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Abstract: Polarization is measured very often to study the interaction of light and matter, so the
description of the polarization of light beams is of both practical and fundamental interest. This
review discusses the polarization properties of structured light in multimode graded-index optical
fibers, with an emphasis on the recent advances in the area of spin-orbit interactions. The basic
physical principles and properties of twisted light propagating in a graded index fiber are described:
rotation of the polarization plane, Laguerre–Gauss vector beams with polarization-orbital angular
momentum entanglement, splitting of degenerate modes due to spin-orbit interaction, depolarization
of light beams, Berry phase and 2D and 3D degrees of polarizations, etc. Special attention is paid to
analytical methods for solving the Maxwell equations of a three-component field using perturbation
analysis and quantum mechanical approaches. Vector and tensor polarization degrees for the
description of strongly focused light beams and their geometrical interpretation are also discussed.

Keywords: evolution of polarization; degree of polarization; depolarization; graded-index fiber; 3D
polarization; spin-orbit interaction; Berry phase; vortex beams

1. Introduction

The polarization of light must be taken into account in many tasks of fiber optics
communication and devices for coupling light in and from optical fibers. The polarization
state of light does not change during propagation in a homogeneous, isotropic, non-
dispersed medium [1,2]. Significant changes in the state and degree of polarization occur
during propagation in an inhomogeneous medium and through optical fibers.

Multimode optical fibers have attracted considerable interest in recent years for
telecommunications, imaging, fiber lasers and amplifiers, ultrafast photonics, etc. They can
operate over a wide range of wavelengths and have high coupling efficiency. Besides this,
they degrade weakly under the influence of nonlinear effects. However, imperfections and
external perturbations cause mode mixing and random polarization, leading to a strong
change in the polarization state. Consequently, it is important to analyze the dynamics of
the modes propagating in multimode fibers (MMFs).

Many works have been devoted to the study of depolarization of light in various media.
In [3,4] the depolarization of light in randomly inhomogeneous media was considered.
Two depolarization mechanisms were shown: geometric and diffraction, due to the Rytov
rotation [5,6] of the polarization plane and diffraction, respectively. In single mode optical
fibers, the change in the input polarization is usually due to nonlinearity and birefringence
of the medium [7–9]. Depolarization also occurs in optical fibers without birefringence.
The degree of linear polarization of radiation in multimode graded-index fibers decreases
with distance [10]. In [11] it is shown that the degree of linear polarization in multimode
graded-index fiber decreases with distance according to the quadratic law due to the Rytov
rotation of the polarization vector, and the degree of circular polarization is preserved.
However, in the experiments [12], the conservation of the degree of polarization in the
optical fiber was not observed. In [13], the rotation of the plane of polarization of sagittal
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rays during propagation in a multimode fiber was experimentally observed. In [14], the
rotation of the speckle pattern created by circularly polarized light at the fiber output was
calculated, corresponding to the reversal of the sign of circular polarization. In [15], it
was experimentally shown that the angle of rotation of the speckle pattern depends on
the angle at which the circularly polarized light beam is coupled to the fiber. These effects
can be considered as a manifestation of the optical Magnus effect [14,15] and the optical
spin-Hall effect resulting from spin-orbit coupling.

In [16,17], the quantum-mechanical formalism of coherent states was used to study the
evolution of polarization in a multimode isotropic graded-index medium. It is shown that
depolarization of light in an isotropic graded-index medium occurs due to the effects of
diffraction and spin-orbit interaction, and this mechanism manifests itself for radiation with
linear and circular polarization. The rotation of the polarization vector during propagation
in a two-dimensional medium is considered. It is shown that the rotation of the polarization
plane depends on the axial displacement and the angle of tilt of the incident beam to the
fiber axis. The change in the degree of polarization is closely related to change in the degree
of coherence of the radiation. Changes in the degree of polarization of partially coherent
beams propagating in optical fibers were considered in [18–20].

One of the goals of this review is to present a general picture of the polarization-
dependent light transmission through optical fibers associated with the spin-orbit interac-
tion. Recently, the effects of spin-orbit interaction in graded-index (GRIN) media have been
of great interest [16,17,21–24]. In [25–28], the propagation of polarized twisted light beams
in a cylindrical graded-index optical fiber is investigated by solving the three-component
field Maxwell equations. An operator approach to calculating the average values describing
propagation of light beams is developed. Spin-dependent effects on twisted light beams
propagating in an optical fiber are demonstrated by solving the full three-component field
Maxwell equations using perturbation analysis. Polarization and nonparaxial effects are
considered in conjunction. Mode splitting in a cylindrical graded-index optical fiber is
shown using the perturbation analysis to solve the full Maxwell equations [26].

A detailed description of quantum mechanical methods, such as the coherent states
method and the density matrix formalism, for considering the propagation of light in
graded-index waveguides, taking into account polarization effects, is given. An opera-
tor method for studying the evolution of polarization in a graded-index optical fiber is
discussed.

