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Simple Summary: Ferroptosis is an iron-dependent cell death which is distinctive from common
forms of cell death. Accumulating evidence indicated the close relationship between ferroptosis and
numerous human diseases. Regarding breast cancer, a related study indicated that some targeted
medicines could induce ferroptosis, furthermore, some basic research found that ferroptosis-related
genes were closely related to breast cancer. However, the correlation between ferroptosis-related
genes and breast cancer patients’ prognosis remains unknown. We built an 8-ferroptosis-related-gene
model to predict breast cancer patients’ prognosis. This model could stratify patients into high- or
low-risk groups. Additionally, tumor microenvironment analyses displayed differently enriched
immune cells and immune pathways between these two groups. This 8-gene model is believed to be
of great value in predicting prognosis for breast cancer patients.

Abstract: Breast cancer is the second leading cause of death in women, thus a reliable prognostic
model for overall survival (OS) in breast cancer is needed to improve treatment and care. Ferroptosis
is an iron-dependent cell death. It is already known that siramesine and lapatinib could induce
ferroptosis in breast cancer cells, and some ferroptosis-related genes were closely related with the
outcomes of treatments regarding breast cancer. The relationship between these genes and the
prognosis of OS remains unclear. The data of gene expression and related clinical information was
downloaded from public databases. Based on the TCGA-BRCA cohort, an 8-gene prediction model
was established with the least absolute shrinkage and selection operator (LASSO) cox regression,
and this model was validated in patients from the METABRIC cohort. Based on the median risk
score obtained from the 8-gene model, patients were stratified into high- or low-risk groups. Cox
regression analyses identified that the risk score was an independent predictor for OS. The findings
from CIBERSORT and ssGSEA presented noticeable differences in enrichment scores for immune
cells and pathways between the abovementioned two risk groups. To sum up, this prediction model
has potential to be widely applied in future clinical settings.

Keywords: breast cancer; ferroptosis; gene signature; prognosis; immune status

1. Introduction

Breast cancer, as a global health concern, is the most common malignancy among
women and ranks as the second leading cause for cancer-related death in women. Addi-
tionally, breast cancer has become the second most frequently diagnosed cancer worldwide,
and will be diagnosed in one woman out of eight [1,2]. In Asia, one in three women faces
the risk of breast cancer during their lifetime [3]. The five-year survival rate for breast
cancer patients with stages III and IV were 57% and 23.4%, respectively [4]. It is commonly
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known that multigene signatures could provide risk stratification and prognostic prediction
in breast cancer, such as PAM50 signature [5]. Also, this kind of multigene signature brings
insight to molecular biologic characteristics of breast cancer, as transcriptome or related
molecular biologic data was the original source of constructing such a prognostic prediction
model. Therefore, this study aims to develop a ferroptosis-related gene signature to predict
overall survival (OS) for breast cancer patients.

Ferroptosis is an iron-dependent cell death discovered by Dixon et al. Iron-dependent
reactive oxygen species (ROS) increase, cell membrane thickening and mitochondrial
volume reduction are biologic characteristics of ferroptosis [6]. The accurate mechanism
underlying ferroptosis sensitivity in tumor cells is uncertain, but it is already known that
different cancer types possess different levels of sensitivity to ferroptosis. Concerning
breast cancer, based on current studies, iron, ACSL4 (Acyl-CoA synthetase long chain
family member 4), PUFAs (polyunsaturated fatty acids), GPX4 (glutathione peroxidase-4)
and p53 have been identified as vital regulators in ferroptosis pathway, also promising
treatment targets for breast cancer. Related studies reported that growth of breast cancer
cells was dependent on iron, and the iron chelator Dp44mT exhibited antitumor effects in
breast cancer [7,8]. ACSL4 participates in the process of ferroptosis via enriching cellular
membranes with long polyunsaturated n-6 fatty acids [9]. Antitumor activity of PUFAs is
achieved by upregulating ROS in breast cancer cells. Some breast cancer cells acquire the ability
of drug resistance through GPX4, namely those which are vulnerable to ferroptosis induced
by GPX4 inhibition [10], suggesting that the GPX4 inhibitor might become a potential agent
to overcome drug resistance in breast cancer. P53, a well-known tumor suppressor gene, has
been reported to positively regulate the process of erastin-induced ferroptosis in breast cancer
cells [11]. A recent study reported that ferroptosis was more prone to be induced by siramesine
and lapatinib rather than four common ferroptotic reagents (erastin, RSL3, ML210 and ML162),
and demonstrated that lapatinib-induced ferroptosis was not via targeting EGFR and HER2,
which imply there were other targets in the induction process of ferroptosis by lapatinib [6].
Some researchers have found that triple-negative breast cancer is more sensitive to ferroptosis
than ER-positive breast cancer [9].

