im-
prove sperm parameters, the beforehand mentioned studies provide extensive evidence
supporting their antioxidant effects, the capacity for improving sperm parameters, and the
necessity of studying the synergetic behavior of antioxidants in male fertility.

Antioxidants interact in more than one way; as a case in point, CoQ10 plays an
important role in maintaining vitamin C and E in their full active reduced forms [131]. If a
key antioxidant is missing it may disrupt other’s normal function; for instance, a clinical
trial involving carnitine supplementation improved sperm parameters only in patients with
normal GPX levels. This points to the fact that only organisms with proper mitochondrial
function may benefit from antioxidant supplementation [256].

Supplement companies take advantage of this synergy, and therefore their products
are designed with this in mind. These go from presentations including tomato concentrate,
vitamin C, grape seed extract, selenium, vitamin E, B-carotene and others, to capsules made
from multiple herbs where each-one is rich in multiple antioxidants [257]. Nevertheless,
these companies offer these products without enough scientific evidence to support the
benefits or potential damages of these combinations.

In 2019, a comprehensive Cochrane systematic review was published and concluded
that exists a relationship between antioxidants supplementation and an increase in clinical
pregnancy rates. This review included a total of 61 studies, all of them regarding infertile
couples undergoing ART. Unfortunately, only 12 of them reported live birth or clinical
pregnancy outcomes. The researchers determined that some antioxidants might increase live
births, comparing a 12% increase in the placebo group to a 14-26% increase in the intervention
group. Unfortunately, when the studies were further analyzed for risk of bias and removed
accordingly, no evidence of increased births was found. The rate of clinical pregnancy may
also be improved using antioxidants, comparing an increase of 6% in the non-treatment group
with the 12-26% in the intervention group. Adverse effects to the usage of antioxidants were
also studied, including gastrointestinal complaints and miscarriage events. The stomach
issues had a low incidence in both the placebo and the treatment group. These reports
were very different in each study and therefore the evidence was rated as very low. The
miscarriages were not found to be more frequent in the treatment group than in the control
group. This systematic review concluded that antioxidants might help increase rates of
conception and live pregnancies in subfertile males. The evidence is not strong enough to
make an asseveration without further studies with a better methodology [7].



Biology 2021, 10, 241 26 of 39

5. Antioxidant Paradox

The antioxidant paradox is the phenomenon of adverse effects taking place when the
equilibrium of the redox system is compromised in favor of a reduced state in the presence
of too many antioxidants, causing reductive stress. Our more health-oriented society is
prone to acquire over-the-counter antioxidants as they are believed to be “healthy” [258].
Unfortunately, they frequently have unusually high concentrations of purified antioxi-
dants [259], such as vitamin C, vitamin E, and lycopene [258]. Many commonly available
food items are already supplemented with antioxidants and vitamins [260].

Our poor understanding of antioxidant therapy and each individual’s ideal redox
state may cause us to ignore if it is too little or too much of a dosage. Knowing the proper
dosage in relation to male fertility of each antioxidant could help us supplement the proper
amount needed to improve semen parameters (Table 2). In men, the excessive use of
antioxidants can have adverse effects that affect the sperm nucleus integrity, making it less
resistant to aggressors. A redox state may affect the epididymal maturation, preventing
the formation of disulfide bridges between protamines and therefore making the sperm
nucleus less resistant [261,262].

For example, high levels of selenium, an antioxidant with multiple clinical trials
proven its beneficial effects in sperm quality parameters, can be detrimental if used exces-
sively. Selenium over ≥80 ng/mL in seminal plasma, higher than the optimal range of
40-70 ng/mL, is associated with asthenozoospermia, and elevated miscarriage rates [258].