In addition, we emphasize that 2D and 3D degrees of polarization should be used to
describe the polarization effects associated with the spin-orbit interaction, depending on
whether paraxial or nonparaxial light beams are considered.

2. 2D Polarization

Conventional laser sources emit paraxial light rays that propagate almost parallel
to each other. This means that the polarization of the light beam is bounded by a plane
perpendicular to the propagation direction, so for circularly polarized light, any resulting
spin must be aligned longitudinally along the propagation direction. In conventional
optics, the fields are transversal, so the polarization can be well described by a set of
Stokes parameters defined from 2 × 2 coherence matrix [1]. In [2], a unified theory of
coherence and polarization of random electromagnetic fields is proposed, which can be
used to investigate changes in polarization during the propagation of light beams.

The Maxwell equations for the electric field
→
E exp(−iνt) in an inhomogeneous medium

are reduced to:
rot(rot

→
E) = k2ε

→
E (1)

or

∆
→
E + k2n2

→
E +

→
∇
(→

E ·
→
∇ ln n2

)
= 0 (2)

where k = 2π/λ is the wavenumber and ε = n2 is the dielectric permittivity of the medium.
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In the paraxial approximation the Maxwell equations can be reduced to the equivalent
time-independent Schrodinger equation [29]. In [16,17], a similar approach is used to obtain
a parabolic equation for a two-component vector field. Since the paraxial beam propagates
in a direction close to the z-axis, the conditions ∂2E/∂z2 << k∂E/∂z ≈ ∂2E/∂x2 ≈ ∂2E/∂y2

are valid. We have the following equation for the two-component wave function of the
field, neglecting the term ∂2E/∂z2 in Equation (2) [16,17]:

i
k

∂ψ

∂z
= Ĥψ, (3)

where ψ = n
1
2
0 exp(−ikn0z)

(
Ex
Ey

)
, Ĥ = Ĥ0 + Ĥ1,

Ĥ0 =
[
− 1

2k2n0

(
∂2

∂x2 +
∂2

∂y2

)
+ 1

2n0

(
n2

0 − n2)] Î is the unperturbed Hamiltonian corre-
sponding to the first two terms in Equation (2) and

Ĥ1 = − 1
2k2n0

 ∂
∂x

(
1

n2
∂n2

∂x

)
∂

∂x

(
1

n2
∂n2

∂y

)
∂

∂y

(
1

n2
∂n2

∂x

)
∂

∂y

(
1

n2
∂n2

∂y

)  is the Hamiltonian corresponding to the

third term in the Equation (2).
The Hamiltonian Ĥ can be rewritten in terms of annihilation â and creation â+ opera-

tors using the relations

x̂ = 1√
2kω

(
â1 + â+1

)
, ŷ = 1√

2kω

(
â2 + â+2

)
,

∂
∂x =

(
kω
2

) 1
2 (â1 − â+1

)
, ∂

∂y =
(

kω
2

) 1
2 (â2 − â+2

)
.

(4)

Thus, we have
Ĥ0 =

ω

kn0

(
â+1 â1 + â+2 â2 + 1

)
Î,

Ĥ1 = η
(

Âσ̂z + B̂σ̂x + kM̂zσ̂y + Ĉ Î + Î
)
.

Here

η =
ω2

2k2n3
0

, Â =
1
2

(
â2

1 − â+2
1 − â2

2 + â+2
2

)
, B̂ = â1 â2 − â+1 â+2 ,

M̂z = − i
k
(
â+1 â2 − â1 â+2

)
, Ĉ = 1

2

(
â2

1 − â+2
1 + â2

2 − â+2
2

)
, Î =

[
1 0
0 1

]
is the unit ma-

trix and σ̂x =

[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0
0 −1

]
are the Pauli matrices.

The Pauli matrices satisfy the following relations:

σ̂xσ̂y = iσ̂z, σ̂yσ̂z = iσ̂x, σ̂zσ̂x = iσ̂y
σ̂yσ̂x = −iσ̂z, σ̂zσ̂y = −iσ̂x, σ̂xσ̂z = −iσ̂y.

(5)

The solution to Equation (7) can be expressed as

Ψ(x, y, z) = ÛΨ(x, y, 0),

where Û = exp
(
−ikĤz

)
is the evolution operator.

The polarization properties of the light are determined by the elements of the co-
herency matrix [1,2]:

J =

(
〈E∗x Ex〉

〈
E∗x Ey

〉〈
E∗y Ex

〉 〈
E∗y Ey

〉 ), (6)
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where the angle brackets denote the average values over the statistical ensemble represent-
ing the fluctuating field. The degree of polarization is defined by the expression [1,2]

P =

(
1− 4detJ

Sp2 J

)1/2

(7)

The evolution of the coherency matrix is determined by the expression [16,17]:

Ĵ(z) = Û+ Ĵ(0)Û

or the equation

− i
k

dĴ
dz

= Ĥ+ Ĵ − Ĵ Ĥ (8)

where Ĵ(0) is the coherency matrix operator in the initial plane z = 0.

