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Simple Summary: Non-small cell lung cancer (NSCLC) is a major contributor to cancer related
deaths worldwide. The progression of NSCLC is linked to epithelial-mesenchymal transition (EMT),
a biologic process that enables tumor cells to acquire an invasive phenotype and resistance to
therapies. Discovery of novel biomarkers in NSCLC progression is essential for improved prognosis
and pharmacological interventions. We performed an integrated bioinformatics analysis on available
gene expression datasets of transforming growth factor β (TGF-β) induced EMT in NSCLC cell lines
aiming to establish new prognostic biomarkers in the disease. The retrieved candidate genes were
involved in protein modifications, regulation of cell death and cell adhesions, oxidation-reduction
reactions of aerobic respiration and mitochondrial translation. Out of these genes, we identified ten
prognostic gene biomarkers, mostly involved in protein modifications, whose expressions correlated
with patient survival in NSCLC. This ten-gene prognostic signature will be useful to improve
risk prediction and guide treatment strategies in NSCLC. Deciphering the exact functions of the
biomarker genes previously not linked with NSCLC will also lead to a better understanding of the
pathomechanism of NSCLC progression, revealing novel therapeutic targets in the disease.

Abstract: The progression of non-small cell lung cancer (NSCLC) is linked to epithelial-mesenchymal
transition (EMT), a biologic process that enables tumor cells to acquire a migratory phenotype and
resistance to chemo- and immunotherapies. Discovery of novel biomarkers in NSCLC progression
is essential for improved prognosis and pharmacological interventions. In the current study, we
performed an integrated bioinformatics analysis on gene expression datasets of TGF-β-induced
EMT in NSCLC cells to identify novel gene biomarkers and elucidate their regulation in NSCLC
progression. The gene expression datasets were extracted from the NCBI Gene Expression Omnibus
repository, and differentially expressed genes (DEGs) between TGF-β-treated and untreated NSCLC
cells were retrieved. A protein-protein interaction network was constructed and hub genes were
identified. Functional and pathway enrichment analyses were conducted on module DEGs, and
a correlation between the expression levels of module genes and survival of NSCLC patients was
evaluated. Prediction of interactions of the biomarker genes with transcription factors and miRNAs
was also carried out. We described four protein clusters in which DEGs were associated with
ubiquitination (Module 1), regulation of cell death and cell adhesions (Module 2), oxidation-reduction
reactions of aerobic respiration (Module 3) and mitochondrial translation (Module 4). From the
module genes, we identified ten prognostic gene biomarkers in NSCLC. Low expression levels of
KCTD6, KBTBD7, LMO7, SPSB2, RNF19A, FOXA2, DHTKD1, CDH1 and PDHB and high expression
level of KLHL25 were associated with reduced overall survival of NSCLC patients. Most of these
biomarker genes were involved in protein ubiquitination. The regulatory network of the gene
biomarkers revealed their interaction with tumor suppressor miRNAs and transcription factors
involved in the mechanisms of cancer progression. This ten-gene prognostic signature can be useful
to improve risk prediction and therapeutic strategies in NSCLC. Our analysis also highlights the
importance of deregulation of ubiquitination in EMT-associated NSCLC progression.
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1. Introduction

Lung cancer is the leading cause of cancer-related deaths across the globe. Its high
mortality rate is due to advanced stages of the disease at the time of diagnosis [1,2]. Non-
small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases and
includes the histological subtypes of adenocarcinoma (LUAD), squamous cell carcinoma
(LUSC) and large cell carcinoma [3]. Long-term survival of patients diagnosed with either
subtype is poor due to local recurrence of the tumor and the development of metastatic
lesions after complete resection [4,5].

In NSCLC progression, epithelial-mesenchymal transition (EMT) has been described
as a key process, endowing cancer cells with enhanced motility, invasiveness, resistance
to apoptosis and acquisition of stem cell-like properties which further enhance tumor
survival [5–7]. Accumulating evidence has highlighted an association between EMT and
resistance to anti-cancer therapies [8,9]. Sustained by hypoxia and cellular stress, EMT is
induced by a plethora of signaling molecules, including epidermal growth factor (EGF),
hepatocyte growth factor (HGF) and fibroblast growth factor (FGF) [10–12].

