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Abstract: The bending performance of a basalt-polypropylene fiber-reinforced concrete (HBPFRC)
was characterized by testing 24,400 × 100 × 100 mm3 prismatic specimens in a four-point bending
test JSCE-SF4 configuration. The type and content of both fibers were varied in order to guarantee
different target levels of post-cracking flexural performance. The results evidenced that mono-micro
basalt fiber reinforced concrete (BFRC) allows the increase of the flexural strength (pre-cracking
stage), while macro polypropylene fiber reinforced concrete (PPFRC) can effectively improve both
bearing capacity and ductility of the composite for a wide crack width range. Compared with the
plain concrete specimens, flexural toughness and equivalent flexural strength of macro PPFRC and
the hybrid fiber-reinforced concrete (HFRC) increased by 3.7–7.1 times and 10–42.5%, respectively.
From both technical and economic points of view, the optimal mass ratio of basalt fiber (BF) to
polypropylene fiber (PPF) resulted in being 1:2, with a total content of 6 kg/m3. This HFRC is seen
as a suitable material to be used in sewerage pipes where cracking control (crack formation and
crack width control) is of paramount importance to guarantee the durability and functionality of the
pipeline as well as the ductility of the system in case of local failures.

Keywords: basalt-polypropylene fiber-reinforced concrete; flexural performance; residual strength;
optimal ratio

1. Introduction

It is well known that concrete is one of the most widely used civil materials for various
engineering applications, such as hydraulic engineering, architectural engineering, road
and bridge engineering. However, the concrete used in engineering usually had a large
number of cracks, thus making the concrete brittle and subject to varying degrees of
damage under external loads [1]. For the safety and reliability of concrete structures, higher
requirements should be put forward for the energy dissipation capacity of concrete. FRC
not only improves the brittleness of concrete but also significantly enhances the toughness
and energy dissipation capacity of concrete [2–5]. Thus, FRC has become a widely used
composite building material [6,7].

At present, many countries in the world have successively established the standard
test methods for testing the bending performance of fiber reinforced concrete, such as
JSCE-SF4 [8], ASTM C1018 [9] and CECS 13:2009 [10]. These standards provide a precise
calculation method for the flexural strength, flexural toughness index and energy absorp-
tion of fiber reinforced concrete materials. Table 1 gathers relevant references related to the
flexural characterization of FRCs with different types of fibers and amounts.
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Table 1. Studies on the flexural performance of fiber reinforced concrete.

Type of
Fibers Φf/λf Volume of Fibers (%) fc (MPa) Height × Width ×

Length (mm3) Author

SF; MSF SF: 50; MSF: 48–158 0.22–0.74 40.9–50.2 150 × 150 × 550 Buratti et al. [11]
SF 37.5–81.3 8 200 100 × 100 × 500 Nicolaides and Markou [12]

SF; PFF SF: 83; MSF: / SF: 0.51; PFF: 0.51 52.2 150 × 150 × 600 Pujadas et al. [13]
PFF 64.5 0.33, 0.49, 1.10 28–31 100 × 100 × 430 Enfedaque et al. [14]

SF; PPF SF: 40, 60, 80; PPF: 280 SF: 0.5, 1.0, 1.5, 2.0; PFF: 0.1,
0.15, 0.2 47.5–58.1 100 × 100 × 400 Li et al. [15]

SF 37.5 1.78 82.1 100 × 100 × 350 Mínguez et al. [16]
SF; PVAF SF: 56; PVAF: 308 SF: 0.5, 1.0, 1.5; PFF: 0.5, 1.0, 1.5 / 100 × 100 × 400 Liu et al. [17]

SF 65 0.26, 0.52, 0.77 21.3–28.1 150 × 150 × 600 Carrillo et al. [18]
SF 65 1, 2, 2.5, 7 152.1 40 × 40 × 160 Ferdosian and Camões [19]

SF; PPF SF: 40; PPF: 200 SF: 2.0, 2.5, 3.0; PFF: 0.12, 0.17,
0.22 60.1–66.1 100 × 100 × 400 Guo et al. [20]

SF 80 0.075; 0.1 / 150 × 150 × 550 Meng et al. [21]

Note: SF means steel fiber; MSF means macro-synthetic fibers; PFF means polyolefin fiber; PVAF means polyvinyl alcohol fiber; fc means
compressive strength; / means lack of information; Φf/λf means aspect ratio.

