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Simple Summary: RNASEH2A is the catalytic subunit of the ribonuclease (RNase) H2 ternary
complex that plays an important role in maintaining DNA stability in cells. Recent studies have
shown that the RNASEH2A subunit alone is highly expressed in certain cancer cell types. Via a series
of bioinformatics approaches, we found that RNASEH2A is highly expressed in human proliferative
tissues and many cancers. Our analyses reveal a possible involvement of RNASEH2A in cell cycle
regulation in addition to its well established role in DNA replication and DNA repair. Our findings
underscore that RNASEH2A could serve as a biomarker for cancer diagnosis and a therapeutic target.

Abstract: Ribonuclease (RNase) H2 is a key enzyme for the removal of RNA found in DNA-RNA
hybrids, playing a fundamental role in biological processes such as DNA replication, telomere
maintenance, and DNA damage repair. RNase H2 is a trimer composed of three subunits, RNASEH2A
being the catalytic subunit. RNASEH2A expression levels have been shown to be upregulated in
transformed and cancer cells. In this study, we used a bioinformatics approach to identify RNASEH2A
co-expressed genes in different human tissues to underscore biological processes associated with
RNASEH2A expression. Our analysis shows functional networks for RNASEH2A involvement
such as DNA replication and DNA damage response and a novel putative functional network of
cell cycle regulation. Further bioinformatics investigation showed increased gene expression in
different types of actively cycling cells and tissues, particularly in several cancers, supporting a
biological role for RNASEH2A but not for the other two subunits of RNase H2 in cell proliferation.
Mass spectrometry analysis of RNASEH2A-bound proteins identified players functioning in cell
cycle regulation. Additional bioinformatic analysis showed that RNASEH2A correlates with cancer
progression and cell cycle related genes in Cancer Cell Line Encyclopedia (CCLE) and The Cancer
Genome Atlas (TCGA) Pan Cancer datasets and supported our mass spectrometry findings.
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1. Introduction

The development of high-throughput tools to monitor gene expression levels in a
specific cell type and tissue has allowed the characterization of gene expression patterns
throughout the human body. Such an approach was utilized in several studies to identify
molecular signatures of tissues and cells [1–3]. Genes that share a molecular pathway in a
given tissue or cell should be co-expressed in a spatial and a temporal manner. Therefore,
examining genes that show high co-expression correlation in multiple tissues can be used to
identify a shared molecular pathway between those genes. The Genotype-Tissue Expression
portal (GTEx) [3] has been used as a suitable platform to identify gene co-expression in
the human body based on the availability of the full transcriptome in 53 different human
tissues. Gene ontology analysis of the co-expressed genes might shed light on genes with
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uncharacterized functions and help cover additional functions of genes for which their role
is partially known.

RNASEH2A, together with RNASEH2B and RNASEH2C, composes the holoenzyme
ribonuclease (RNase) H2 [4,5]. RNASEH2B and RNASEH2C are used as the scaffold for
RNASEH2A, which serves as the catalytic subunit of the RNase H2 complex [6]. The
function of RNase H2, together with RNASEH1, is to cleave RNA of RNA-DNA hybrids,
which can be formed during transcription [7], DNA replication [8], and repair [9]. RNA-
DNA hybrids, if not repaired, can harm the genomic DNA by different mechanisms, such as
modifying the DNA structure, blocking DNA replication and transcription, causing hyper-
recombination and mutation, or chromosome loss [4,10–13]. Phenotypically, it has been
postulated that the RNA-DNA hybrids mimic the infection of nucleic acids of viral origin,
thus activating the innate immune response [14]. An example of a pathologic condition is
the Aicardi-Goutières Syndrome (AGS), a severe autosomal recessive neurological disorder
with symptoms similar to in-utero viral infection [15,16]. Genetic studies have linked AGS
to mutations in the genes composing RNase H2, and it has been shown that mutations
silencing intracellular RNases affect microRNA turnover, resulting in the severe clinical
consequences in the brain that characterize the clinical feature of AGS [17]. However, no
evidence was found that RNASEH1 is linked to the AGS pathology [14], highlighting
a marked difference between the function of these two enzymes. Another distinctive
feature of RNASEH2A comes from examining its expression levels in cancer compared
to normal tissues. A previous study showed that, in human mesenchymal stem cells
transformed by the over-expression of several oncogenes, RNASEH2A was among the
genes with the highest and the earliest up fold change in their expression [18]. In addition,
increased levels of RNASEH2A in cancer compared to normal tissues and cells were also
reported in cervical cancer [19], prostate cancer [20], colorectal carcinoma [21], and triple
negative breast cancer [22]. In support of this finding, a recent study by Luke’s group [23]
highlights a differential cell-cycle regulation for the activity and the level of the RNASEH2A
orthologous gene in yeast Saccharomyces cerevisiae (RNH201), peaking at S and G2 phases of
the cell cycle, supporting the hypothesis that RNASEH2A plays a role in cancer progression.
This is in contrast with the yeast RNASEH1 ortholog, RNH1, activity and level of which are
not altered throughout the cell cycle [23]. With the goal to better understand the biological
role of RNASEH2A in cancer, we analyzed the prevalence of patients with copy number
alterations in the RNASEH2A gene in The Cancer Genome Atlas (TCGA) Pan Cancer
studies in different cancer tissues, hypothesizing that identifying patterns of its expression
can shed new insights on its function.

2. Materials and Methods
2.1. Co-Expression Correlation Analysis

We obtained expression data from GTEx portal v7 [3] (https://gtexportal.org/home/
datasets; accessed date 21 September 2019) which were obtained through RNA-Seq for
53 different tissues. The dataset contained total 56,202 transcripts, out of which 42,548
transcripts had greater than zero transcripts per million (TPM) values in at least one tissue
of the 53 different tissues. We calculated Pearson correlation coefficients for every transcript
with RNASEH transcripts data using R [24]. Then, we analyzed the gene ontology (GO)
term of the top 2% or 5% co-expressed genes using Gene Ontology enRichment anaLysis
and visuaLizAtion tool (GOrilla) [25].