A previous study showed that some ferroptosis-related genes had the potential to be
promising treatment targets in breast cancer, such as iron, ACSL4, GPX4, SLC7A11 and
SLC3A [9,12]. Therefore, it is important to identify the relationship between ferroptosis
and prognosis in breast cancer patients. Studies with regard to ferroptosis-related gene
signature as a prognostic marker are emerging. Liu et al. reported that the prognostic
signature of 19 ferroptosis-related genes for glioma exhibited potential as a biomarker
of OS in glioma patients [13]. Kwon et al. constructed a nuclear receptor meta-pathway
(NRM) model identifying the patients for therapeutic intervention using erastin, which
has been extensively accepted as a new ferroptosis-related antitumor therapy [14]. A
10-ferroptosis-related gene signature established by Liang et al was able to predict the
prognosis for patients with hepatocellular carcinoma [15]. In this study, we developed a
ferroptosis-related gene signature-based prognostic model for breast cancer patients, and
investigated the difference of tumor microenvironment immunity between different risk
groups classified by this model.

2. Materials and Methods
2.1. TCGA-BRCA Cohort and METABRIC Cohort

The transcriptome data and clinical characteristics of breast cancer patients in TCGA-
BRCA and METABRIC were obtained from GDC (https://protal.gdc.cancer.gov/repository)
and cBioProtal (www.cbioportal.org/), respectively. Additional normal breast tissue mRNA
data were obtained from GTEx (https://gtexportal.org/home/datasets). This study in-
cluded 60 genes related to ferroptosis, and these genes are detailed in Table S1.

https://protal.gdc.cancer.gov/repository
www.cbioportal.org/
https://gtexportal.org/home/datasets
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2.2. Construction and Validation of a Novel Prognostic Ferroptosis-Related Gene Signature

Firstly, the differently expressed genes (DEGs) between tumor and normal tissues in
the TCGA-BRCA cohort were screened with “DESeq2” R package with the threshold of
p.adj < 0.05 and |logFC| > 1, then, the ferroptosis-related genes with prognostic value
were identified with univariate cox regression of OS. Then, the least absolute shrinkage and
selection operator (LASSO) Cox regression was carried to build a prognostic model with
the “glmnet” R package. The variables that were used to build the model were the non-zero
coefficients under the minimum lambda condition. Risk score calculation was based on
the expression level of normalized gene and regression coefficient of corresponding gene,
which was as follows: risk score = sum (expression level of each gene*corresponding
coefficient). Then, patients were grouped into high- or low-risk group based on the median
risk score. The concordance index (c-index) assessing the predictive accuracy of this 8-gene
model was obtained by “risksetROC” R package.

2.3. The Tumor Microenvironment Analysis

Cell type identification by estimating relative subsets of known RNA transcripts
(CIBERSORT) tool was used to identify the immune cell fractions of 22 distinct leukocyte
subsets. The differences of immune-related pathways between groups were evaluated
through the single-sample gene set enrichment analysis (ssGSEA) achieved by R package
“gsva”. The immune-related gene sets used are provided in Table S2.

2.4. Statistical Analysis

The chi-squared test of Fisher’s exact test was applied to compare the difference in
proportions between groups. The Kaplan–Meier curve and log-rank test were used to
compare OS in different risk groups. The independent predictors for OS were identified via
univariate and multivariate cox regression. All reported p-values correspond to two-sided
tests, and p-values < 0.05 were considered statistically significant. All statistical analyses
were carried out with R, version 3.6.3.

3. Results

In this study, TCGA-BRCA and METABRIC cohorts included 1043 and 1904 breast
cancer patients, respectively. Table 1 details the baseline information of all the patients.

Table 1. Baseline characteristics of breast cancer patients included in this study.