Table 1 allows confirming that there exists extensive research on flexural performance
of fiber reinforced concrete and that this topic is of interest from both scientific and indus-
trial perspective. The general conclusion that can be extracted from the previous research
is that the use of steel, polyolefin and/or polypropylene fibers, can largely improve the
flexural performance of concrete. The mechanical properties of concrete reinforced with
different types of hybrid fibers, which is termed hybrid FRC (HFRC), are usually supe-
rior to that of concrete reinforced with mono-fiber [22–25], HFRC is produced to achieve
overall improvement both in energy absorption capacity and tensile strength. It is well
known that coarse and long fibers control the propagation of macro-cracks and improve
the toughness at the post-crack region [26,27], while micro and short fibers bridge the
micro-cracks, thereby enhancing the peak strength [28]. So, the combination of different
lengths, diameters and elastic modulus of fibers are often adopted by researchers [29–31].
An example of HFRC is the hybrid steel-polypropylene fibers (see Table 1), which are also
used and confirmed to have obtained good hybrid effects [32–35]. However, steel fiber is
easy to corrode, which is not conducive to the long-term stability of the structure. Moreover,
the incorporation of steel fiber will not only reduce the workability of concrete but also
increase the weight of concrete [36,37]. Therefore, under certain environmental conditions
(such as an acidic environment), it is necessary to use corrosion-resistant material instead
of steel fiber to improve the flexural performance of concrete.

A suitable material to substitute steel fiber is BF, which is characterized by good
temperature stability, high tensile strength, strong corrosion-resistance, good deformation
performance, low price, safe and environmental protection, etc. [38–40]. In addition, it
has been confirmed that HBPFRC can show excellent crack propagation inhibition, fire
resistance and flexural performance [41–45]. However, in the above studies, PPFs are all
fine fibers, while the previous study [46] has shown that the improvement effect of macro
PPFs on the bending properties of concrete is significantly superior to that of micro PPFs.

Therefore, micro BF and macro PPF are selected to be mixed into the concrete matrix
to produce HBPFRC specimens. Furthermore, according to the Code CECS 13:2009 [10], the
flexural performance of HBPFRC specimens was investigated by the four-point bending
tests. This paper studies the flexural properties of HBPFRC, which indicates that this HFRC
composite is a suitable material to be used in structures, such as sewerage pipes, where
cracking control is of vital importance to guarantee the durability and functionality of the
pipeline as well as the ductility of the system in case of local failures.

2. Materials and Methods
2.1. Test Material

The cement adopted in this test is Portland cement P.O.52.5. The coarse aggregate used
were stones with grain sizes of 10–20 mm and 5–10 mm, while the fine aggregates were
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sands of dimensions less than 5 mm. In addition, a commercially available polycarboxylic
acid superplasticizer was adopted to improve concrete workability, and the water reducing
rate of it is 28%. The concrete mix proportion is shown in Table 2.

Table 2. Concrete mix proportion.

Materials Mass (kg/m3)

Cement 375
Coarse aggregate 10~20 mm 545
Coarse aggregate 5~10 mm 545

Sand 850
Water 135

Water reducer 3.75

The fibers used in this test are macro PPF with a wavy surface and micro BF with a
smooth surface, as shown in Figure 1 [47].
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Figure 1. External shapes of fibers. (a) PPF; (b) BF [47]. (Reprint with permission [47]; 2021, Wiley).

In addition, the properties of the selected fibers are shown in Table 3.

Table 3. Properties of the selected fibers [47]. (Reprint with permission [47]; 2021, Wiley).

Fiber Type BF PPF

Diameter (mm) 0.013 0.8
Length (mm) 19 50

Tensile strength (MPa) 3300–4500 706
Aspect ratio 1460 63

Density (g/cm3) 2.75 0.95
Elongation (%) 2.4–3.0 10

Elastic modulus (GPa) 95–115 7.4
Shape straight corrugated

2.2. Test Material Preparation

There are eight groups of HBPFRC with different fiber content, including two groups
of mono-fiber, five groups of hybrid basalt-polypropylene fiber as well as one control
group (no fiber). Details of each group specimen for the flexural bending test are shown in
Table 4.