2.2. Co-Expression Correlation Analysis Verification with STRING Database

To validate the correlation co-expression coefficients of different genes with RNASEH2A
in GTEx tissues, we used protein co-expression data obtained from STRING protein–protein
association network v11 [26]. We looked at top correlated genes including RNASEH2A
in GTEx dataset, which also had at least 20 exclusively co-expressed proteins in STRING
protein association network. We used the default filtering criteria of medium confidence
score in STRING database, selecting only co-expressed proteins. With 10 such transcripts
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(including RNASEH2A) and 20 co-expressed proteins for each from the STRING database,
we ended up with a list of 200 proteins. We removed any duplicate proteins listed and
counted how many proteins were in the top five percentile of the Pearson’s correlation
coefficient distribution from the co-expression correlation analysis that was to be validated.

2.3. Gene Expression Analysis in Cancer

Data were obtained from Cancer RNA-Seq Nexus (CRN) database providing phenotype-
specific coding-transcript/lncRNA expression profiles, and mRNA-lncRNA co-expression
networks in cancer cells [27] were used to examine the expression level of RNASEH genes
in different type of cancers compared to normal tissues and in cancers at different stage of
progression.

2.4. RNASEH2A Copy Number Alterations Analysis in TCGA Pan Cancer Dataset

To analyze copy number alterations (CNAs) in RNASEH2A, we used The Cancer
Genome Atlas (TCGA) Pan Cancer studies [28] involving 32 studies and 10,967 patients
through cBioPortal [29,30]. After filtering samples containing both copy number alterations
generated by Genomic Identification of Significant Targets in Cancer (GISTIC) and RNA-
Seq data, processing, and normalizing by RNA-Seq by expectation maximization (RSEM),
data for 9889 patients were used for final analysis.

2.5. Cell and Protein Extracts

Human embryonic kidney, HEK293 were grown in Dulbecco’s Modified Eagle Medium
(DMEM) medium (Corning Inc., Corning, NY, USA, cat # 45000-304) containing 10% fetal
bovine serum (FBS) (Sigma-Aldrich, St. Louis, MO, USA, cat # F0926) and 1% penicillin-
streptomycin (Fisher Scientific, Hampton, NH, USA, cat # 15-140-122) in 5% CO2 incubator
at 37 ◦C and were passaged once a week to maintain cell growth. Whole cell lysate
from HEK293 was extracted with NP-40 lysis buffer (50 mM Tris-HCL pH 7.4, 150 mM
NaCl, 0.5 mM EDTA, 0.5% NP-40) together with a cocktail of protease inhibitor (Complete
EDTA-free, Roche Applied Science, Indianapolis, IN, USA) followed by centrifugation at
14,000 rpm for 15 min at +4 ◦C to pellet the debris.

2.6. Plasmids and Transfection

To over-express RNASEH2A in HEK293 cell line, we used the pEGFP-RNASEH2A
plasmid (Addgene, Watertown, MA, USA, cat # 108700). As control, we cloned the eGFP
plasmid by restricting the pEGFP-RNASEH2A using HincII (New England Biolabs, Rad-
nor, PA, USA, cat # R0103S) that cut upstream and downstream of the RNASEH2A gene
but left the EGFP intact. Then, the plasmid was ligated by T4 ligase (New England
Biolabs, Ipswich, MA, USA, cat # 101228-176) and transformed into Agilent XL1-Blue
Electroporation-Competent Cells (Agilent, Santa Clare, CA, USA, cat # 50-125-045) by
electroporation using Gene Pulser Xcell electroporation system (Bio-Rad, Hercules, CA,
USA, cat # 1652660). Isolated colonies were grown in Luria-Bertani (LB) medium overnight;
plasmids were extracted using the miniprep kit (Fisher Scientific, Hampton, NH, USA, cat
# FERK0503) and sent to DNA sequencing to verify the plasmid sequence.

For transient transfection, HEK293 cells were plated at 1–3 × 106 per 10 cm plate.
The following day, 5 µg of the plasmids were incubated with 25 µL of the Lipofectamine
transfection reagent (Fisher Scientific, Hampton, NH, USA, cat # 11668019) for 10–15 min
at room temperature in Opti-MEM media (Fisher Scientific, Hampton, NH, USA, cat
# 31985062), and the plasmid-reagent mix was distributed to the cells. The next day,
transfected cells were fed with fresh media and harvested 48 h after transfection.

2.7. Co-Immunoprecipitation

Whole cell lysate (1 mg) from HEK293 cells transfected with either the eGFP or the
pEGFP-RNASEH2A plasmid was incubated with 30 µL of GFP-Trap Magnetic Agarose
beads (ChromoTek, Planegg-Martinsried, Germany, gtma-10 lot # 80912001MA) at 4 ◦C
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with end to end rotation for 1 h. Then, the magnetic beads–GFP protein complex were
separated from the rest of the protein extract using a magnetic stand. The beads were
washed twice with wash buffer I (50 mM Tris-HCL pH 7.5, 150 mM NaCl, 0.25% NP-40)
and an additional 2 washes with wash buffer II (50 mM Tris-HCL pH 7.5, 150 mM NaCl).
Then, the beads were resuspended in SDS loading buffer and boiled at 95 ◦C for 10 min.
Finally, the beads were centrifuged at 13,000 rpm for 5 min at room temperature, and
the eluted proteins were collected and used for either Western blot or mass spectrometry
analysis.

2.8. Protein Analysis (Western Blot)

Total protein concentrations from HEK293 lysate were quantified (Bradford Protein
Assay, Pierce Biotechnology, Rockford, IL, USA), and 15 µg of the protein extracts was
separated on a 10% SDS-polyacrylamide electrophoresis gel, transferred to 0.45 µm ni-
trocellulose membrane (Amersham, Buckinghamshire, UK, cat # 10120-006). The blotted
membrane was then blocked in 5% non-fat dry milk tris-buffered saline and Tween 20
(TBS-T) (10 mM Tris-Cl (pH 7.5), 100 mM NaCl, 0.1% Tween-20) at room temperature for
1 h and incubated overnight with specific primary antibodies: anti-RNASEH2A (Santa
Cruz Biotechnology, Dallas, TX, USA, 1:1000) and anti-GFP (B2) (Santa Cruz Biotechnol-
ogy, Dallas, TX, USA, 1:1000). After washing 3 × 10 min with TBS-T, the membrane
was incubated with a mouse secondary antibody conjugated with horseradish peroxidase
(Thermo Fisher Scientific, Waltham, MA, 1:10,000) at room temperature for 1 h. Following
washing 3 × 10 min with TBS-T, protein signals were visualized using the electrochemilu-
minescence (ECL) method according to the manufacture’s recommendations (Pierce™ ECL
Western Blotting Substrate, Thermo Fisher Scientific, Waltham, MA, USA) and exposed on
autoradiograph films (Denville Scientific, South Plainfield, NJ, USA).