Characteristics TCGA-BRCA METABRIC

N 1043 1904
Age (mean (SD)) 58.33 (13.20) 61.09 (12.98)

Gender (%)
Male 12 (1.2) -

Female 1031 (98.8) -
Race (%)

Asian 57 (5.5) -
Black 178 (17.1) -
White 727 (69.7) -

NA 81 (7.8) -
Stage (%)

I 178 (17.1) -
II 589 (56.5) -
III 234 (22.4) -
IV 19 (1.8) -

Menopause status (%)
Pre 219 (21.0) 411 (21.6)
peri 72 (6.9) 0 (0)
Post 664 (63.7) 1493 (78.4)
NA 88 (8.4) 0 (0)

Chemotherapy (%)
Yes - 396 (20.8)
No - 1508 (79.2)

Pathologic N (%)
< = N1 - 1434 (75.3)
> = N2 - 470 (24.7)
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3.1. Identification of Prognostic Ferroptosis-Related Genes in the TCGA-BRCA Cohort

A total of 60 ferroptosis-related genes are shown in Figure 1a, and only 18 of them
were differently expressed between tumor and normal tissues (Figure 1b). Out of the
60 ferroptosis-related genes, 9 were of prognostic value in breast cancer, of note, only
ACSF2 presented as a favorable prognostic factor (Figure 1c). Genes which were not only
expressed differently between tumor and normal tissue but also of prognostic value were
SQLE, SLC7A11 and CHAC. In tumor tissue, these 3 genes were all upregulated, and
higher expression predicted worse overall survival (OS) (Figure 1b,c).
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Figure 1. Identification of prognostic ferroptosis-related genes in the TCGA-BRCA cohort. (a) Heatmap of ferroptosis
signature genes; (b) Eighteen genes were differently expressed between tumor and normal tissue; (c) Forest plots showed that
nine ferroptosis-related genes were of prognostic value in breast cancer. HR, hazard ratio; 95% CI, 95% confidence interval.

3.2. A Prognostic Model Construction in the TCGA-BRCA Cohort

Based on above-mentioned 9 candidate genes, we preformed LASSO Cox regression
analysis to construct the ferroptosis-related genes signature-based risk model. When
the model reached the minimum of lambda (λ), a prognostic model with 8 non-zero
coefficient genes (ALOX15, CHAC1, CISD1, CS, SLC7A11, EMC2, G6PD, ACSF2) was built
(Figure A1), and the SQLE was removed for its zero coefficient. Median risk score classified
patients into high-risk (n = 521) or low-risk (n = 522) groups, which was calculated as
follows: risk score = 0.222 × expression level (EL) of ALOX15 + 0.081 × EL of CHAC1 +
0.182 × EL of CISD1 + 0.304 × EL of CS + 0.070 × EL of SLC7A11 + 0.230 × EL of EMC2 +
0.139 × EL of G6PD - 0.107 × EL of ACSF. Table 2 shows that in the TCGA-BRCA cohort,
the high-risk group was not associated with higher tumor stage and menopausal status, but
more Asian patients were in the high-risk group and more Caucasian patients were in the
low-risk group. The Kaplan–Meier curve revealed better OS for patients from the low-risk
group compared to high-risk group (Figure 2a), and the maximum value of c-index was
0.715 (Figure 2b).
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Table 2. Clinical characteristics in different risk groups.

Characteristics TCGA-BRCA METABRIC

High-Risk
(n = 521)

Low-Risk
(n = 522) p Value High-Risk

(n = 952)
Low-Risk
(n = 952) p Value

Age (mean (SD)) 58.34 (13.56) 58.32 (12.84) 0.983 60.66 (13.29) 61.51 (12.65) 0.151
Gender (%) 0.146 -

Male 9 (1.7) 3 (0.6) - -
Female 512(98.3) 519(99.4) - -

Race (%) 0.001 -
Black 94 (18.0) 84 (16.1) - -
White 338 (64.9) 389 (74.5) - -
Asian 38 (7.3) 19 (3.6) - -
NA 51 (9.8) 30 (5.7) - -