2.1. Rotation of Polarization Plane in a Graded Index Fiber

The polarization plane rotates on propagation of light on the helical trajectory [5,6]. In
a single mode optical fiber wound on a cylinder, such rotation was observed experimen-
tally [30] and interpreted in terms of Berry’s geometrical phase [31]. The rotation of the
polarization plane was observed also in a straight multimode fiber with a step-index type
profile [13]. It is also interesting to consider the reverse effect, i.e., the effect of polarization
on the trajectory and width of the beam. When a light beam is reflected from an interface,
the longitudinal shift of the gravity center of the beam is different for s- and p-polarized
beams [32], while the transverse shift has reverse signs in the case of a right- and left-hand
circularly polarized light beam [33]. In [34], lateral and angular shifts were shown for
strongly focused azimuthally and radially polarized beams at the interface of dielectrics.
In [14], the rotation of the speckle pattern created by circularly polarized light at the fiber
output was shown, corresponding to the reversal of the sign of circular polarization. The
dependence of the angle of rotation of the speckle pattern on the angle at which a circularly
polarized light beam falls on the fiber input was experimentally demonstrated in [15].

It was shown in [35] that when light propagates along a helical trajectory in a graded-
index fiber, a spin-dependent relative shift occurs between right-hand and left-hand circu-
larly polarized light beams. This effect was observed for a laser beam propagating in a glass
cylinder along a smooth helical trajectory [36]. Note that this shift is a manifestation of the
optical Magnus effect [37] and the optical spin-Hall effect [38,39], which occurs due to the
spin-orbit interaction. Beam and wave optics are used to analyze the propagation of light
in graded-index media [40]. The effect of polarization on modes in lens-like media was
analyzed in [41]. In [42], the polarization-dependent GH beam shift at the graded-index
interface of dielectrics is studied. In [43], the beam shifts with respect to geometric optics
caused by spin-orbit interaction and nonparaxiality in a graded-index optical fiber are
investigated.

The methods of coherent states can be used to study the evolution of the parameters of
a light beam. The operator approach is used to calculate the average values describing the
light beam. These methods were used in [16,17] for investigation into the depolarization
of light in a graded-index waveguide. A two-dimensional graded-index waveguide was
considered:

n2(x, y) = n2
0 −ω2

(
x2 + y2

)
, (9)

where ω is the gradient parameter, n0 is the refractive index along the axis of the waveguide,
and x and y are the transverse coordinates of the waveguide.

In the input plane z = 0, we introduce coherent states represented by Gaussian wave
packets:

|α1α2〉 =
(

kω

π

)1/2
exp

{
− kω

2

(
x2 + y2

)
+
√

2kω(α1x + α2y)− 1
2

(
α2

1 + α2
2 + |α1|2 + |α2|2

)}
, (10)
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where α1 = 1√
2

(√
kωx0 + i

√
k
ω px0

)
and α2 = 1√

2

(√
kωy0 + i

√
k
ω py0

)
define the initial

coordinates (x0, y0) of the center of gravity of the light beam and the tilt angles of the beam(
px0 = n0 sin θx, py0 = n0 sin θy

)
with respect to the axis of the medium.

Coherent states were first introduced by Glauber [44] in 1963 from the consideration of
the states of the electromagnetic field oscillators and the study of its statistical properties. In
essence, these states are analogous to the Gaussian wave packets, which were constructed
and studied by Schrodinger [45] for the quantum harmonic oscillator as part of his study
of the connection between the quantum and classical descriptions.

In [46,47], the coherent states method, the integral of motion and the density matrix
formalism are used to describe the propagation of a paraxial optical beam and partially
coherent radiation in a weakly inhomogeneous medium. The coherent states method is
also valuable for considering the diffraction of partially coherent light beams by microlens
arrays [48].

Coherent states (10) have the minimal width and diffraction-limited angular diver-
gence on the propagation in a square-law-index medium. The center of such a wave
packet propagates along the trajectory of the geometric ray corresponding to the ray optics.
Besides, the coherent states (10) are generating functions for the waveguide modes and
they form a complete set of functions. This property can be used to decompose an arbitrary
beam field | f 〉 into a series of coherent states:

| f 〉 = π−1
x
|α〉〈α| f 〉d2α. (11)

The trajectory and width of the beam are defined in terms of the matrix elements:

〈x〉α = 〈α|x̂(z)|α〉
〈α|α〉 , 〈y〉α = 〈α|ŷ(z)|α〉

〈α|α〉 ;

∆x2
α =

<α|x̂2|α>
<α|α> − <α|x̂|α>2

<α|α>2 ,

∆y2
α =

<α|ŷ2|α>
<α|α> − <α|ŷ|α>2

<α|α>2 .