Furthermore, many antioxidants depend on the synergic action of multiple com-
pounds. If one key component is missing, the others may prove to be toxic, rendering
the desired antioxidant effect ineffective [258]. This could explain why antioxidant trials
sometimes show beneficial health effects while others show no effects at all or even harmful
effects. Pointedly in male fertility, the over-usage of antioxidants may block some of the
oxidative pathways needed for a successful conception [263].

The relatively easy solution to a nutritional deficit would appear to supplement what-
ever nutrient is lacking from the diet. However, why is a healthy diet preferred over
antioxidants supplementation in terms of sperm quality improvement and fecundability?
From 1999 until 2012, approximately 45% of the USA male population has used supple-
ments [106]. Unfortunately, supplements are seen by many people and physicians as a
replacement for a healthy diet, which they are not. The bioaccessibility and bioavailability
of each antioxidant depend on multiple factors. The absorption process of antioxidant-rich
foods, like fruits and vegetables, is complex and not yet fully understood, making the
prediction of bioavailability difficult [264]. For example, vitamin E in non-supplemented
regular milk is more efficiently absorbed into the human plasma than milk enriched with
vitamin E capsules [265].

The regulation of supplements is not as strict as it is in foods or drugs; no prescription
is needed to buy them in the USA, neither in most of countries. Supplements vary vastly
from each presentation available; the different concentrations of active ingredients can
be explained by their different botanical origin, different compositions, and concentra-
tions [258]. Although a cautious use of supplements may improve sperm parameters,
unsupervised use can be harmful to patients. A 2020 systematic review compared RCTs
using antioxidant supplementation to improve male fertility and found the supplemented
doses frequently exceeded the safe upper limit for some nutrients; other troublesome
findings were the inclusion of ingredients without reported evidence and ingredients with
a sub-optimal dosage [266]. Any trial that proposes measuring the effect of antioxidants on
fertility must prove that the intervention/treatment exerts an effect on oxidative stress [159]
and is not potentially harmful to the patient.

6. Future Directions: Foods and Dietary Patterns in Male Infertility

Antioxidant supplementation as a valuable therapeutic approach for the infertile
couple continues being studied. The unknowns are: some doses, length of supplemen-
tation, and the characteristics of men that could potentially benefit from this. General
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recommendations for supplements are not precise enough and antioxidant therapy in
fertility needs to be clearly defined. The evidence so far is methodologically less than ideal,
mostly by the criteria for patient selection, the determination of which antioxidants to use
(either individually or in combination), questionable dosages, relevant variables not being
measured (fertilization and pregnancy rates) or insufficient follow-up, small population
samples, among other issues [261].

Evidence studying the relationship between diet and fertility is rarely regarding foods
or dietary patterns and mostly oriented to single nutrients [267]. Humans do not typically
consume antioxidants or nutrients in pure form. Foods and the way we consume them,
also known as dietary patterns, are more closely related to the reality of nutrient intake. A
long-term solution to improving reproductive health in males could be a healthy dietary
pattern that allows for continuous intake of antioxidants in their natural form, acting
in synergy with other functional components found in the diet. There are few studies
regarding this topic. A 2017 systematic review researched dietary patterns, food, nutrients,
and their effect on male fertility parameters and fecundability. In terms of food groups, fish,
shellfish and seafood, poultry, cereals, vegetables and fruits, and low-fat dairy products
have been positively related to sperm quality. However, diets rich in processed meat, soy
foods, potatoes, full-fat dairy products, coffee, alcohol and sugar-sweetened beverages and
sweets have been inversely associated with the quality of semen in some studies [11]. A
2009 observational study in sub-fertile Dutchmen evaluated dietary intake through a food
frequency questionnaire and fertility with a combination of sperm quality (seminogram and
DNA fragmentation) and hormonal balance (peripheric blood sample). Two distinct dietary
patterns were detected a-posteriori, and subsequently, semen parameters were analyzed;
accordingly, each one was subsequently grouped in tertiles (low, intermediate, or high
category based on their personal score for each respective pattern). The “Health-Conscious
Diet,” characterized by a high intake of fish and seafood, fruits, vegetables and whole grains
showed lower DNA fragmentation in the highest tertile compared with the lowest tertile of
adherence. The “Traditional Dutch” represented a high intake of margarine, mayonnaise
and fatty sauces, meat products, potatoes, and whole grains, evidenced an increase in
sperm concentration in the highest tertile compared with the lowest tertile of adherence.
Each food group was also analyzed individually with DNA fragmentation, sperm volume,
sperm concentration, sperm motility, and sperm morphology and the results were similar.
Food groups positively associated with higher sperm quality (concentration, motility, and
morphology) were fish & seafood, legumes, whole grains, and vegetables. Food groups
negatively associated with sperm quality were eggs, mayonnaise & fatty salads, meat
products, and non-alcoholic drinks. Lower DNA fragmentation index was associated
with consumption of butter, eggs, fish & other seafoods, fruits, legumes, and vegetable
oil. A higher DNA fragmentation index was associated with intake of other food groups:
margarine, meat products, and sugar & confectionary. The strength of this study lies in the
prospective design and the sample size of 161 men, further supporting the positive link
between these two patterns and sperm quality [268].