2.9. Mass Spectrometry Analysis

The gel lanes were excised from the gel, and the proteins were reduced, alkylated, and
digested with trypsin as previously described [31]. The peptides were analyzed by nano-LC-
MS/MS and peptide identification as previously described [32]. The raw files were searched
using the Mascot algorithm (v2.5.1) against a protein database constructed by combining
the bovine reference database (Uniprot.com, 37,941 entries, downloaded 22 May 2019), the
human reference database (Uniprot.com, 73,911 entries, downloaded 22 May 2019), the
GFP-RNASEH2A protein, and a contaminant database (cRAP, downloaded 21 November
2016 from http://www.thegpm.org) via Proteome Discoverer 2.1. A 1% false discovery
rate (FDR) (“High Confidence”) was used for both the peptides and the proteins. At least
3 peptide sequences for the RNASEH2A protein were considered for the analysis.

Spectral count data were analyzed for mass spectrometry runs on two sets of immuno-
precipitation experiments described previously in the methods. Counts in each run were
normalized based on mean of total spectral counts in all runs in a respective set of the
experiment. We then filtered hits specific to Homo sapiens, added a count of 1 and log2
transformed the spectral counts. We then used these transformed data to get differen-
tially present protein candidates in immunoprecipitation product of HEK293 with GFP-
RNASEH2A vs. HEK293 with GFP using linear fitting and empirical Bayes method from
limma, a bioconductor package [33–35]. To get the final list of protein candidates, we used
the filtering criteria of log fold change > 1.5 and FDR adjusted p value < 0.05.

2.10. RNASEH2A Correlation with Cancer Progression and Cell Cycle Related Genes in CCLE
and TCGA Pan Cancer Dataset

To validate the results of our study, we further made use of 2 large cancer related
datasets to investigate the correlations between RNASEH2A and 39 other genes, including
common cancer proliferative markers with few genes involved in each cell cycle phase as
well as genes upregulated and downregulated in cancer as controls. We also included the
genes for the proteins we identified as putative binding partners from mass spectrometry
analysis. We used Broad Institute Cancer Cell Line Encyclopedia (CCLE) dataset containing

Uniprot.com
Uniprot.com
http://www.thegpm.org


Biology 2021, 10, 221 5 of 19

RNA-Seq expression levels in Reads Per Kilobase of transcript, per Million mapped reads
(RPKM) in 1019 cancer cell lines from 26 different tissues of origin [36]. The second
dataset we used was the TCGA Pan Cancer Study containing batch normalized RNA-
Seq expression levels quantified by RNA-Seq by Expectation Maximization (RSEM) in
32 studies from 10,071 cancer patients. [29]. We added a count of 1 to the values and log
transformed the expression counts in both the datasets. These transformed data were used
to draw correlations between gene expressions with rcorr function from Hmisc package in
R [37]. We also used hierarchical clustering the group the genes in the correlation plot.

3. Results
3.1. RNASEH2A Is Co-Expressed with Genes that Function in Cell Cycle Regulation

To study RNASEH2A function based on co-expressed genes, we used an approach
(Figure 1) that utilizes data obtained from GTEx database [3] consisting of RNA-seq output
of 42,548 nuclear and mitochondrial transcripts including coding, non-coding, and isoforms
(raw data in Table S1).
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Figure 1. Co-expression correlation analysis approach. Diagram showing the process of analyzing
gene functional networks using co-expression analysis. The analysis is based on any database that
shows expression levels on multiple tissues and cells from the same organism.

After analysis of the top 2% genes (851) with highest correlation coefficient, using the
GOrilla analysis tool [25], we observed a significant enrichment of genes involved in the bi-
ological processes of cellular response to DNA damage stimulus (p = 2.77 × 10−5) and DNA
replication (p = 2.66 × 10−4), compatible with the known functions of RNASEH2A. In addi-
tion, we found enrichment of genes involved in mitotic cell-cycle process (p = 2.80 × 10−14),
regulation of microtubule cytoskeleton organization (p = 1.39 × 10−7), and chromosome
segregation (p = 9.00 × 10−4) (Table 1 and full data in Table S2). For molecular function,
we found enrichment of catalytic activity on DNA (p = 9.59 × 10−6) but also microtubule
binding (p = 4.25 × 10−5) and kinase binding (p = 3.28 × 10−4) (Table 1 and full data
in Table S2). For cellular component, we found gene enrichment in chromosomal part
(4.06 × 10−8), spindle pole (p = 1.13 × 10−6), as well as nucleoplasm (p = 3.52 × 10−6),
midbody (p = 5.01 × 10−6), microtubule organizing center (p = 5.13 × 10−6), and condensed
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chromosomes outer kinetochore (p = 8.72 × 10−6) (Table 1 and full data in Table S2). Based
on these results, we suggest that RNASEH2A is involved, among others, in three main
functional networks related to DNA replication, DNA damage repair, and regulation of
chromosome segregation in mitosis.

Table 1. Gene ontology (GO) term analysis of the top 2% co-expressed genes of RNASEH2A reveals
the possible role of RNASEH2A in cell cycle regulation. The analysis shows RNASEH2A functional
networks based on process (blue panel), function (orange panel), and component (green panel).
The analysis was made by Gene Ontology enRichment anaLysis and visuaLizAtion tool (GOrilla).
Statistic is shown by both p-value and false discovery rate (FDR).