(12)

The wave functions of the light field linearly polarized along the x- and y-axes can be
expressed as

|ex〉 = |α1α2〉
(

1
0

)
,
∣∣ey
〉
= |α1α2〉

(
0
1

)
. (13)

The wave functions of right- and left-hand circularly polarized light have the form

|+1〉 = 1√
2
|α1α2〉

(
1
i

)
, |−1〉 = 1√

2
|α1α2〉

(
1
−i

)
(14)

or
|+1〉 = 1√

2

(
|ex〉+ i

∣∣ey
〉)

, |−1〉 = 1√
2

(
|ex〉 − i

∣∣ey
〉)

.

The evolution of the operator â1,2 is determined by the equation

− i
k

∂â1,2

∂z
= Ĥ+ â1,2 − â1,2Ĥ, (15)

where Ĥ is the Hamiltonian of the system.
For a light beam linearly polarized along the x-axis with initial parameters x0 6= 0, y0

= 0, px0 = 0, and py0 = 0, we obtain the following expressions for the beam trajectory and
beam width [35]:

< x >α
∼= x0 cos ωz;< y >α

∼= 0;

∆x2
α
∼=

1
2kω

[
1 +

2ω

kn3
0

sin2 ωz

]
; ∆y2

α
∼=

1
2kω

. (16)



Fibers 2021, 9, 34 6 of 30

For a light beam polarized along the y-axis, we have

< x >α
∼= x0 cos ωz;< y >α

∼= 0;

∆y2
α
∼=

1
2kω

[
1 +

2ω

kn3
0

sin2 ωz

]
; ∆x2

α
∼=

1
2kω

. (17)

It follows from Expressions (16) and (17) that the polarization of the radiation does
not affect the path of the beam. However, the polarization effects affect the beam width,
which fluctuates with a period equal to the beam oscillation period.

Additional fluctuations in the beam width in the direction of field polarization are
shown in Equations (16) and (17). This effect is a first-order correction to the paraxial
approximation. In [49,50] the dynamics of beam self-imaging by means of femtosecond
laser pulse propagation in nonlinear GRIN multimode optical fibers was studied experi-
mentally. It was shown that the periodical beam self-imaging acts symmetrically on both
the x and y axis. The amplitude of the oscillations for the parameters of the graded-index
fiber used in [49,50] is only 0.3% of the initial beam width, so it is likely that the effect was
not observed in experiments.

For a circularly polarized light beam, the expressions for the trajectory and beam
width with the initial parameters x0 6= 0, y0 = 0, px0 = 0, and py0 6= 0 have the form [35]:

< x >α
∼= x0 cos ωz− σ

ω

2kn3
0

py0z sin(ωz),

< y >α
∼=

py0

ω
sin(ωz) + σ

ω2x0

2kn3
0

z cos(ωz),

∆x2
α
∼=

1
2kω

[
1 +

ω

kn3
0

sin2 ωz

]
,

∆y2
α
∼=

1
2kω

[
1 +

ω

kn3
0

sin2 ωz

]
, (18)

where σ = +1 corresponds to right-hand circularly polarized radiation and σ = −1 corre-
sponds to the left-hand circularly polarized light beam.

For circularly polarized light, the plane of propagation of the meridional beam (py0 = 0)
rotates in the direction of circulation of the polarization vector. A similar rotation takes
place for the sagittal rays (py0 6= 0). The rotation of the meridional ray and the additional
rotation of the sagittal rays increase linearly with distance:

δφ ≈ tg
〈y〉α
〈x〉α

≈ σ
ω2

2kn3
0

z. (19)

The following is a comparison between the Rytov rotation angle or the Berry phase of
the polarization plane due to the twisting of the propagation path [17]:

〈β〉 ≈
ω3x2

0

2n3
0

z, (20)

the rotation angle of the plane of the meridional ray (19) is due to the circular nature of the
polarization of light.

It follows from (19) and (20) that the values of these angles are equal to each other for
x2

0 = 1/kω, i.e., in the case when the axial shift of the incident beam is equal to the width
of the fundamental waveguide mode w0 =

√
2/kω.

In Figure 1, the angular shift dependence on the beam’s angular aperture (diffraction
angular divergence) ∆θ = λ/πw0 for the distance ωz = 2π corresponding to the period of
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the beam twisting is presented. The angular GH shift increases in proportion to the square
of the angular aperture of the beam. A similar effect was experimentally observed for a
wave beam when a Gaussian beam falls on the air–glass interface [51]. Substantial positive
and negative Goos-Hänchen shifts near the surface plasmon resonance were also shown in
subwavelength gratings [52].
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Figure 1. Dependence of the angular GH shift on the diffraction angular divergence of the beam.