A 2018 observational study analyzed semen quality and a-priori male dietary patterns
adherence, specifically Dietary Approaches to Stop Hypertension (DASH), Healthy Eating
Index (HEI), Alternative Healthy Eating Index (AHEI), and alternate Mediterranean Diet
score (AMED). The AHEI diet adherence, based of food and nutrients predictive of chronic
disease risk, showed the best results in total sperm count, concentration, and morphology
out of the four dietary patterns [269]. The impact that male dietary patterns have on male
fertility continues to be studied [270–274]; additional studies in a healthy male population
could provide a significant point of comparison with infertile men.

7. Conclusions

The present review is a comprehensive description of ROS’s different sources, the re-
productive consequences of excessive ROS and oxidative stress, and the possible treatments
of ROS imbalances through antioxidant intake, foods, and dietary patterns to improve
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male infertility. In summary here we describe that some antioxidants, especially selenium
and zinc, ω-3 fatty acids, CoQ10 and carnitines, have been positively related to sperm
quality and therefore can help improving male sperm quality and fertility. However, al-
though there has been a steady increase in literature regarding this topic, high-quality,
well designed prospective and RCTs including larger patient samples and robust method-
ological design, considering several confounding variables, are still required to confirm
supplementation therapy theoretical beneficial effects on subfertile couples. Moreover,
excessive use of antioxidants may be detrimental to the spermatic function and many of
the over-the-counter supplements are not scientifically proven to improve fertility. A long
term and innocuous solution could be a balanced diet, as it takes advantage of the synergy
of multiple antioxidants. More studies in fertile population are needed to determine the
optimal dietary characteristics for achieving fertility. Since this is a narrative review and
not a systematic review/meta-analysis, the summarized information in the present study
should be considered cautiously.
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Abbreviations

AHEI Alternative Healthy Eating Index
ALA Alpha-lipoic-acid
AMED Alternate Mediterranean Diet Score
ART Assisted Reproduction Techniques
CAT Catalase
CoQ Coenzyme Q/CoQ10
DASH Dietary Approaches to Stop Hypertension
ETC Electron Transfer Chain
GPX Gluthathione Peroxidase
H2O2 Hydrogen Peroxide
HEI Healthy Eating Index
ICSI Intracytoplasmic Spersm Injection
IUI Intrauterine insemination
IVF In-vitro fertilization
MDA Malondialdehyde
miRNA microRNA
NAC N-Acetyl-Cysteine
O2- Superoxide
OFA Omega Fatty Acids
OH Hydroxyl radical
RCT Randomized Control Trial
ROS Reactive Oxygen Species
SOD Superoxide Dismutases
TAC Total Antioxidant Capacity
TOS Total Oxidation Status
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