Transforming growth factor beta (TGF-β) is considered one of the most potent inducers
of EMT, both in vitro and in vivo, exerting a critical tumor-promoting function in advanced
stages of NSCLC [13,14]. Secreted by both the cancer cells and the cellular components
of the tumor microenvironment, TGF-β also acts as a regulator of multiple biological
processes essential in NSCLC progression, including angiogenesis, immunoevasion and
immunosuppression [15,16]. While the effect of TGF-β is context dependent, acting as a
tumor suppressor at the early stages, its expression level correlates with tumor progression
and metastasis [17,18]. Genetic variations in the TGF-β1 signaling pathway can improve
prediction of overall survival of patients with NSCLC [19]. Moreover, a monoclonal
antibody against TGF-β1, 2 and 3 (fresolimumab), vaccines targeting TGF-β signaling
(LucanixTM, FANGTM), and a small molecule inhibitor of the TGF-β receptor I (galunisertib)
are in clinical trials for the treatment of NSCLC [20].

Attributed to the biological complexity and poor prognosis of the disease, not all pa-
tients who are positive for acknowledged biomarkers of NSCLC (e.g., mutated EGFR, ALK,
or ROS1) benefit from existing molecular therapies [21]. Therefore, integrated bioinfor-
matics analysis of available gene expression datasets on NSCLC meets the current clinical
needs for novel prognostic biomarkers that can inform therapeutic decision-making.

In a previous study, a 16-gene EMT signature was found inversely associated with
T-cell infiltration in NSCLC [22]. A TGF-β-induced EMT gene signature was also reported
to predict significantly worse metastasis-free survival of NSCLC patients [23]. High ex-
pression of EGFR- and EMT-related proteins was shown in the peripheral leading edge
of NSCLC samples and found associated with poor prognosis [24]. In our study, we
conducted an integrated bioinformatics analysis on available microarray datasets of TGF-
β-induced EMT in NSCLC cells, which increases statistical power and robustness of the
results retrieved. Our aim was to identify potential gene biomarkers strongly correlated
with the progression of NSCLC, informing overall survival, survival until first progression
and pots (first) progression survival of patients.

2. Methods
2.1. Data Sources and Search Strategy

The National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) database was searched using the keyword “epithelial-mesenchymal transition”.
Two authors (P.G. and K.S.K.) searched the database independently, and no language
restrictions were included for article retrieval. Studies were selected according to organism
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type (Homo sapiens), gene expression profiling (microarray), cancer type (NSCLC) and
in vitro treatment modality of EMT initiation (TGF-β supplementation).

2.2. Identification of Differentially Expressed Genes

Identification of differentially expressed genes (DEGs) from the pre-normalized pooled
microarray profiles of NSCLC cells with TGF-β treatment vs. untreated NSCLC cells was
performed using ImaGEO [25]. Integration of DEGs was conducted via the random effect
model which combines effect sizes across all datasets into a meta-effect size. Whilst
incorporating cross-study heterogeneity, DEGs with the strongest average effect across all
studies were identified. Genes with p < 0.05 corrected by the Benjamini-Hochberg (BH)
false discovery rate (FDR) were considered significant. DEGs were regarded upregulated
based on z > 1.96, while considered downregulated with z < −1.96 (both corresponding
to a 5% significance level). Across the gene expression datasets, the homogeneity and
heterogeneity magnitudes of each significant DEG were quantified using Cochran’s Q
test and Tau squared (τ2). DEGs based on PCochran’s Q > 0.05 and τ2 = 0 were considered
highly homogeneous.

2.3. GO Functional and KEGG Pathway Enrichment

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses of total and module DEGs were conducted using the ToppGene
Suite [26]. Functional enrichment was categorized into three groups of GO terms: biological
process (BP), molecular function (MF) and cellular component (CC). Enriched GO terms
and KEGG pathways with a p < 0.05, corrected by BH FDR, were considered significant.