Stage (%) 0.401 -
I+II 376(72.2) 391(74.9) - -

III+IV 135 (25.9) 118 (22.6) - -
NA 10(1.9) 13(2.5) - -

Menopause status (%) 0.201 0.373
Pre 117 (22.5) 102 (19.5) 214 (22.5) 197 (20.7)
post 331 (63.5) 333 (63.8) 738(77.5) 755(79.3)
peri 28 (5.4) 44 (8.4) - -
NA 45 (8.6) 43 (8.2) - -

Chemotherapy (%) - <0.001
Yes - - 265 (27.8) 131 (13.8)
No - - 687 (72.2) 821 (86.2)

Pathologic N (%) 0.017
< =N1 694 (72.9) 740 (77.7)
> =N2 258 (27.1) 212 (22.3)
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Figure 2. Overall survival analysis based on the 8-gene model in the TCGA-BRCA cohort. (a) Kaplan–
Meier curves showed overall survival (OS) for high- and low-risk groups from the TCGA-BRCA
cohort; (b) concordance index (c-index) assessed the predictive accuracy of this 8-gene model and
the maximum value of c-index was 0. Validation in the METABRIC cohort. (c) Kaplan–Meier curves
showed the overall survival (OS) for high- and low-risk groups from the METABRIC cohort; (d)
concordance index (c-index) assessed the predictive accuracy of this 8-gene model and the maximum
value of c-index was 0.590.
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3.3. 8-Gene Signature Validation in the METABRIC Cohort

To confirm the reliability of this 8-gene model, patients in the METABRIC cohort were
stratified into high- or low-risk group based on the median value of risk score calculated as
described above. The high-risk group in the METABRIC was related with higher pathologic
grade of lymph nodes (Table 2). Additionally, the Kaplan–Meier curve also indicated an
inferior OS for patients in the high-risk group (Figure 2c), and the maximum value of
c-index was 0.590 (Figure 2d).

3.4. Independent Prognostic Value of the 8-Gene Signature

In the univariate Cox regression analysis, the low-risk group had better OS in both
the TCGA-BRCA cohort and the METABRIC cohort (HR = 0.515, 95% CI = 0.369–0.720,
p < 0.001; HR = 0.780, 95% CI = 0.693–0.878, p < 0.001 respectively) (Table 3). In the
multivariate Cox regression analysis, the low-risk group also showed better OS in these
two cohorts (HR = 0.473, 95% CI = 0.332–0.673, p < 0.001; HR = 0.829, 95% CI = 0.735–0.935,
p < 0.01, respectively) (Table 3). Therefore, risk score was an independent prognostic
factor for OS. Moreover, older age was an unfavorable factor for OS in both cohorts
(TCGA-BRCA: HR = 1.035, 95% CI = 1.022–1.048, p < 0.001; METABRIC: HR = 1.054,
95% CI = 1.046–1.062, p < 0.001, respectively) (Table 3). For the patients in the METABRIC
cohort, history of chemotherapy treatment and higher pathologic grade of lymph nodes
both independently predicted worse OS (HR = 1.741, 95% CI = 1.450–2.091, p < 0.001;
HR = 1.705, 95% CI = 1.487–1.955, p < 0.001, respectively) (Table 3).

Table 3. Univariate and multivariate Cox regression analyses regarding OS in the TCGA-BRCA cohort and the
METABRIC cohort.

Predictors TCGA-BRCA METABRIC

Univariate Analysis Multivariate Analysis Univariate Analysis Multivariate Analysis

HR 95% CI p HR 95% CI p HR 95% CI p HR 95% CI p

Age 1.032 1.02–
1.045 <0.001 1.035 1.022–

1.048 <0.001 1.036 1.03–
1.041 <0.001 1.054 1.046–

1.062 <0.001
Gender

(Male vs. Female) 0.84 0.1168–
5.993 0.859 - - - - - - - - -

Race
Black (Ref)

White 0.826 0.552–
1.236 0.353 - - - - - - - - -

Asian 0.617 0.188–
2.029 0.427 - - - - - - - - -

Stage
(III/IV vs. I/II) 2.665 1.905–

3.730 <0.001 2.84 2.024–
3.982 <0.001 - - - - - -

Menopause status
Pre (Ref)