Process
GO Term Description p-Value FDR q-Value

GO 1903047 mitotic cell cycle
process 2.80 × 10−14 5.93 × 10−11

GO 0070507
regulation of
microtubule

cytoskeleton organ
1.39 × 10−7 8.40 × 10−5

GO 0006974
cellular response to

DNA damage
stimulus

2.77 × 10−5 5.86 × 10−3

GO 0007059 chromosome
segregation 9.00 × 10−5 1.36 × 10−2

GO 0006260 DNA replication 2.66 × 10−4 3.12 × 10−2

Function
GO Term Description p-Value FDR q-Value

GO 0140097 catalytic activity,
acting on DNA 9.59 × 10−6 9.06 × 10−3

GO 0008017 microtubule binding 4.52 × 10−5 1.42 × 10−2

GO 0019900 kinase binding 3.28 × 10−4 7.74 × 10−2

Component
GO Term Description p-Value FDR q-Value

GO 0044427 chromosomal part 4.06 × 10−8 1.36 × 10−5

GO 0000922 spindle pole 1.13 × 10−6 2.52 × 10−4

GO 0005654 nucleoplasm 3.52 × 10−6 5.88 × 10−4

GO 0030496 midbody 5.01 × 10−6 6.70 × 10−4

GO 0005815 microtubule
organizing center 5.13 × 10−6 5.72 × 10−4

GO 0000940
condensed

chromosome outer
kinetochore

8.72 × 10−6 7.28 × 10−4

GO 0000796 condensin complex 8.71 × 10−5 4.16 × 10−3

To validate the correlation of transcripts in GTEx tissues with RNASEH2A at the
protein expression level using the STRING protein–protein association network, we looked
at 10 transcripts having high correlation with RNASEH2A (including RNASEH2A) that also
have at least 20 known and characterized co-expressed proteins in the STRING network
(full list of proteins in Table S3a). Out of the list of 200 proteins (Table S3a), 97 were unique
(Table S3b), out of which 87 have Pearson’s correlation coefficient, R > 0.696 falling in
the top five percentile (Table S3c), and 68 have Pearson’s correlation coefficient, R > 0.842
falling in the top one percentile (Table S3c) of correlation coefficient distribution previously
represented in Figure 1.

Analysis of the top 2% co-expressed correlated genes with RNASEH1 revealed func-
tional network of genes that are involved in RNA binding (Table S4 for functional network
analysis and Table S5 for complete list of RNASEH1 co-expressed genes). After filtering top
5% correlated genes, we could identify processes such as regulation of telomerase RNA
and telomeres maintenance (Table S4), which were previously reported [38,39]. When
we analyzed the top 2% co-expressed correlated genes with RNASEH2B, we found the
functional network of genes involved in DNA replication (Table S6 for functional network
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analysis and Table S7 for complete list of RNASEH2B co-expressed genes), as expected for
this RNase H2 subunit. For RNASEH2C, we could not find any functional network either
in the 2% or the 5% analyses, as there were no GO terms with an enrichment p-value below
the specified value p < 0.001 (data not shown).

3.2. RNASEH2A Expression Is Increased in Actively Cycling Cells and Tissues

Next, we studied the expression levels of RNASEH genes using the GTEx v.7 database,
which allowed us to compare the expression levels of RNASEH1, RNASEH2A, RNASEH2B,
and RNASEH2C genes in 53 different human tissues, including two cell lines (Table 2). We
noticed that tissues that are part of the reproduction system (such as testis, uterus, and
cervix) as well as transformed lymphocytes and transformed fibroblasts tend to have a
higher expression level of RNASEH genes, while low levels were found mainly in tissues
with low proliferation and cell turnover capacity, such as most regions of the brain, the
kidney, and the heart (Table 2).

Table 2. RNASEH2A is highly expressed in human proliferative tissue. Expression of RNASEH genes in different 53
human tissues. Data obtained from the Genotype-Tissue Expression portal (GTEx) consist of the median transcripts per
million (TPM) from >90 individuals for each tissue. Blue color indicates low expression levels and red color indicates high
expression levels.

RNASEH1 RNASEH2A RNASEH2B RNASEH2C RNASEH1 RNASEH2A RNASEH2B RNASEH2C

Liver 5.193 3.947 3.878 11.57 Adipose-
Subcutaneous 13.845 15.96 16.585 30.145

Muscle-Skeletal 11.72 5.9535 5.51 9.215 Lung 12.92 14.51 19.34 30.99

Heart-Left Ventricle 7.251 4.262 8.466 12.71 Breast-Mammary
Tissue 12.93 16.39 16.65 33.895

Pancreas 5.3175 6.44 10.175 11.48 Pituitary 8.271 11.02 14.5 52.95
Whole Blood 2.726 7.958 6.471 16.33 Vagina 12.08 20.33 16.85 39.11

Brain-Putamen (basal
ganglia) 4.6985 5.5965 7.875 15.635 Esophagus-

Muscularis 14.91 8.687 22.84 46.885

Brain-Caudate (basal
ganglia) 5.1025 6.1935 9.2325 17.175 Artery-Tibial 16.91 8.638 17.8 50.75

Brain-Substantia nigra 6.0725 7.4295 8.123 16.355 Thyroid 12.615 16.935 24.905 43.205

Brain-Amygdala 5.0275 7.4755 8.2985 17.285
Esophagus-

Gastroesophageal
Junction

13.75 8.3635 22.05 53.92

Brain-Hippocampus 5.907 6.655 7.567 18.76 Bladder 15.4 15.95 23.68 43.32
Brain-Anterior

cingulate cortex
(BA24)

5.921 6.326 9.554 19.13 Artery-Coronary 13.65 10.5 18.58 56.4

Brain-Hypothalamus 6.903 7.451 8.639 18.47 Artery-Aorta 14.63 9.235 17.31 58.05
Kidney-Cortex 6.303 6.632 6.614 22.18 Prostate 11.11 11.475 20.27 57.625
Brain-Nucleus

accumbens (basal
ganglia)

6.557 7.162 12.03 20.17 Nerve-Tibial 15.18 19.24 19.55 48.22

Heart-Atrial
Appendage 8.609 5.969 9.644 22.33 Fallopian Tube 14.57 13.31 25.31 49.21

Brain-Cortex 5.5355 6.8145 11.095 25.555 Colon-Sigmoid 13.24 10 24.46 55.42
Brain-Frontal Cortex

(BA9) 7.597 6.766 13.7 23.46 Cells-Transformed
fibroblasts 29.98 34.04 17.95 25.17

Stomach 8.19 9.396 12.55 24.365 Brain-Cerebellum 9.384 16.21 12.41 70.97
Brain-Spinal cord

(cervical c-1) 9.183 13.54 10.54 22.75 Spleen 10.935 25.695 24.555 49.11

Skin-Sun Exposed
(Lower leg) 11.62 18.75 10.87 19.18 Ovary 12.4 19.46 20.07 59.51