2.4. Protein-Protein Interaction Network Construction and Module Analysis

Network construction of proteins encoded by the total DEGs with a probabilistic
confidence score > 0.4 was attained using the Search Tool for the Retrieval of Interacting
Genes and Proteins (STRING) database followed by visualization with Cytoscape [27,28].
Protein nodes lacking a connection in the network were excluded.

Protein-protein interaction (PPI) network-based clustered modules were retrieved
using the Molecular Complex Detection (MCODE) tool [29]. Modules with MCODE score
≥ 5.5 and nodes ≥ 5 were considered significant. Protein nodes with a higher number of
incident edges were regarded hubs according to a degree centrality index ≥ 11.0 using the
CentiScaPe plugin [30].

2.5. Construction of Gene Regulatory Network

Prediction of transcription factor and miRNA-gene interactions was obtained using
MSigDB and TargetScan [26,31,32]. A gene regulatory network (GRN) of the biomarkers,
depicting their interactions with transcription factors and miRNAs, was constructed using
Cytoscape [27]. Enriched transcription factors and miRNAs with a p < 0.01, corrected by
BH FDR, were considered significant.

2.6. Survival Analysis

Correlation between the expression levels of module genes and survival of patients
with NSCLC was evaluated using the Kaplan-Meier-plotter [33]. Gene expression profiles
of NSCLC tumor samples of 3251 patients from GEO, The Cancer Genome Atlas (TCGA)
and caArray databases were sourced to obtain and verify the prognostic values of the
module genes. Patients were divided into groups with high or low gene expression
based on auto-selected best cut-off whereby each possible cut-off between the lower and
upper quartiles was examined and the most robust threshold was selected. Module DEGs
associated with reduced survival until first progression, post (first) progression survival
and overall survival upon a log-rank test p < 0.001 and corrected p < 0.05 by BH FDR for
the patient cut-off selection method were considered significant and presented as potential
gene biomarkers in NSCLC progression.
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3. Results
3.1. Overview of the Datasets Included in the Analysis

From the GEO database, 430 EMT studies were retrieved, of which 185 microarray
studies were obtained having excluded other types of gene expression datasets. Further
exclusion based on cancer types resulted in 15 NSCLC studies. Exclusion based on treat-
ment modality yielded three independent gene expression studies of TGF-β-induced EMT
in NSCLC, incorporating the microarray datasets GSE17708, GSE42373 and GSE49644
(Figure 1) [34–37].
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Figure 1. Search strategy for the identification, screening and selection of eligible gene expression studies. Searching the
GEO yielded 430 studies which were screened by applying the indicated exclusion criteria. Three microarray datasets met
the search criteria for subsequent integrated bioinformatics analysis of TGF-β-induced EMT in NSCLC cells.

All three gene expression studies used the A549 cell line, and one also included the
HCC827 and NCI-H358 cell lines, all LUAD, the most common subtype of NSCLC, and
responsive to TGF-β (Table 1). In one study, TGF-β treatment was preceded by TNF-α
treatment to initiate EMT. The duration of TGF-β treatment varied across the studies,
ranging from 0.5 h to 3 weeks (Table 1).
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Table 1. Description of the microarray datasets selected for the analysis.

GEO Dataset ID GSE17708 GSE42373 GSE49644

References Sartor et al., 2010
[34]

Cieślik et al., 2013
[35]; Wamsley et al.,

2015 [36]

Sun et al., 2014
[37]

Cell lines A549 A549 A549, HCC827,
NCI-H358

Histopathology classification LUAD (NSCLC)

EMT inducer TGF-β1 TGF-β1 * TGF-β **

Treatment
Concentration 5 ng/mL 2 ng/mL 2 ng/mL

Duration 0.5–72 h 48 h 3 weeks

Platform GPL570

Number of control samples 3 4 9

Number of test samples 23 4 9

* Pre-treated with TNF-α (10 ng/mL) for 48 h; ** TGF-β subtype (1/2/3) unspecified.