Fibers 2021, 9, 43 4 of 15

Table 4. Details of each group specimen.

Specimen The Fiber Content in kg/m3 (% in Volume)

BF PPF

B0.0P0.0 0.0 (0%) 0.0 (0%)
B0.0P6.0 0.0 (0%) 6.0 (0.63%)
B6.0P0.0 6.0 (0.22%) 0.0 (0%)
B1.2P4.8 1.2 (0.04%) 4.8 (0.51%)

B2P4 2.0 (0.07%) 4.0 (0.42%)
B3.0P3.0 3.0 (0.11%) 3.0 (0.32%)
B4.0P2.0 4.0 (0.15%) 2.0 (0.21%)
B4.8P1.2 4.8 (0.17%) 1.2 (0.13%)

As shown in Table 4, fiber contents ranged between 0 and 6 kg/m3. Amount of
4 kg/m3 of PPFs was considered the lower bound to provide ductility of the composite
respect the unreinforced concrete [48,49] whilst 6 kg/m3 was fixed as an upper bound since
higher amounts may compromise the workability and the finishing [50–54]. The select of
ratio between fiber content of BF and PPF referred to the previous research results [47,53,54].

The mixability of fiber is very important to improve the performance of fiber reinforced
concrete. In order to make the fibers evenly distributed into the concrete, referring to
relevant specification and literature [10,47], the mixing process adopted in this experiment
is as follows: (1) Pour the pre-weighted coarse and fine aggregates into the forced mixer
and mix the materials for 1 min. (2) Evenly scatter the macro PPF and BF into the mixer, and
the mixing process still lasted for 2 min after the fibers are all put into the mixer. (3) Pour
the cement into the mixer and start mixing for 1 min. (4) Pour the water and water reducer
slowly and evenly into the mixer and keep mixing for minutes. (5) Pour out the mixture
and then pour them into the mold to produce HBPFRC specimens. Part of the production
and curing procedures of HBPFRC specimens are shown in Figure 2.
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In this test, each group contained three replicate specimens. According to CECS
2009 [10], a total of 24 concrete specimens with a length × width × height of 400 mm ×
100 mm × 100 mm were produced, and the four-point bending test was conducted after
28 days of curing.

2.3. Experimental Test Method

The four-point bending test was conducted to measure the flexural bending per-
formance of concrete. The test device was the INSTRON−1346 hydraulic servo testing
machine system. YOKE method is used to measure the deflection of beams [8]. Displace-
ment control was adopted for continuous loading in the test, and the loading rate was
0.1 mm/min. After the deflection of the specimen reached 4 mm, the test was stopped. The
test process was shown in Figure 3.
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3. Test Results
3.1. Failure Modes

As the failure modes of each group of HBPFRC specimens are similar, the failure
modes of B2P4 are selected to represent that of the other HBPFRC specimens. The failure
modes of the control group specimen, the mono FRC specimen and the HBPFRC specimen
are shown in Figure 4a–d.
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For the control group specimen B0P0 and the mono-basalt FRC specimen B6P0, the
crack rapidly expands to the top of the specimen and runs through the entire section after
it appears. Thus, the concrete was pulled apart. It shows that the failure modes of both
B0P0 and B6P0 are characterized by brittle failure (see Figure 4a,c), although B6P0 shows a
little higher flexural strength. It can be seen that the addition of mono-BF won’t improve
much of the brittleness of concrete. However, for the mono-polypropylene FRC specimen
B0P6 and HBPFRC specimen B2P4, after the crack appears, it first rapidly expands to about
2/3 the height of the section. Then, it slowly expands towards the top of the specimen,
but it did not run through the entire section during the whole test. The macro PPF in the
specimen plays a significant role in bridging; thus, the beam can still show a certain bearing
capacity and a long load-bearing time after the crack appears. It shows that the failure
modes of both B0P6 and B2P4 change from the sudden brittle failure of plain concrete to
ductile failure (see Figure 4b,d). It can be seen that the addition of macro PPF will largely
improve the brittleness of concrete.