Skin-Not Sun
Exposed (Suprapubic) 10.72 18.3 11.7 19.98 Cervix-Ectocervix 14.765 24.625 23.54 51.435

Minor Salivary Gland 10.33 13.21 13.03 24.15 Brain-Cerebellar
Hemisphere 13.325 17.52 14.98 68.75

Esophagus-Mucosa 10.58 24.62 11.92 18.2 Cervix-Endocervix 15.15 19 26.62 55
Colon-Transverse 9.484 12.52 14.885 28.96 Testis 14.12 49.84 23.42 31.66

Adrenal Gland 10.045 9.7865 12.39 35.965 Uterus 16.6 21.33 30.43 66.03

Adipose-Visceral
(Omentum) 12.25 12.14 14.71 32.23

Cells-Epstein-Barr
virus

(EBV)-transformed
lymphocytes

27.94 79.945 41.36 32.195

Small
Intestine-Terminal

Ileum
9.633 14.12 18.32 30.46

We then examined the expression level of the RNASEH genes in cancer using data
obtained from Cancer RNA-seq Nexus (CRN) [27] in 29 different randomly selected tumors
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in different tissues at different stages of cancer progression compared to their healthy
controls (complete list of tumors in Table S8 and raw data in Table S9). To validate our
approach, we also examined the expression level of MYBL2 and SCARA5 genes, which are
reported to be upregulated and downregulated in cancer, respectively [40]. As expected,
MYBL2 was mostly upregulated in cancers such as triple negative breast cancer, bladder
urothelial carcinoma stages 2 and 4, and lung adenocarcinoma stages 2 and 4, while
SCARA5 was downregulated in cancers such as bladder urothelial carcinoma stages 2 and
4; thyroid carcinoma stage 1, and rectum adenocarcinoma stage 2A (Figure 2). RNASEH2A
was the only RNASEH gene that showed increased expression levels in all 29 tumors
relative to the control tissues (Figure 2).
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To study the levels of RNASEH genes throughout the progression of cancer, we
examined the expression levels of the genes at different stages of lung squamous ade-
nocarcinoma, breast invasive carcinoma, and bladder urothelial carcinoma. In all these
cancers, the expression of RNASEH2A changed drastically from a normal stage to early
cancer stages and remained high with the progression of the disease (Figure 3 and Table
S10 and raw data in Table S11). No other gene beside MYBL2 was upregulated at the
different stages studied. These results imply that RNASEH2A might have a role in cancer
etiology or transformation from normal tissue to cancer tissue, that is dependent on its
expression level.
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3.3. RNASEH2A Gene Amplifications Has Higher Prevalence in Multiple Cancer Types

The analysis of RNASEH2A copy number alterations and mRNA expression in various
types of cancer (prevalence of RNASEH2A CNAs in Table 3, expression summary for CNA
types and raw data in Table S12) revealed that the average expression of RNASEH2A is
higher in patients with amplifications of the RNASEH2A gene and lower in patients with
deep deletions when compared to normal diploid samples. This correlates with previous
findings in mRNA versus CNA type expression levels in the TCGA Pan Cancer dataset [41].
We also observed that, in 16 out of 35 cancer types/subtypes, percentage of patients with
amplifications was higher than percentage of patients with deep deletions, with 10% cancer
types having >1% amplifications as copy number alteration. The maximum percentage of
patients having RNASEH2A amplifications in a given type of cancer was 8.14% for ovarian
epithelial tumor, followed by 3.29% in endometrial and 2.63% in adrenocortical carcinoma
(Table 3 and raw data in Table S12).

Table 3. Percentage of patients with RNASEH2A copy number alterations from Genomic Identification of Significant Targets
in Cancer (GISTIC) in The Cancer Genome Atlas (TCGA) Pan Cancer cohorts.

Cancer Type
Percentage of Patients with Copy Number Alterations

Deep Deletion Shallow Deletion Diploid Gain Amplification

Ovarian Epithelial Tumor 0.34% 29.15% 26.10% 36.27% 8.14%

Endometrial Carcinoma - 12.13% 69.67% 14.90% 3.29%

Adrenocortical Carcinoma - 1.32% 34.21% 61.84% 2.63%

Pleural Mesothelioma - 8.05% 73.56% 16.09% 2.30%

Esophageal Squamous Cell Carcinoma - 34.04% 44.68% 19.15% 2.13%

Cervical Squamous Cell Carcinoma 0.41% 26.23% 57.79% 13.52% 2.05%

Diffuse Glioma 0.20% 3.33% 73.92% 20.78% 1.76%

Sarcoma - 10.36% 50.20% 37.85% 1.59%

Invasive Breast Carcinoma 0.09% 21.25% 60.11% 17.23% 1.31%

Ocular Melanoma - 3.75% 92.50% 2.50% 1.25%

Thymic Epithelial Tumor - 2.52% 94.12% 2.52% 0.84%

Esophagogastric Adenocarcinoma 0.62% 33.40% 57.73% 7.42% 0.82%

Head and Neck Squamous Cell Carcinoma 0.20% 19.45% 66.99% 12.57% 0.79%

Glioblastoma - 8.11% 58.11% 33.11% 0.68%

Non-Small Cell Lung Cancer 0.30% 44.10% 43.39% 11.71% 0.50%

Bladder Urothelial Carcinoma - 29.21% 53.71% 16.58% 0.50%

Prostate Adenocarcinoma 0.20% 5.74% 92.21% 1.64% 0.20%

Cervical Adenocarcinoma 2.17% 26.09% 65.22% 6.52% -

Cholangiocarcinoma - 13.89% 72.22% 13.89% -

Colorectal Adenocarcinoma 0.51% 11.02% 71.86% 16.61% -

Encapsulated Glioma - - 100.00% - -

Fibrolamellar Carcinoma - - 100.00% - -

Hepatocellular Carcinoma 0.28% 21.51% 64.25% 13.97% -

Leukemia - 1.81% 95.18% 3.01% -

Mature B-Cell Neoplasms - 2.08% 91.67% 6.25% -

Melanoma - 22.62% 61.31% 16.08% -

Miscellaneous Neuroepithelial Tumor - - 96.30% 3.70% -

Non-Seminomatous Germ Cell Tumor - 52.33% 33.72% 13.95% -

Pancreatic Adenocarcinoma - 14.77% 77.27% 7.95% -

Pheochromocytoma - 0.75% 84.33% 14.93% -

Renal Clear Cell Carcinoma - 2.17% 88.56% 9.27% -
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Table 3. Cont.