3.2. Identification of Functions and Pathways in NSCLC Progression

The pre-normalized microarray datasets were subjected to a significance analysis
using the random effect model to reveal genes with significantly altered expressions
between the test (TGF-β-treated) and the control (untreated) NSCLC cell samples. A
total of 725 DEGs were obtained, among which 566 were highly homogenous. Of these,
215 genes were upregulated (z > 1.96) and 351 genes were downregulated (z < −1.96)
(Figure S1, Tables S1 and S2).

The upregulated genes were associated with regulation of morphogenesis, cellular
response and differentiation (BP enrichment), focal adhesion and cell junctions (CC en-
richment) and SMAD and cytoskeletal protein binding (MF enrichment). KEGG pathway
mapping revealed an association of the upregulated genes with proteoglycans and path-
ways in cancer (Figure 2A). The downregulated genes were linked with metabolic and
oxidation-reduction processes (BP), the mitochondrion (CC) and oxidoreductase activity
(MF). Pathway enrichment connected the downregulated genes with metabolic pathways
(Figure 2B). The upregulated genes point to the morphological changes NSCLC cells un-
dergo to gain a mesenchymal phenotype, while the downregulated genes indicate that a
complex metabolic rewiring is taking place in EMT, consistent with increasing evidence
from recent studies [38].

3.3. Protein-Protein Interaction Network and Module Genes in NSCLC Progression

A network was constructed based on predicted interactions between proteins en-
coded by the DEGs. A total of 541 nodes and 1263 edges were obtained with a combined
score > 0.4, including 170 upregulated and 286 downregulated genes (Figure S2). Among
these, 60 hub gene candidates with a degree centrality index of ≥11.0 were identified. The
complete PPI network was divided into highly dense clustering modules. Among the total
14 modules retrieved, four significant modules with MCODE score ≥ 5.5 and nodes ≥ 5
were identified and the fold changes (z-scores) of DEGs indicated (Figure 3, Table S3).
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Figure 2. GO functional and KEGG pathway enrichment of DEGs in NSCLC cells undergoing EMT. Functional enrichment
of DEGs was categorized into three groups of GO terms: biological process (BP), cellular component (CC) and molecular
function (MF). The significance threshold was set to p < 0.05, corrected by BH FDR. (A) The upregulated genes were
involved in morphogenesis, cell adhesions, SMAD and cytoskeleton binding, and associated with cancer pathways. (B) The
downregulated genes were linked with metabolic processes, the mitochondrion, oxidoreductase activity and metabolic
pathways. (1) Acting on a sulfur group of donors, NAD(P) as acceptor; (2) Acting on NAD(P)H; (3) Acting on the aldehyde
or oxo group of donors, disulfide as acceptor; (4) Acting on a sulfur group of donors.
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clustered modules were retrieved and clustering modules with a combined node interaction score of > 0.4 and MCODE
score ≥ 5.5 and nodes ≥ 5 are displayed. Red indicates upregulated and green shows downregulated node genes. Larger
nodes show hub genes with a centrality degree of ≥12.0. Module 1 (score = 12.154), Module 2 (score = 6.000), Module 3
(score = 5.000) and Module 4 (score = 5.000).

Functional GO enrichment of the four modules revealed that Module 1 was involved
in protein modification and ubiquitination via, e.g., the Cullin-RING (CLR) and Skp, Cullin,
F-box (SCF) ubiquitin ligase complexes (Figure 4A). Module 2 related to regulation of
programmed cell death, morphogenesis, cell adhesions, SMAD and phosphatase binding
(Figure 4B). Module 3 was associated with generation of energy/aerobic respiration, the
mitochondrial matrix and oxidoreductase activity (Figure 4C). Module 4 was connected
with mitochondrial translation and the mitochondrial ribosome (Figure 4D). KEGG path-
way enrichment of the modules revealed that Module 2 was associated with pathways in
cancer, including the Hippo signaling pathway, while Module 3 was involved in glycolysis,
pyruvate metabolism and the tricarboxylic acid (TCA) cycle (Figure 4B,C).
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Figure 4. GO functional and KEGG pathway enrichment of clustering module DEGs in EMT of NSCLC cells. Functional
enrichment of DEGs was categorized into three groups of GO terms: biological process (BP), cellular component (CC)
and molecular function (MF). The significance threshold was set to p < 0.05, corrected by BH FDR. (A) Module 1 was
involved in protein modification and ubiquitination. (B) Module 2 was linked with regulation of programmed cell death
and morphogenesis, cell adhesions and pathways in cancer. (C) Module 3 was associated with aerobic respiration, the
mitochondrial matrix, and pathways in glycolysis, pyruvate metabolism and the TCA cycle. (D) Module 4 related to
mitochondrial translation and the mitochondrial ribosome.
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3.4. Prognostic Gene Biomarkers in NSCLC