The polarization affects the width of the beam propagating in the waveguide. Below,
we consider the paraxial propagation of a beam whose initial width is not matched with
the fundamental mode of the waveguide. The analysis of the propagation of a strongly
focused light beam in a graded-index waveguide is presented in [53,54].

For a linearly polarized axis beam (α = 0) with a field radius a0, the evolution of the
beam width is defined by the expressions [43]:

∆x2
0 = 1

2kω+

{
1 + 2|v|2 − 2uv cos 2ω+

n0
z + 2ω+

kn3
0

[
1 + 2|v|2 + 2uv

]
sin2 ω+

n0
z
}

,

∆y2
0 = 1

2kω+

{
1 + 2|v|2 − 2uv cos 2ω+

n0
z
}

,
(21)

where u = ω−+ω+
2
√

ω−ω+
, v = ω−−ω+

2
√

ω−ω+
, ω− = 2

ka2
0
, and ω+ = 2

kw2
0

is the gradient parameter, w0 is

the radius of the fundamental mode.
At z = n0π/(2ω), the beam width takes the minimum value:

∆x2
min = 1

2kω+
· ω−

ω+

{
1 + 2ω+

kn3
0

}
=

w4
0

4a2
0

(
1 + 4

k2w2
0n3

0

)
,

∆y2
min = 1

2kω+
· ω−

ω+
=

w4
0

4a2
0
.

(22)

The minimum beam width of a circularly polarized beam is given by

∆x2
min = ∆y2

min =
1

2kω+
· ω−

ω+

{
1 +

ω+

kn3
0

}
=

w4
0

4a2
0

(
1 +

2
k2w2

0n3
0

)
. (23)

It follows that the values of the minimum beam width decrease if the width of the
incident beam is greater than the radius of the fundamental mode of the waveguide
(a0 > w0).

Thus, the polarization effects cause an increase in the size of the focal spot. For
linearly polarized light, the beam shows a broadening only in the direction of the plane of
polarization, and the initially symmetric beam becomes elliptical. Such a broadening of the
beam in the direction of the polarization plane was observed in experiments devoted to
measuring the size of latex spheres [55].

The effect of polarization effects on the beam parameters is negligible in the case when
the ratio of the gradient parameter to the wave number is small. However, when the beam is
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focused to a region smaller than the radiation wavelength, these effects become significant.
This should be taken into account when analyzing experimental data, in particular the
results of measurements using near-field microscopes.

Circular polarization leads to rotation of the plane of propagation of the meridional
beam, as well as to additional rotation of the sagittal rays, and this rotation depends
on the axial displacement of the incident beam. Both circular and linear polarizations
lead to fluctuations in the beam width during propagation in a graded-index waveguide.
Polarization affects the focus of the light beam in a graded index medium and is a limiting
factor. In the case of linear polarization, the cross-section of the light beam in the plane of
focus becomes elliptical, elongated in the direction of the plane of polarization.

2.2. Depolarization of Light

Depolarization of light propagating in a graded-index fiber was considered in [16,17].
It is shown that the spin-orbit interaction causes an asymmetry effect for the depolarization
of right-hand and left-hand circularly polarized light. Depolarization is stronger if the
helicity of the trajectory and the photons have the same signs, and weaker if they are not
the same.

2.2.1. Linear Polarization

The fields of the linearly polarized beams are given in Equation (13). The coherency
matrix is determined by the following matrix elements:

Ji,j =
〈
ei
∣∣ Ĵ(z)∣∣ej

〉
, i, j = x, y. (24)

The coherence matrix operator in the plane z = 0 is defined by the source. For radiation
linearly polarized along the x-axis, we have [1]

Ĵ(0) = I0

(
1 0
0 0

)
=

I0

2
(1 + σ̂z), (25)

where I0 is the total intensity of the incident beam.
For linearly polarized radiation along the y axis the coherency matrix operator has the

form [1]

Ĵ(0) = I0

(
0 0
0 1

)
=

I0

2
(1− σ̂z). (26)

To solve Equation (8) and calculate the matrix elements (24), the commutation relations[
âi, âj

]
= δi,j (i, j = 1, 2), the relationships (5) and the relations

σ̂z|ex〉 = |ex〉, σ̂x|ex〉 =
∣∣ey
〉
, σ̂y|ex〉 = i

∣∣ey
〉
,

σ̂z
∣∣ey
〉
= −

∣∣ey
〉
, σ̂x
∣∣ey
〉
= |ex〉, σ̂y

∣∣ey
〉
= −i|ex〉

(27)

can be used.
Solving Equation (8) up to a parameter η2 and substituting the solutions in

Equation (7), we obtain the following expression for the value, determining the depo-
larization [16,17]:

4detJ
Sp2 J

=
ω2

2k2n5
0

[
(kωx2

0 +
k
ω

p2
y0)(ω

2z2 + sin2 ωz−ωz sin 2ωz) + 2 sin2 ωz
]

. (28)

Equation (28) includes a contribution of both sagittal and meridional rays with initial
coordinates in the plane z = 0: x0 6= 0, y0 = 0, px0 = 0, py0 6= 0.