Cancer Type
Percentage of Patients with Copy Number Alterations

Deep Deletion Shallow Deletion Diploid Gain Amplification

Renal Non-Clear Cell Carcinoma - 5.17% 87.36% 7.47% -

Seminoma - 1.59% 55.56% 42.86% -

Undifferentiated Stomach Adenocarcinoma - 25.00% 58.33% 16.67% -

Well-Differentiated Thyroid Cancer - 1.21% 97.37% 1.41% -

All Cancer types 0.17% 17.69% 66.83% 14.30% 1.01%

CNAs are categorized as: 1. Deep deletion (−2) indicating a deep loss/homozygous deletion; 2. Shallow deletion (−1) indicates shallow
loss/heterozygous deletion; 3. Diploid (0) indicates homozygous genes; 4. Gain indicates a low-level gain (a few additional copies, often
broad); 5. Amplification (2) indicate a high level amplification (more copies, often focal).

3.4. Mass Spectrometry Analysis Identified RNASEH2A Binding Partners Involved in
Mitosis Regulation

To identify proteins that interact with RNASEH2A, we over-expressed the control
eGFP (Figure 4a, lanes 1–3) and the eGFP-RNASEH2A (Figure 4a, lanes 4–6) proteins in
HEK293 cells. We performed co-immunoprecipitation (Co-IP) using an anti-GFP antibody
(Figure 4a). We also confirmed that both RNASEH2A (Figure 4b, lanes 1–2) and GFP
(Figure 4b, lanes 3–4) antibodies identify the same GFP-RNASEH2A protein (Figure 4b).
After confirming the successful pulldown of RNASEH2A protein, we analyzed the eluted
proteins that were interacting with RNASEH2A via mass spectrometry. The analysis
revealed a short list of five human proteins with at least three peptide spectrum matches
(PSMs) interacting with RNASEH2A (Table 4 and full data in Table S13a,b). RNASEH2B
and RNASEH2C were interacting with RNASEH2A confirming the validity of the Co-IP
experiment. Interestingly, among the proteins interacting with RNASEH2A, we identified
the T-complex protein 1 subunits theta Chaperonin Containing TCP1 Subunit 8 (CCT8)
and DnaJ homologue subfamily A member 1 (DNAJA1) and apoptosis-inducing factor
mitochondrion-associated 1 (AIFM1) proteins with a gene correlation coefficient with
RNASEH2A of 0.84, 0.585, and 0.378 respectively. These three potential RNASH2A binding
partners have shown to play a role in cell cycle regulation and mitosis [42–45].
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Figure 4. Co-immunoprecipitation and antibodies verification: (a) co-immunoprecipitation of RNASEH2A. Western Blot of
the GFP co-immunoprecipitation. The two panels indicate two independent experiments. HEK293 cells were overexpressed
(OE) with the eGFP vector (lanes 1–3 in each panel) or with the eGFP-RNASEH2A vector (lanes 4–6 in each panel). IP:
anti-GFP, IB: anti-RNASEH2A. Arrows indicate endogenous RNASEH2A (lower arrow) and exogenous eGFP-RNASEH2A
(upper row); (b) RNASEH2A and GFP antibodies verification. Western Blot of the anti-RNASEH2A (left panel) and the
anti-GFP (right panel). In the two panels, HEK293 cells were OE with eGFP vector (lanes 1, 3) or eGFP-RNASEH2A vector
(lanes 2, 4). In the left panel, arrows indicate endogenous RNASEH2A (lower arrow) and exogenous eGFP-RNASEH2A
(upper row). In the right panel, arrows indicate eGFP (lower arrow) and eGFP-RNASEH2A (upper row).
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Table 4. List of proteins identified as binding partners of RNASEH2A by mass spectrometry analysis.
The two top proteins, RNASEH2B and RNASEH2C, confirm the authenticity of the results.

Protein Gene Description

Q5TBB1 RNASEH2B Ribonuclease H2 subunit B
E9PN81 RNASEH2C Ribonuclease H2 subunit C
P31689 DNAJA1 DnaJ homolog subfamily A member 1
O95831 AIFM1 Apoptosis-inducing factor 1, mitochondrial
P50990 CCT8 T-complex protein 1 subunit theta

3.5. RNASEH2A Expression Positively Correlates with Cancer Proliferation Markers and Cell
Cycle Genes

To further explore the involvement of RNASEH2A in cancer, we examined the correla-
tions between RNASEH2A and 39 additional genes in CCLE and TGCA Pan Cancer datasets
(Table 5 and Table S14a,b). The correlation analysis uncovered a positive correlation of
RNASEH2A with genes up-regulated in cancer and a negative correlation with genes that
are instead down-regulated. In addition, RNASEH2A showed a higher correlation with
cluster of genes known to play a role in cancer proliferation as compared to RNASEH2B,
RNASE2C, and RNASEH1. We also observed a similar trend for the three putative binding
partners of RNASEH2A that we identified by mass spectrometry, showing a correlation
comparable with that found in the GTEx dataset. The analysis of cell cycle related genes
showed a high correlation between RNASEH2A and genes involved in Gap 1/Synthesis
(G1/S), Gap 2 (G2), G2/Mitosis (M), M, and M/G1 phases and a comparatively lower or no
correlation with genes unique to G1 and S phases (Figure 5 and raw data in Figure S15a,b).

Table 5. List of genes related to cancer proliferation and cell cycle phases used for correlation analysis in Cancer Cell Line
Encyclopedia (CCLE) and TCGA Pan Cancer datasets.