The prognostic value of potential biomarkers in the module gene sets was determined
using gene expression profiles of NSCLC tumor samples from 3251 patients (Table S4). Low
expression levels of nine genes, including forkhead box A2 (FOXA2), potassium channel
tetramerization domain containing 6 (KCTD6), kelch repeat and BTB domain containing
7 (KBTBD7), dehydrogenase E1 and transketolase domain containing 1 (DHTKD1), LIM
domain 7 (LMO7), pyruvate dehydrogenase E1 beta subunit (PDHB), splA/ryanodine
receptor domain and SOCS box containing 2 (SPSB2), E-cadherin (CDH1) and ring fin-
ger protein 19A (RNF19A), and high expression level of the kelch-like family member
25 (KLHL25) were associated with significantly reduced overall survival (Table 2, Figure 5).

Table 2. Prognostic gene biomarkers in NSCLC, ranked according to their z-scores.

Gene (DEG) Gene/Protein Function * Module FDR ** Z-Score

KLHL25
Substrate-specific adapter of a BCR E3 ubiquitin

ligase complex, required for translational
homeostasis

1 6.58 × 10−3 4.024

FOXA2

Transcription factor, involved in embryonic
development and regulation of gene expression in
differentiated tissues; inhibitor of EMT (Tang et al.,

2011)

2 1.69 × 10−4 −5.316

KCTD6 Substrate-specific adapter of a BCR E3 ubiquitin
ligase complex; downregulates HDAC1 1 2.23 × 10−3 −4.557

KBTBD7 Transcriptional activator, regulates the ubiquitination
of a regulator of RAC1 1 2.30 × 10−3 −4.541

DHTKD1

Component of a mitochondrial
2-oxoglutarate-dehydrogenase-complex-like protein,
catalyzes the overall conversion of 2-oxoglutarate to

succinyl-CoA and CO2

2 5.60 × 10−3 −4.117

LMO7
Involved in protein ubiquitination and

post-translational protein modification, regulates cell
adhesion and signaling

1 1.19 × 10−2 −3.758

PDHB

Component of the pyruvate dehydrogenase complex,
catalyzes the overall conversion of pyruvate to

acetyl-CoA and CO2, linking glycolytic pathway to
TCA cycle

3 1.72 × 10−2 −3.589

SPSB2
Substrate recognition component of an ECS E3

ubiquitin ligase complex, responsible for
proteasomal degradation of proteins

1 2.07 × 10−2 −3.495

CDH1
E-cadherin, calcium-dependent intercellular
adhesion molecule; the loss of its function is

associated with carcinoma progression
2 3.20 × 10−2 −3.267

RNF19A E3 ubiquitin ligase, specifically ubiquitinates
pathogenic superoxide dismutase 1 (SOD1) variants 1 4.77 × 10−2 −3.075

* Sources: UniProt database https://www.uniprot.org/ (accessed on 11 May 2021) and NCBI Gene database https://www.ncbi.nlm.nih.
gov/gene/ (accessed on 11 May 2021); ** p < 0.05 corrected by BH FDR.