It follows that the depolarization depends on the wavenumber and disappears at
λ→ 0. For an axial beam (x0 = 0, py0 = 0), we obtain oscillations in the degree of polarization
that are purely diffractive in origin. The effect of periodic retrieval of the initial degree
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of polarization should be observed in a single-mode isotropic optical fiber, when the
fundamental mode of the optical waveguide is considered.

The dependence of the degree of polarization of linearly polarized light on the distance
z is represented by the curves in Figure 2 for various offsets x0, including the meridional
rays and the radius-preserving (py0 = x0ω) spirally twisted sagittal rays. It is clear that the
degree of polarization decreases inversely with the square of the distance. The decrease in
the degree of polarization becomes more pronounced as the displacement or inclination of
the beam relative to the fiber axis increases. The depolarization length of the meridional
rays is 1.4 times longer than the depolarization length of the sagittal rays.
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Figure 2. The degree of linear polarization as a function of distance for both meridional and sagittal
rays (solid curves) and only for meridional rays (dashed curves). (1) x0 = 15 µm; (2) x0 = 5 µm.

In Figure 3 the values F = 105(4detJ/Sp2 J
)

as a function of the distance z are pre-
sented for meridional and sagittal rays. It can be seen that the increase in this value is
accompanied by small fluctuations. The degree of polarization decreases quadratically
with the increasing distance. Depolarization increases with an increase in the displacement
of the axis or the inclination of the beam to the axis of the waveguide. The decrease in the
degree of polarization is accompanied by small fluctuations. Note that Equation (28) is
valid only for distances z ≤ z0, where the distance z0 is determined by the accuracy of the
solution of Equation (8). In our case, this distance is equal to

z0 ≈
1

2kη
.

The degree of polarization can be obtained by substituting Equation (28) into Equation
(7):

Pl ≈ 1− 1
4

ω

kn5
0

(
ω2x2

0 + p2
y0

)
·
(

ω2z2 + sin2 ωz−ωz · sin 2ωz
)
− 1

2
ω2

k2n5
0

sin2 ωz. (29)

The Equation (29) at distances z >> ω−1 has the form [13,14]:

Pl ≈ 1− 1
4

ω3

kn5
0

(
ω2x2

0 + p2
y0

)
z2 − 1

2
ω2

k2n5
0

sin2 ωz.
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Figure 3. The values F = 105(4detJ/Sp2 J
)

as a function of the distance at x0 = 15 µm for both
meridional and sagittal rays (solid curve 1) and only for meridional rays (dashed curve 2).

The degree of polarization decreases with increasing distance, and depolarization
disappears at λ→ 0. There are fluctuations in the degree of polarization of purely diffractive
origin in the case of the axial beam (x0 = 0, py0 = 0):

Pl ≈ 1− 1
4

ω3

kn5
0

(
ω2x2

0 + p2
y0

)
z2 − 1

2
ω2

k2n5
0

sin2 ωz. (30)

It follows that the degree of polarization of the axial beam takes its initial value at
ωz = mπ (m = 1, 2, 3 . . . ). The depolarization characteristics of the imaging probe with
the multi-mode fiber with a length of 6.2 mm were studied in [56]. It is shown that the
depolarization coefficient for the modal fields LP01 and LP21 can be estimated at 0.7.

2.2.2. Circular Polarization

The fields for right-handed and left-handed circularly polarized light are defined in
Equation (14). The coherency matrix in the initial plane has the form [1]

Ĵ(0) =
1
2

I0

(
1 −i
i 1

)
=

I0

2
(
1 + σ̂y

)
. (31)

The Jones vector describing linearly polarized light can be defined in terms of the
Jones vector of circularly polarized radiation:

E =

[
Ex
Ey

]
= F̂

[
E+

E−

]
, (32)

where F̂ = 1√
2

[
1 1
−i i

]
is the transformation matrix.

The following expression describing the depolarization can be obtained by solving
Equation (8) up to a small parameter η2 [16,17]:

4detJ
Sp2 J

=
ω2

2k2n5
0

[(
kωx2

0 +
k
ω

p2
y0

)(
ω2z2 + sin2 ωz

)
± 4kx0 py0ωz sin2 ωz + 2 sin2 ωz

]
. (33)

The signs ± correspond to right-handed and left-handed circularly polarized light.
The effect of asymmetry occurs with respect to the sign of twisting of the trajectory of
sagittal rays (Figure 4). Depolarization is stronger if the helicity of the trajectory of rays
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and “photons” has the same signs, and less if they do not coincide. The depolarization of
the meridional rays is less than that of the sagittal rays.
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are used to calculate the coherency matrix elements. 
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Figure 4. The values F = 105(4detJ/Sp2 J
)

as a function of distance for x0 = 15 µm; curve 1—sagittal
ray with positive helicity (py0 = x0ω); curve 2—sagittal ray with negative helicity (py0 = −x0ω);
curve 3—meridional ray.