Gene Name (s) Function/Role References

CDKN2A, CDKN2B, CCND1 G1 Cell Cycle Phase A. Subramanian et al. Gene Set Enrichment
Analysis (GSEA Database) [46]

DHFR, CCNE1 G1/S Cell Cycle Phase A. Subramanian et al. (GSEA Database) [46]

AKT1-3, E2F4-5 S Cell Cycle Phase A. Subramanian et al. (GSEA Database) [46]

CDKN2D, MDM2 G2 Cell Cycle Phase A. Subramanian et al. (GSEA Database) [46]

CCNB2, TOPBP1 G2/M Cell Cycle Phase A. Subramanian et al. (GSEA Database) [46]

APC, BUB1 M Cell Cycle Phase A. Subramanian et al. (GSEA Database) [46]

E2F2, E2F3, CCNB1 M/G1 Cell Cycle Phase A. Subramanian et al. (GSEA Database) [46]

MYBL2, FOXM1, BUB1, AURKA, AURKB Upregulated in cancer M. Li et al. [40]

SCARA5, MYOM1 Downregulated in cancer M. Li et al. [40]

PCNA, MKI67(Ki67), MCM2–MCM6, E2F1 Proliferative markers in cancer M.L. Whitfield et al. [47]

CCNE1, CCND1, CCNB1 Cell cycle markers associated with cancer
(G1/S, G2, and M) M.L. Whitfield et al. [47]

RNASEH2A, RNASEH2B, RNASEH2C,
RNASEH1 Target genes in this study This study

CCT8, DNAJA1, AIFM1 Predicted Binding partners of RNASEH2A This study
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4. Discussion

Co-expression correlation analysis of genes is a simple approach to suggest functional
network of genes. We anticipate that this approach is more accurate for analyzing genes
sharing a higher correlation value. In addition, we assume that the genes analyzed should
have a functional network involved in a process that is dependent on a spatio-temporal gene
expression profile. Cell cycle regulation is a good example for such a process. In fact, the
analysis of CDK1, a regulator of cyclin B implicated in cell cycle control, shows enrichment
of genes involved in mitotic cell cycle regulation, microtubule cytoskeleton organization,
and regulation of G1/S transition of mitotic cell cycle (Table S16 and complete list of CDK1
co-expressed genes in Table S17). This approach can be applied to other processes such
as, for example, RNA regulation in stress granules, which is a well-orchestrated process
dependent on time and stress conditions. In this context, G3BP1, a RNA helicase that
is one of the key assemblers of the stress granules, shows enrichment of co-expressed
genes involved in molecular function of RNA binding and RNA helicase activity in a
ribonucleoprotein cellular component (Table S16 and complete list of G3BP1 co-expressed
genes in Table S18).

Among the three RNASEH genes, we found that only RNASEH2A was involved in
the functional network of mitotic cell cycle regulation. One possibility is that RNASEH2A
has a function independent of RNASEH2B and RNASEH2C, as its distribution in the cell
was shown not to be limited to the interaction with RNASEH2B and RNASEH2C [6]. This
notion was also suggested by others showing that knocking out RNASEH2A in cervical
cancer HeLa cells results in an increased sensitivity to ataxia telengiectasia and Rad3-related
(ATR) inhibitors compared to knocking out RNASEH2B [48]. We propose that RNASEH2A
levels constitute an additional layer of regulation of RNASEH2A activity, which is not
dictated by RNASEH2B or RNASEH2C levels, and this is why the co-expression correlation
analysis did not show a functional network of mitotic cell regulation for RNASEH2B and
RNASEH2C genes. Following this notion, it would be intriguing to examine the levels of the
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three RNase H2 genes throughout the cell cycle in human cells and study how perturbing
their levels affects RNase H2 function and/or cell cycle progression. Similar studies
have been performed on yeast showing a cell cycle dependent expression of RNH201
(orthologous gene of RNASEH2A), peaking at S and G2 phases [23,49], and being recruited
to chromatin/telomeres at the G2 phase [49].

Rejins et al. [50], using an anti-mouse antibody for all proteins of the RNase H2
complex, demonstrated an increase in the expression level of RNase H2 in the mouse
blastocyst in all three embryonic layers during gastrulation and showed, in newborns
and adults, that the expression becomes restricted to highly proliferative tissues such
as intestinal crypt epithelium and testes [50]. Moreover, they reported that RNase H2
levels correlate with the proliferation marker Ki67 [50]. These data are consistent with our
findings showing an increase in RNASEH2A level in actively cycling tissues as well as
different cancer tissues compared to normal ones.

Using our co-expression correlation approach, we identified three main functional
networks in which RNASEH2A is involved: DNA replication, DNA damage repair, and
regulation of chromosome segregation in mitosis. Hyper-proliferation of cells results in
excessive addition of RNA Okazaki fragments into the genome during DNA replication,
increases the number of events when replicative DNA polymerases insert ribonucleotides
instead of deoxyribonucleotides into the genomic DNA [51,52], and increases the rate of
chromosomes reduction from 4N to 2N by symmetric segregation into two new daughter
cells. All these events correspond to the functional networks identified in this study for
RNASEH2A and link RNASEH2A activity to cell cycle regulation. In support of this notion,
we identified several cellular pathways among the highest RNASEH2A co-expressed genes
such as the minichromosome maintenance (MCM) complex, a replicative eukaryotic heli-
case that, in yeast, has been demonstrated to be activated upon accumulation of RNA-DNA
hybrids at the G2-M checkpoint. This finding suggests that targeting the RNASEH2A
level and/or activity could prevent the DNA damage occurring during replication, which
leads to mitotic catastrophe and cell death [53,54]. The other identified complexes, such
as the NDC80 complex, the CENP family, and the KIF family, have all been shown to
function in cell cycle regulation through regulation of the microtubule filaments with the
kinetochore [55–57].

Our analyses of expression levels focused on the RNASEH genes (RNASEH1, RNASEH2A,
RNASEH2B, and RNASEH2C) using the GTEx v.7 database and revealed a marked contrast
in RNASEH2A expression levels between low and high proliferative tissues. RNASEH2A
showed low expression levels in low proliferative tissues such as brain, kidney (cortex), and
heart and high expression levels in highly proliferative tissues such as skin, esophagus, small
intestine, testis, cervix, as well as in transformed fibroblasts and transformed lymphocytes.
Moreover, in line with the initial study by Flanagan et al. [18], showing elevated expression
levels of RNASEH2A in transformed mesenchymal stem cells, our analysis of 29 different
randomly selected tumors in different tissues compared to their healthy controls revealed
that RNASEH2A is the only RNASEH gene displaying increased expression levels. Further
analyses of RNASEH expression levels throughout different stages of lung squamous adeno-
carcinoma, breast invasive carcinoma, and bladder urothelial carcinoma again highlighted
specific upregulation of RNASEH2A from normal tissues to early stages and more advanced
stages of these cancers. It is interesting to note that Dai et al. reported on a possible role
of RNASEH2A in glioma cell proliferation. Their findings suggested a role of RNASEH2A
upregulation in cell growth and apoptosis, contributing to glioma-genesis and cancer progres-
sion [58]. More recently, RNASEH2A overexpression was associated with cancer cell resistance
to chemotherapy in vitro and with aggressiveness and poor outcomes in breast cancers of
estrogen receptor (ER)-positive subtypes [59]. The analysis of copy number alterations of the
RNASEH2A gene that we performed in our study further supports the role of RNASEH2A
in cancer development. We demonstrated that RNASEH2A gene amplifications have higher
incidence in multiple cancer types when compared to deep deletions and normal diploid
samples suggesting RNASEH2A as a target for cancer diagnosis and therapy. Interestingly,
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cancers from tissues with high cell turnover, such as the reproductive system, showed a
maximum percentage of patients with RNASEH2A amplification, suggesting a possible role
of adult stem cells in the overexpression of RNASEH2A. In fact, deregulation of the adult stem
cell niche is considered a key event in the etiology of cancer [60].