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/
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Figure 5. Prognostic value of genes associated with EMT in NSCLC. Kaplan-Meier association between the expression
levels of module DEGs and overall survival of patients with NSCLC (n = 1144) is displayed. Significance thresholds for
potential gene biomarkers include a log-rank test p < 0.001 and a corrected p < 0.05 by BH FDR for the patient cut-off
selection method. Low expression levels of CDH1, LMO7, PDHB, KBTBD7, RNF19A, KCTD6, DHTKD1, SPSB2 and FOXA2
while high expression level of KLHL25 were associated with reduced overall survival.
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Low expression levels of CDH1, LMO7, PDHB, RNF19A and FOXA2 and high ex-
pression level of KLHL25 were associated with reduced survival until first progression
(Figure S3). Low expression levels of PDHB, KBTBD7, RNF19A, KCTD6 and FOXA2 were
linked to decreased post-progression survival (Figure S4).

Most of the gene biomarkers (KLHL25, KCTD6, KBTBD7, LMO7, SPSB2 and RNF19A)
were associated with ubiquitination (Table 2), suggesting an important role of the process
in NSCLC progression.

3.5. Gene Regulatory Network of the Proposed Gene Biomarkers

To shed light on the regulation of the gene biomarkers, an interaction network of
the biomarker DEGs with transcription factors and miRNAs was constructed. Tumor
suppressor miRNAs, including the let-7 and miR-26 family members [39–41] were found
to be prominent in the regulation of PDHB (Figure 6). Two of the PDHB-interacting
miRNAs, miR-200a-3p and miR-141-3p [42,43], were also involved in the regulation of
FOXA2. DHTKD1 was found interacting with the tumor suppressive miR-29 family
members [44–46]. These miR-29 family members appeared to also regulate KLHL25, and
one of them, miR-29b-3p, was interacting with RNF19A too (Figure 6).
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Figure 6. Gene regulatory network of the proposed gene biomarkers in NSCLC progression. A gene regulatory network for
the biomarkers was constructed, and enriched transcription factors and miRNAs with a p < 0.01, corrected by BH FDR,
were considered significant. Transcription factors associated with tumor progression and tumor suppressor miRNAs were
found involved in the regulation of the gene biomarkers.

Transcription factors associated with various mechanisms of lung cancer progression
were also involved in the regulation of the biomarker genes [47–50]. SP1 was found
regulating FOXA2, SPSB2 and KLHL25. NFAT, ERR1, LEF1 and MAZ were linked with
the downregulated gene biomarkers only, and STAT5B was the only transcription factor
associated with the regulation of CDH1 (Figure 6). No connection of the biomarker genes
with EMT transcription factors (EMT-TFs) such as SNAIL, SLUG or TWIST was revealed in
our analysis.
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4. Discussion

Our integrated bioinformatics analysis on microarray datasets of TGF-β-induced EMT
in NSCLC cells revealed four significant protein clusters within the 215 upregulated and
351 downregulated DEGs. These modules were associated with protein ubiquitination
(Module 1), morphogenesis and cell adhesions (Module 2), oxidoreductase activity of
aerobic respiration (Module 3) and mitochondrial translation (Module 4) confirming the
significance of these processes in the regulation of EMT.

We found ten genes correlated with overall survival of patients with NSCLC, and only
one of them (CDH1) was a canonical EMT-marker. Low expressions of nine gene biomarkers
were associated with decreased survival. Most of them, including KCTD6, KBTBD7,
LMO7, SPSB2 and RNF19A were Module 1 genes, involved in protein modifications and
ubiquitination [51–55].

In an earlier study, KBTBD7 which regulates extracellular-cytoskeletal signal trans-
duction, appeared to be protective in early-stage NSCLC as one of an 8-gene prognostic
signature [55,56]. LMO7 which regulates the actin cytoskeleton and adherens junctions,
was described to be downregulated in malignant lung tissue, and LMO7 deficiency was
found associated with genetic predisposition to lung cancer [51,57].

The downregulation of FOXA2, DHTKD1 and CDH1, involved in embryonic devel-
opment, oxidation reactions and intercellular adhesions, respectively, were also linked to
worse prognosis of NSCLC patients in our study.