The following relations

σ̂y|+1〉 = |+1〉, σ̂x|+1〉 = i|−1〉, σ̂z|+1〉 = |−1〉,
σ̂y|−1〉 = −|−1〉, σ̂x|−1〉 = −i|+1〉, σ̂z|−1〉 = |+1〉

(34)

are used to calculate the coherency matrix elements.
Substituting Equation (33) into (7), we obtain an expression for the degree of polariza-

tion

Pc ≈ 1− 1
4

ω

kn5
0

[(
ω2x2

0 + p2
y0

)
·
(

ω2z2 + sin2 ωz
)
± 4ωx0 py0ωz sin2 ωz + 2

ω

k
sin2 ωz

]
. (35)

The degree of polarization at the distances z >> ω−1 may be defined as

Pc ≈ 1− 1
4

ω3

kn5
0

(
ω2x2

0 + p2
y0

)
z2 − 1

2
ω2

k2n5
0

sin2 ωz. (36)

The sagittal rays with constant radius of twisting (py0 = x0ω) are considered here.
The degree of polarization decreases with increasing distance, similar to the degree of
polarization of a linearly polarized beam. A similar result occurs in the case of left-handed
polarized light.

The degree of polarization for the axial beam (x0 = 0, py0 = 0) is expressed by [16,17]

Pc ≈ 1− 1
2

ω2

k2n5
0

sin2 ωz. (37)

2.3. Berry Phase and Degree of Polarization

The plane of polarization of a light beam rotates when it propagates along a curved
trajectory in an inhomogeneous medium [5,6]. This rotation was experimentally demon-
strated [30] in a single-mode fiber wound along a cylinder and interpreted as a geometric
Berry phase effect [31]. The effect of a spin-dependent relative shift between right-and
left-handed circularly polarized light beams propagating in a glass cylinder along a smooth
helical trajectory was also observed [36]. A similar beam shift was shown in a graded
index optical fiber [43]. This shift can be considered as a manifestation of the optical Mag-
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nus effect [14] and the optical spin-Hall effect [38,39], which occurs due to the spin-orbit
interaction.

In [57], the evolution of the polarization plane and the Berry phase in a graded index
waveguide was investigated using the quantum mechanical formation of coherent states.

The rotation angle of the polarization vector of a beam linearly polarized along the
x-axis propagating along a helical trajectory is determined by the expression [57]:

〈β〉 = 1
2

arctg
Jxy + Jyx

Jxx − Jyy
≈ 1

2
arctg

[
ωx0 py0

2n3
0

(2ωz− sin 2ωz)

]
. (38)

The Expression (38) is valid for sagittal rays with initial coordinates x0 6= 0, y0 = 0,
px0 = 0, py0 6= 0.

For small values of the axial displacement of the beam, the Expression (38) has the
form [57]:

〈β〉 ≈
ωx0 py0

4n3
0

(2ωz− sin 2ωz). (39)

It can be seen from (39) that the rotation angle of the polarization plane increases
quadratically with the angle of tilt θ (py0 = n0sinθ) of the beam to the waveguide axis or
with the axis displacement x0 for sagittal rays with constant radius of twisting (py0 = x0ω)
(Figure 5a,b). The calculated results for the angle of rotation of the polarization plane are in
good agreement with the experimental data [13]. Note that the cubic dependence of the
rotation angle of the polarization vector on the angle between the propagation direction
and the axis of the fiber with a step profile of the refractive index was obtained in [37].
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Figure 5. The dependence of the angle of rotation of the polarization plane on (a) tilt angle θ0 of the beam relative to the fiber
axis; (b) offset x0 in a graded-index optical fiber with the parameters ω = 7 · 10−3 µm−1, n0 = 1.5, and the length z = 5 cm.

The rotation speed of the polarization vector is defined by the expression

v =
d〈β〉
dz
≈

ω2x0 py0

2n3
0

(1− cos 2ωz). (40)

It follows that the rotation of the polarization vector is of irregular character. The
rotation speed is zero at the points where the polarization vector is parallel to the main
normal. Note that the Rytov’s rotation [5] or the Berry’s phase [31] have a geometrical
origin and do not depend on the wavelength of the radiation. However, the variance of the
Berry’s phase is of wave nature and disappears at λ→ 0. Thus the variance of the Berry’s
phase is equal to [57]

(δβ)2 =
〈

β2
〉
− 〈β〉2 ≈ 1

2
(1− P) ≈ ω3

8kn5
0

(
ω2x2

0 + p2
y0

)
z2 +

ω2

4k2n5
0

sin2 ωz. (41)
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It can be seen that the dispersion of the Berry’s phase increases nonlinearly at small
values of the axis displacement. The Berry’s phase dispersion for x0 = 20 µm of the order
of <δβ> ≈ 1◦ occurs at a distance of z ≈ 3.7 mm. This corresponds to the rotation of the
polarization plane by an angle of <β> ≈ 4.4◦.