Post 1.279 0.842–
1.943 0.248 - - - 1.685 1.431–

1.983 <0.001 0.633 0.501–
0.799 <0.001

Peri 0.906 0.457–
1.794 0.776 - - - - - - - - -

Group
(Low vs. High) 0.515 0.369–

0.720 <0.001 0.473 0.332–
0.673 <0.001 0.780 0.693–

0.878 <0.001 0.829 0.735–
0.935 <0.01

Chemotherapy
(Yes vs. No) - - - - - - 1.228 1.057–

1.427 0.007 1.741 1.450–
2.091 <0.001

Pathologic N
(> = N2 vs. < = N1) - - - - - - 1.952 1.714–

2.222 <0.001 1.705 1.487–
1.955 <0.001

3.5. The Tumor Microenvironment Analysis in the TCGA-BRCA and METABRIC Cohort

Considering the ssGSEA results of the TCGA-BRCA cohort, the enrichment scores
of mast cells, neutrophils and type II IFN response in the low-risk group were higher
compared to the high-risk group (p < 0.05, Figure 3a). Mast cells and type II IFN response
in the low-risk group had higher enrichment scores in both the TCGA-BRCA and the
METABRIC cohorts (Figure 3a,b). The CIBERSORT results of TCGA-BRCA indicated
the difference of fraction of distinct leukocyte subsets between two risk groups—the
proportions of memory B cells, naïve CD4+ T cells, eosinophils and neutrophils were
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higher in the low-risk group (p < 0.05, Figure 4a); the fractions of activated CD4+ memory
T cells in the high-risk group were higher than that of the low-risk group in both cohorts,
and activated NK cells and monocytes had higher proportions in the high-risk group of
the METABRIC cohort (Figure 4a,b).
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Figure 3. The single-sample geneset enrichment analysis (ssGSEA) in the TCGA-BRCA and METABRIC cohorts. The
relative numerical values corresponding to the height of the histogram indicate different enrichment scores. (a) ssGSEA for
the TCGA-BRCA cohort characterized different cell state in terms of activity levels of immune pathways between high-
and low-risk groups. (b) ssGSEA for the METABRIC cohort characterized different cell state in terms of activity levels of
immune pathways between high- and low-risk groups.
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3.5. The Tumor Microenvironment Analysis in the TCGA-BRCA and METABRIC Cohort  
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mast cells, neutrophils and type II IFN response in the low-risk group were higher com-
pared to the high-risk group (p < 0.05, Figure 3a). Mast cells and type II IFN response in 
the low-risk group had higher enrichment scores in both the TCGA-BRCA and the META-
BRIC cohorts (Figure 3a,3b). The CIBERSORT results of TCGA-BRCA indicated the dif-
ference of fraction of distinct leukocyte subsets between two risk groups—the proportions 
of memory B cells, naïve CD4+ T cells, eosinophils and neutrophils were higher in the low-
risk group (p < 0.05, Figure 4a); the fractions of activated CD4+ memory T cells in the high-
risk group were higher than that of the low-risk group in both cohorts, and activated NK 
cells and monocytes had higher proportions in the high-risk group of the METABRIC co-
hort (Figure 4a,b).  
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Figure 4. Cell type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) in the TCGA-BRCA
and METABRIC cohorts. The relative numerical values corresponding to the height of the histogram indicate different
proportions. (a) CIBERSORT for TCGA-BRCA cohort showed the immune cell infiltration fraction of the 22 distinct
leukocyte subsets. (b) CIBERSORT of METABRIC cohort showed the immune cell infiltration fraction of the 22 distinct
leukocyte subsets.

4. Discussion

In this study, the 60 ferroptosis-related genes were obtained from review articles and
published experiments [16–18]. All of them were analyzed to identify prognostic genes.
Eventually an 8-gene prognostic model was constructed to predict the prognosis for breast
cancer patients, which was validated in an external cohort from METABRIC. The fluctuation
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of c-index between 0.58–0.71 in Figure 2b and 0.57–0.59 in Figure 2d indicated a moderate
model in terms of predictive accuracy. As the c-index reaches its highest at long-term
follow-up in both cohorts, this model was believed to be suited for predicting long-term
survival. Meanwhile, c-index maintains a stable level in the early stage, suggesting its
value in short-term prognosis.