Our mass spectrometry analysis shows five protein candidates that specifically interact
with RNASEH2A. The top two proteins observed were RNASEH2B and RNASEH2C,
confirming the authenticity of the results. Additional proteins that we identified in the
context of RNASEH2A biology and mitosis regulation were CCT8, DNAJA1, and AIFM1.
CCT8 is part of the CCT/TRiC complex that was reported to regulate telomerase function
by mediating its trafficking from the cytoplasm to the telomeres [36]. In addition, it was
shown to promote chromosome segregation by disassembling checkpoint complex from
sister chromatids in the initial phase of mitosis [37], supporting the RNASEH2A functional
network in mitosis regulation. DNAJA1 belongs to the family of DnaJ heat shock protein
family (Hsp40); it has been shown to be activated by E2F transcription factor 1 (E2F1) and
to promote cell cycle by stabilizing cell division protein 45 (CDC45) [38]. Of interest, the
induction of RNASEH2A by E2F1 has been also reported in human papillomavirus cervical
cancers [19]. AIFM1 is a well know factor that plays a key role in the apoptosis signaling
pathways. A recent study has uncovered a new role of AIFM1 on the proliferation of
hepatoma cells and cell cycle arrest [39].

The high correlation of RNASEH2A expression with genes that play a role in cancer
development and cell cycle progression validate our study, showing that RNASEH2A plays
a role in cancer transformation and progression. In addition, our final analysis supports the
mass spectrometry findings and indicates CCT8, DNAJA1, and AIFM1 as binding partners
of RNASEH2A.

The analysis and the experimental approaches used in this works have some limi-
tations. In this respect, we made use of the Cancer RNA-Seq Nexus database for which
patient information is not available. Factors such as age, gender, and medical treatment
versus surgery could have influenced the results of our in-silico analysis. In addition, al-
though mass spectrometry is a highly specific and sensitive technique, further investigation
is needed to confirm the specific interactions between the RNASEH2A subunit and the
candidate proteins found in our experiments. In our in vitro experiments, we used the
HEK293 cell line. Depending on a number of factors, this cell line in culture can either
show the phenotype of a normal or of a cancer cell line [61]. Although we were able to
support our in vitro finding by in-silico analysis, the characterization of the biological role
of CCT8, DNAJA1, and AIFM1 in concert with RNASEH2A requires a more appropriate
model system.

5. Conclusions

Overall, our study suggests an emerging role of RNASEH2A in cell cycle regulation
that appears independent from its function as part of the RNase H2 whole enzyme. The
presented findings stimulate new research directions such as investigating the differential
expression of RNASEH2A during cell cycle phases to better understanding and charac-
terizing the function of RNASEH2A in cell proliferation in healthy, adults stem cells and
cancer cells and to support further exploring RNASEH2A as a target for cancer diagnosis
and therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-7
737/10/3/221/s1. Table S1: List of RNASEH2A co-expressed correlated genes. Table S2: Gene
ontology of the 2% co-expressed correlated RNASEH2A genes using the GOrilla analysis tool. Table
S3: Protein network association data obtained from STRING protein–protein association network
applied to RNASEH2A and its top co-expressed genes (3a–c). Table S4: Gene ontology of the 2% and
the 5% co-expressed correlated RNASEH1 genes using the GOrilla analysis tool showing a functional
network of genes involved in RNA binding and processes of regulation of telomerase RNA and
telomeres maintenance. Table S5: List of RNASEH1 co-expressed correlated genes. Table S6: Gene
ontology of the 2% co-expressed correlated RNASEH2B genes using the GOrilla analysis tool showing
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functional network of genes involved in DNA replication. Table S7: List of RNASEH2B co-expressed
correlated genes. Table S8: Expression level of the RNASEH genes in cancer using data obtained from
Cancer RNA-seq Nexus (CNR) in 29 different randomly selected tumors. Table S9: Expression level
of the RNASEH genes in cancer using data obtained from Cancer. RNA-seq Nexus (CNR) in different
tissues at different stage of cancer progression. Table S10: Level of the RNASEH genes throughout
the progression of cancer showing constant upregulation of RNASEH2A in lung, breast, and bladder
tumors. Table S11: Level of the RNASEH genes at different stages of cancer. Table S12: (a) Average
expression of patients with different RNASEH2A copy-number alterations from GISTIC in TCGA
Pan Cancer studies; (b) raw data for RNASEH2A mRNA expression with copy number alteration
type in TCGA Pan Cancer studies. Table S13: Mass spectrometry results of first run (4a) and second
run (4b) of immunoprecipitation experiments. Table S14: (a) Count and percentage of Cancer Cell
line types in CCLE database; (b) count and percentage of cancer tissue types/subtypes in TCGA Pan
Cancer Dataset. Table S15: (a) Correlation Matrix (Pearson’s R and p-value) for RNASEH2A and 39
subset list of genes in CCLE; (b) correlation Matrix (Pearson’s R and p-value) for RNASEH2A and
39 subset list of genes in TCGA. Table S16: Gene ontology of the 2% co-expressed correlated CDK1
genes and G3BP1 using the GOrilla analysis tool showing enrichment of genes involved in cell cycle
regulation and in molecular binding of RNA. Table S17: List of CDK1 co-expressed correlated genes.
Table S18: List of G3BP1 co-expressed correlated genes.
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