3.2. Load-Deflection Curve

The load-deflection curves of each group of HBPFRC specimens are shown in Figure 5a–g.
According to Figure 5a–g, it can be seen that for the control group specimen B0P0 and the
mono-basalt FRC specimen B6P0, the load of which immediately decreased to zero after it
reached the peak value. B0P0 and B6P0 showed obvious brittleness, and they fractured
into two parts in the middle. However, compared with B0P0, the descending stage of B6P0
was relatively slow, indicating the brittleness of concrete is somewhat improved due to the
addition of mono-BF.

As for the specimens with macro PPF, although the bearing capacity of these specimens
will drop instantly after reaching the peak load, they still maintain a certain residual
strength and will not break during the whole test process. It was found that the macro
PPF was continuously pulled out and broken during the loading process, which reflected
the noticeable bridging effect of the fiber. The descending stage of the load-deflection
curves fluctuated to some extent locally due to the pulled out and broken of fibers. Still,
the curves were generally gentle, and even the phenomenon of secondary peak appeared
in different degrees. Among them, the secondary peak values of B0P6 and B2P4 were
particularly apparent (see Figure 5b–e). It can be seen that the addition of macro propylene
fiber significantly improves the bending performance of concrete specimens.
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3.3. Flexural Strength

The peak load of each group specimen is extracted, and then the flexural strength of
concrete is calculated by Equation (1):

fb =
P·L
b·h2 (1)

where fb is the flexural, MPa; P is peak load, N; L is the span of the specimen, mm; b is the
section width of the specimen, mm; H is the height of the specimen section, mm.

The flexural strengths of FRC specimens in this test are shown in Figure 6.
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As shown in Figure 6, the flexural strength of the control group specimen B0P0 is
4.0 MPa, while the flexural strength of the mono-basalt FRC specimen B6P0 is 4.4 MPa,
increased by 10%. As for the flexural strength of the mono-macro polypropylene FRC
specimen B0P6, it increases to 5.2 MPa with a growth rate of 30%. It can be seen that the
improvement effect of macro PPF on the flexural strength of concrete specimens is more
significant than that of BF. Among the HBPFRC specimens, when the mass ratio of BF
to macro PPF is 1:2, the flexural strength of the specimen B2P4 reached 5.7 MPa, and the
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flexural strength increased the most, reaching 42.5%. This may be due to the good hybrid
effect of BF and macro PPF with this hybrid ratio.

3.4. Flexural Toughness

Flexural toughness (Tb) is used to describe the energy absorption capacity of concrete
quantitatively. The flexural toughness evaluation method suggested by JSCE-SF4 [8] is
adopted in this paper, which does not need to determine the deflection of the initial crack
point, and the unstable section of the curve has little influence on it. Flexural toughness
is defined as the envelope area of the load-deflection curve under deflection from 0 mm
to 1/150 L (2 mm). Because control group specimens and mono-basalt FRC specimens
showed brittle failure during the loading process, the flexural toughness of which are
calculated by the envelope area of all load-deflection curves according to the literature [55].
Figure 7 shows the flexural toughness of different concrete specimens.
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It can be seen from Figure 7 that the flexural toughness of the control group specimen
B0P0 is only 2.0 J, while the flexural toughness of the mono-basalt FRC specimen B6P0 is
3.0 J, increasing by 50%. The flexural strength of mono-macro PPFRC (B0P6) is 13.3 J, which
is 5.65 times higher than that of the control group. Compared with BF, the macro PPF has a
more significant effect on improving the flexural strength of concrete. Among the HBPFRC
specimens, the flexural toughness of B4.8P1.2 is the lowest, but it is still 4.25 times higher
than that of the control group specimen B0P0. When the mass ratio of BF to PPF is 1:2, the
flexural toughness of the specimen B2P4 reached 22.4 J, and it increased by 10.2 times. In
conclusion, the flexural toughness of PPF reinforced concrete specimen is better than that
of BF reinforced concrete specimen. Because of the fiber mixing effect, the specimens with
mixed fiber reinforced concrete can show much better flexural performance than that of
the specimens reinforced by mono-macro fiber when the mixing ratio of BF to PPF is 1:2.