Ferroptosis is an iron-dependent cell death which is morphologically, biochemically
and genetically distinct from apoptosis, necrosis and autophagy [19,20]. This process is
symbolized by an iron-dependent increase of reactive oxygen species (ROS), thickening
of the cell membrane and diminished volume of mitochondria [6]. Several inducing
factors of ferroptosis have been reported, such as erastin, sulfasalazine, RSL3 and cysteine
starvation [21]. Meanwhile, the regulators of ferroptosis were investigated as well, for
instance, GPX4, P53, HSPB1, CISD1, CHAC1, CARS, SLC7A11, TFR1 [22]. CARS and
TFR1 promote positive feedback for ferroptosis, however, SLC7A11, HSPB1, NRF2 and
GPX4 are responsible for negative feedback for ferroptosis [23]. In terms of breast cancer, S
Ma et al. found that the combination of siramesine and lapatinib induces ferroptosis via
decreasing expression of ferroportin (FPN) and increasing transferrin expression. Their
findings may provide a new treatment modality for apoptotic resistant breast cancer
cells [6]. The correlation between ferroptosis-related genes and breast cancer patients’
prognosis remains unknown.

Results in this study revealed 18 differently expressed ferroptosis-related genes be-
tween breast cancer tissue and normal tissue, and 3 out of them were of prognostic value.
The univariate cox regression eventually found 9 ferroptosis-related genes with prognostic
value and, eventually, an 8-gene prognostic model (ALOX15, CHAC1, CISD1, CS, SLC7A11,
EMC2, G6PD, ACSF2) was constructed. A previous study revealed that 3 ferroptosis-related
genes (SLC7A11, G6PD, CISD1) in hepatocellular carcinoma were upregulated in tumor
tissue, and their high expression correlated with a poor prognosis [15]. These 3 genes
were statistically significant in predicting overall survival in this study for breast can-
cer, moreover, the expression of SLC7A11 was also upregulated in breast cancer. CISD1
(CDGSH iron sulfur domain), an iron-containing outer mitochondrial membrane protein,
negatively regulates ferroptotic cancer cell death. Inhibition of CISD1 increased iron-
mediated intramitochondrial lipid peroxidation, leading to erastin-induced ferroptosis [24].
ALOX15 (arachidonate lipoxygenase 15) is related to producing lipid-ROS in gastric can-
cer. Zhang H et al. have reported that cisplatin and paclitaxel could promote secretion
of miR-522 from CAFs (cancer-associated fibroblasts) via the USP7/hnRNPA1pathway,
leading to ALOX15 suppression in gastric cancer cells, resulting in a poor therapeutic effect
since the decreased chemosensitivity [25]. G6PD (glucose-6-phosphate dehydrogenase), a
key enzyme that generates NADPH to maintain reduced glutathione (GSH), is capable of
cleaning reactive oxygen species (ROS). A few studies have revealed that upregulation of
G6PD promotes cancer progression in several types of carcinoma. Chen X et al. found that
high G6PD expression predicts poor prognosis in bladder cancer, on top of that, the higher
the levels of G6PD, the higher the tumor stage [26]. Not only in bladder cancer, G6PD
was also overexpressed in colorectal cancer (CRC) cells, and high expression correlated
with poor prognosis and poor outcome of oxaliplatin-based first-line chemotherapy in
patients with CRC [27]. SQLE (squalene epoxidase), commonly known as a key enzyme
of cholesterol synthesis, can also induce EMT (epithelial-to-mesenchymal transition) via
regulating miR-133b in esophageal squamous cell carcinoma [28]. SLC7A11 is a unit of
the glutamate-cystine antiporter system-xc (system-xc), which is mainly responsible for
reduction of cystine to cysteine. Cysteine is one of units forming glutathione, which is an
antioxidant protecting cells from lipid oxidative damage and ferroptosis. A recent study
claimed that the combination of immunotherapy and radiotherapy suppresses SLC7A11,
thus this combinatorial treatment modality promotes ferroptosis in cancer cells [29]. ChaC
glutathione-specific gamma-glutamyl cyclotransferase 1 (CHAC1) degradation of glu-
tathione enhances cystine starvation-induced ferroptosis in triple-negative breast cancer
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cells via the GCN2-eIF2α-ATF4 pathway [30]. Whether the abovementioned 8 genes play a
huge part in OS for breast cancer patients through ferroptosis remains to be illustrated.