FOXA2 was reported to inhibit EMT and suppress metastasis in human lung cancer
cell lines via repressing the SLUG promoter [58]. Loss of FOXA2 expression was found
frequent in lung cancer cell lines and NSCLC tumor samples [59].

So far, no correlation of DHTKD1 (component of a mitochondrial 2-oxoglutarate-
dehydrogenase-complex) expression with survival of NSCLC patients has been described.
In breast carcinoma, differential DNA methylation between tumors and normal tissues
was found correlated with the expression level of DHTKD1 [60].

CDH1, a tumor suppressor gene encoding E-cadherin, plays a crucial role in main-
taining intercellular junctions in the epithelium [61]. In an earlier study, downregulation
of E-cadherin was found to promote EGFR transcription in NSCLC [62]. In NSCLC pa-
tients, the mRNA level of the Wilms tumor gene (WT1) was reported to be negatively
correlated with that of CDH1 and was associated with pathological stage, metastasis, and
survival rate [63]. High E-cadherin and low vimentin expression was linked to better
overall survival of NSCLC patients [64].

PDHB, the mitochondrial pyruvate dehydrogenase E1 component subunit beta, a
Module 3 gene in our study, catalyzes the decarboxylation of pyruvate to acetyl-CoA,
linking the glycolytic pathway to the TCA cycle [65]. PDBH was described as a biomarker
within energy metabolism heterogeneity of ovarian cancer cells for the diagnosis and
prognosis of ovarian cancer [66]. We found the downregulation of PDHB linked to worse
prognosis in NSCLC.

In our integrated bioinformatics analysis, KLHL25 was the only gene whose high
expression was associated with a significantly reduced overall survival of NSCLC patients,
thus representing an unfavorable prognostic marker in NSCLC progression.

KLHL25, a member of the Kelch-like (KLHL) gene family, a substrate-specific adaptor
in the cullin-3 (Cul3)-dependent ubiquitin ligase complex, is required for eukaryotic trans-
lational control [67]. Mutations in four of the Kelch-family members have been linked to
cancer [68]. However, the exact mechanism how KLHL25 contributes to NSCLC progression
warrants further investigations.

Although we found key members of the zinc-finger transcription factor family upregu-
lated in TGF-β-induced EMT in NSCLC cells (ZEB1, z-score = 4.40 and adj. p = 1.09 × 10−5;
SNAI2, z-score = 3.07 and adj. p = 4.83 × 10−2), binding motifs of EMT-TFs were not
significantly enriched in the gene regulatory network, suggesting no direct interaction of
EMT-TFs with CDH1 or the other proposed gene biomarkers in NSCLC progression. Our
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findings are consistent with recent evidence showing that EMT-TFs also act via indirect
mechanisms to downregulate E-cadherin and induce EMT and NSCLC progression [69,70].

Overall, to clarify the role of our biomarker genes and their regulation in NSCLC
progression, further validation and functional studies are required. The limitation of our
study is the lack of such biological experiments.

Of the gene biomarkers we propose in NSCLC progression, KBTBD7 has already been
described as a favorable prognostic indicator in NSCLC [55,56]. An association between the
deficiency of LMO7 and genetic predisposition to lung cancer has also been reported [57].
Moreover, CDH1 and FOXA2 are linked to each other in carcinoma progression, evidenced
by the loss of silencing FOXA2 leading to E-cadherin downregulation, EMT and metasta-
sis [71,72]. However, most of the gene biomarkers we put forward have not been linked to
NSCLC prognosis so far.

Our results also reveals that deregulation of protein ubiquitination has an important
function in EMT-associated NSCLC progression. Furthermore, deciphering the function of
KLHL25 in the pathomechanism of NSCLC may lead to new therapeutic targets.

5. Conclusions

Genes regulated during EMT of NSCLC cells are closely linked to NSCLC progression.
The ten prognostic gene biomarkers we obtained via an integrated bioinformatics analysis
of EMT-associated gene expression data can provide improved risk prediction and lead to
new therapeutic targets in NSCLC.
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