Furthermore, the equivalent flexural strength and the percentage of equivalent flexural
strength of each group were calculated according to the following Equations (2) and (3),
respectively.

fe =
Tb
δtb

· L
b·h2 (2)

λe = fe/ fb (3)

where fe is equivalent flexural strength, MPa; δtb is mid-span deflection, mm; λe is the
percentage of equivalent flexural strength. The equivalent flexural strength and Equivalent
flexural strength ratio of each group are shown in Figures 8 and 9, respectively.
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As shown in Figures 7 and 8, the equivalent flexural strength and flexural toughness
of each group of specimens show a consistent variation trend. This is due to that the
equivalent flexural strength is just the flexural toughness multiplied by 1

δtb
. L

b.h2 , and for
the specimen of the same size, the value is constant [55]. As shown in Figure 9, there is a
certain difference between the variation trend of equivalent flexural strength and that of
equivalent flexural strength ratio. For instance, the equivalent flexural strength of B6P0
is 10.2%, which is only 36% higher than that of the control group B0P0. However, the
equivalent flexural strength ratios of specimens containing macro polypropylene were all
above 30%, which were at least 3.3 times higher than that of the control group. Among
the HBPFRC specimens, when the mass ratio of BF to PPF is 1:2, the equivalent flexural
strength ratio of the specimen B2P4 is the largest, which is 7.1 times higher than that of the
control group.

4. Discussion
4.1. Analysis of the Mechanism of Hybrid Fibers

This study shows that the hybrid of fibers in concrete can effectively improve the
brittleness of concrete, and the HBPFRC specimens show better flexural ductility than that
of plain concrete specimens, which can be attributed to that the fiber can improve various
original defects in the concrete matrix and inhibit the development of cracks in loading
stage [46]. The role of fiber in improving the bending performance of concrete specimens is
played throughout the whole process, from the pouring of concrete and the failure of it.
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In the casting stage, during the hardening process of the concrete matrix, the existence
of fiber can restrain the micro-cracks caused by plastic shrinkage and temperature defor-
mation, which not only reduces the number of cracks but also reduces the size of cracks.
So, it is beneficial to reduce the stress intensity factor at the crack tip. At the loading stage
of the specimens, the fiber dissipates the stress concentration at the crack tip, thus limiting
the crack propagation. Micro BF and macro PPF play different roles in different stages.

BFs are randomly distributed in the concrete matrix, and these play a favorable role
in connecting internal macrocracks. At the same time, due to the extremely high elastic
modulus of BF, it can withstand greater tensile stress under smaller strain conditions.
Before the appearance of macro-cracks, it requires a large amount of energy to break itself
during the expansion process of micro-crack, so that the micro BF can improve the bending
performance of concrete. However, due to the low fracture elongation rate of BF, the BF
will be immediately broken or pulled out once the macro-crack appears. So the mono
addition of BFs cannot effectively improve the brittleness of concrete. As for the macro PPF,
it plays a bridging role and shares the load borne by the concrete matrix in the process of
crack evolution from micro-crack to macro-crack. Figure 10 is a schematic diagram of the
bridging action of macro PPF.
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Figure 10. Schematic diagram of the bridging action of macro PPFs.

As shown in Figure 10, in the process of the crack extending upward from the bottom
of the specimen, the fibers across the crack will continuously participate in sharing the
stress of the concrete matrix. The lower PPFs were continuously pulled out or broken as
the crack width increases. At the same time, the upper fiber will successively participate
in bearing the load. With the increase of crack width, the load shared by the macro PPFs
gradually increases until it is pulled out or broken, which is the reason why the concrete
containing the coarse PPFs still has the residual strength for a long time after the peak
load. Besides, due to the high elongation capacity of the macro PPF, these are capable to
bridge wide cracks without breaking. During the process of crack propagating to the top
of the specimen, the number of upper PPFs playing the role of fiber bridging increased,
while the lower PPFs can still withstand the tensile force before it is broken. Thus, the total
number of fibers playing the role of fiber bridging may increase when the crack propagates.
Therefore, the cumulative effect of effective fiber bridging will lead to the second peak
value of HBPFRC specimens (such as Figure 5b,e–g).