The interrelation of ferroptosis and tumor immune microenvironment remains elusive.
To investigate the tumor immune microenvironment of breast cancer thoughtfully, we did
not only focus on the abundance of immune cells, but also pay attention to the activity of
immune response pathways. Therefore, we performed CIBERSORT to quantify the propor-
tions of immune cells and ssGSEA to assess the activity of immune response pathways. The
findings from CIBERSORT and ssGSEA displayed differently enriched immune cells and
immune pathways between the high- and low-risk groups—ssGSEA revealed the different
cell state in terms of activity levels of immune pathways, and CIBERSORT showed different
immune cell infiltration fractions of the 22 distinct leukocyte subsets. Comparing the tumor
immune microenvironment between the high- and low-risk groups, the high-risk group
had more immunosuppressive cells and higher activity of immunosuppressive pathways,
such as higher proportions of macrophage and Treg in the high-risk group. This finding
proves the reliability of our model. Thus, it is worth assuming that there is a close con-
nection between immunity and ferroptosis. Concerning the enrichment scores in ssGSEA,
aDCs, APC co-stimulation, inflammation promoting, macrophage, T cell co-inhibition, Th1
cells, Treg and type I IFN response were remarkably higher in the high-risk group in both
the TCGA-BRCA and the METABRIC cohorts. Increased macrophages or Treg cells have
been reported to be related to poor prognosis in hepatocellular cancer patients [31–33],
these two immune cells likewise increased in breast cancer patients in the high-risk group
according to our study. It has been reported that M1 macrophage was related to tumor re-
gression and inhibition of tumor growth. M1/Th1 responses are correlated with the release
of proinflammatory cytokines such as TNF and IFN-γ (i.e., type II IFN) [34]. In the present
study, the M1 macrophage, Th1 cells and inflammation promoting indeed had statistically
higher scores in the high-risk group from the TCGA-BRCA cohort. Interestingly, the high-
risk group had more tumor-inhibiting related cells (M1 and Th1), so it is reasonable to
presume high expression of ferroptosis-related genes may elicit antitumor innate immune
response, including the M1 polarization. One possible reason for poor prognosis in the
high-risk group with high scores of M1 may be the high M2/M1 ratio as M2 macrophages
have been shown to exhibit tumor-promoting ability via inducing angiogenesis factors [35].
Antitumor activity of type II IFN response decreased in the high-risk group in both cohorts,
which could be the reason for poor OS in the high-risk group.

Limitations of our study are as follows: first, only public databases were used in
this study, therefore, the use of the prognostic model in a real clinical setting remains
controversial. Second, this model only includes long-term survival as an indicator of
prognosis, short-term treatment response validation should be included as well. Third,
duo to the intrinsic nature of the public databases, meaningful clinical information like
chemotherapy history, tumor stage and metastatic lymph nodes were unavailable from
public resource, which may make TCGA-BRCA and METABRIC cohorts incomparable,
though we have tried to minimize the risk by multivariate cox regression analyses. In
addition, we eventually established an 8 ferroptosis-genes prognostic model rather than
those 3 prognostic differently expressed genes, which may have compromised the synergic
effect of other genes.

5. Conclusions

To sum up, a novel prognostic signature consisting of 8 ferroptosis-related genes was
established in the present study. In both derivation and validation cohorts, this signature
showed reliable ability in predicting overall survival and correlated with intratumor
microenvironment for breast cancer. Further investigation is needed in future research.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-773
7/10/2/151/s1, Table S1: 60 genes related to ferroptosis; Table S2: The annotated gene set file used
in ssGSEA.

https://www.mdpi.com/2079-7737/10/2/151/s1
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Figure A1. Construction of an 8-gene signature model in the TCGA-BRCA cohort. (a) LASSO coef-
ficient profiles of the expression of candidate genes. (b) Selection of the penalty parameter (λ) in the 
LASSO model via 10-fold cross-validation. The dotted vertical lines are plotted at the optimal values 
following the minimum criteria (left) and “one standard error” criteria (right). 
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Figure A1. Construction of an 8-gene signature model in the TCGA-BRCA cohort. (a) LASSO
coefficient profiles of the expression of candidate genes. (b) Selection of the penalty parameter (λ) in
the LASSO model via 10-fold cross-validation. The dotted vertical lines are plotted at the optimal
values following the minimum criteria (left) and “one standard error” criteria (right).
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