From the above analysis, it can be seen that BF and coarse PPF cannot be substituted
for each other in improving the bending performance of concrete. These two fibers play a
role in different loading periods of concrete. The bending performance of concrete can be
improved by adding two kinds of fibers into concrete collectivity in a certain proportion.
Due to the positive hybrid effect of fiber, the B2P4 specimen obtained the optimal bending
performance.
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4.2. Technology and Economic Analysis

Compared with steel fiber, macro PPF has a lower price, less labor cost, strong cor-
rosion resistance and less carbon dioxide emission in the production process [56–58].
Therefore, macro PPF has been used to replace steel fiber in recent years. What is more,
as BF is a more environmentally friendly material compared with traditional reinforced
concrete materials, it is more environmentally friendly to mix with PPF to produce FRC.

In terms of price, the BF used is 25 China Yuan (CNY)/kg, while the macro PPF is
35 CNY/kg (2019 price). The cost per cubic meter of fiber for each group is shown in
Table 5, where the cost-effectiveness is defined as the ratio between the improvement value
of the test bending performance of each group compared with the control group and the
corresponding fiber cost [59].

Table 5. Price of fibers and cost-effectiveness for per cubic meter FRC.

Specimen
Total Price

(CNY)

Flexural
Strength

(MPa)

Flexural
Toughness

(J)

Cost-Effectiveness

Flexural
Strength

(kPa/CNY)

Flexural
Toughness

(10−3 J/CNY)

B0.0P0.0 0 4 2 / /
B0.0P6.0 210 5.2 13.3 5.7 53.8
B6.0P0.0 150 4.4 3 2.7 6.7
B1.2P4.8 198 5.2 11.9 6.1 50.0

B2P4 190 5.7 22.4 8.9 107.4
B3.0P3.0 180 5.1 14.6 6.1 70.0
B4.0P2.0 170 4.6 11.9 3.5 58.2
B4.8P1.2 162 4.9 10.5 5.6 52.5

As shown in Table 5, the total price is lower when the amount of BF is more significant
since the price of BF is lower than that of PPF. Although the price of mono-basalt FRC spec-
imen B6P0 is low, it shows the characteristics of brittle failure when subjected to bending
force and the increase in flexural strength and toughness is relatively small compared with
that of the control group specimen B0P0. Thus, the addition of BF alone cannot effectively
improve the bending performance of concrete. Among the HBPFRC specimens, the price
of B2P4 is not the lowest, but it is only increased by 17.2% compared with that of the
HBPFRC specimens B4.8P1.2 with the lowest price. However, when compared with the
B4.8P1.2 specimen, the flexural strength and flexural toughness of B2P4 increased by 16.3%
and 113%, separately. Thus, the selection of B2P4 specimen will significantly improve
the energy dissipation capacity of concrete material with a small increase in cost. As for
the mono-polypropylene FRC specimen, although it shows high flexural strength and
high flexural toughness, it has no advantages compared with the B2P4 group in terms
of technology and economy. What is more, B2P4 obtained the highest cost-effectiveness
of both flexural strength (8.9 kPa/CNY) and flexural toughness (107.4 × 10−3 J/CNY).
Therefore, based on comprehensive technical and economic analysis, it can be seen that the
B2P4 group is the test group with the optimal ratio.

5. Conclusions

(1) The addition of mono-BF proved not to enhance the concrete ductility, while the macro
PPF significantly improve the brittleness of concrete and makes the failure modes
of PPFRC and HBPFRCs change from the sudden brittle failure of plain concrete to
ductile failure.

(2) The addition of hybrid BF and PPF can effectively improve the flexural strength of
concrete. Further, the addition of macro PPF proved to increase the post-cracking
flexural toughness of concrete. Compared with the control group, when the mass
ratio of BF to PPF is 1:2, the flexural toughness and equivalent flexural strength of the
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HBPFRC specimen were increased by 10.2 times, and the percentage of equivalent
flexural strength of it was increased by 7.1 times.

(3) BF mainly improves the flexural performance of concrete before the occurrence of
macro-cracks, while the macro PPF plays the bridging role and improves the flexural
performance of concrete in the process of crack evolution from micro-crack to the
macro-crack.

(4) B2P4 specimen significantly improves the energy dissipation capacity of concrete
material with just a small increase in cost. From the perspective of both technology
and economy, when the mass ratio of BF to PPF is 1:2, the bending performance and
economic benefits of FRC reach the optimal level, and this mix ratio is the optimal
fiber mixing ratio in this test.
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