It follows that the dispersion of the Berry’s phase is determined by the degree of
polarization P. As noted in [29], the depolarization in an optical fiber with a length of
z ≈ 7.5 cm is 10–30%, which is consistent with the results obtained (Figure 6). It can be
seen that fluctuations in the Berry’s phase dispersion for the axial beam exist, although the
phase is zero. In addition, the Berry’s phase fluctuations for the meridional rays increase
with distance, although the Berry’s phase value is zero. Thus, measurements of the degree
of polarization will verify experimentally the wave nature of the Berry’s phase.
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Figure 6. Dependence of the rotation angle of the polarization plane on the tilt angle of the beam
relative to the axis of an optical fiber of length 7.5 cm; theoretical (solid curve) and experimental [13]
values (triangles).

The dispersion of the rotation angle of the polarization plane increases with distance
and can be determined by measuring the degree of polarization of light. The dispersion of
the Berry’s phase or the angle of rotation of the polarization plane increases with distance,
and there are fluctuations in the Berry’s phase dispersion for the axial beam (fundamental
mode), which have a wave nature.

3. 3D Polarization

In conventional optics, the fields are transverse, so the polarization can be well de-
scribed by a set of Stokes parameters determined from the 2 × 2 coherence matrix [1,2].
However, the electromagnetic field in the far zone is transverse and for waves propagating
along the z axis, Ez = 0, many problems of near-field optics, optical microscopy, data storage,
and scattering need to be analyzed, taking into account the longitudinal component of
the field Ez. Strongly focused beams contain a non-zero longitudinal component of the
field Ez 6= 0, so we should consider 3 × 3 coherence matrices to describe them. The Stokes
2 × 2 formalism was extended to 3 × 3 coherence matrices, and the degree of polarization
for arbitrary electromagnetic fields was introduced in [58–61]. The evolution of three-
dimensional electromagnetic fields in a graded index medium is studied in [25–28,62]. The
coherence matrix is represented in terms of spherical or rectangular tensors, similar to
the Gell-Mann matrices. The evolution of the coherence matrix is defined in terms of the
Hamiltonian obtained from the three-component Maxwell field equations.

The polarization state of the most general two-dimensional field can be completely
described by three parameters. This is referred to as vector polarization. For a three-
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dimensional field, except for three components of the vector polarization, there are five
components of tensor polarization. The complexity of the 3D electromagnetic field arises
from the tensor polarization [59,60]. In contrast to the 2D case, where any beam of light can
be represented as the superposition of totally polarized and unpolarized light, in the 3D
case, an arbitrary beam cannot be represented as a mixture of an unpolarized beam (one
parameter) and a polarized beam (five parameters) because nine independent parameters
are needed to characterize the coherence matrix.

Maxwell’s equations for the electric field
→
E exp(−iνt) in a general inhomogeneous

medium with dielectric constant ε(x, y) are reduced to:(
∇2
⊥ + k2n2)→e ⊥ − iβ∇⊥ez −∇⊥∇⊥

→
e ⊥ = β2→e ⊥(

∇2
⊥ + k2n2)ez + iβ

→
e ⊥∇⊥ ln n2 = β2ez

(42)

where k = 2π/λ is the wavenumber and n2(x, y) is the dielectric constant of the medium,
β is the propagation constant.

Here the dependence on time and z is assumed as exp[−i(νt− βz)]. Rewrite the
system (42) as [27,62]:(

∇2
⊥ + k2n2 + W0 +

1
4

P2
)→

E =

(
β− 1

2
P
)2→

E , (43)

where
→
E =

 ex
ey
ez

, W0 =

 − ∂2

∂x2 − ∂2

∂x∂y 0

− ∂2

∂y∂x − ∂2

∂y2 0
0 0

, P =

 0 0 −i ∂
∂x

0 0 −i ∂
∂y

i
n2

∂n2

∂x
i

n2
∂n2

∂y 0

.

Formally, taking the square root of both sides, we obtain an equation equivalent to the
stationary Schrodinger equation for the reduced field Ψ(x, y):

ĤΨ = εΨ, (44)

where ε = δβ = β− kn0 and Ψ(x, y) are the eigenvalue and eigenfunction of the Hamilto-
nian, accordingly, n0 = n(0, 0)

>
H =

>
H

(0)
+

>
H

(1)
+ . . . , (45)

>
H

(0)
= H0 −<, H0 =

>
H0 −

1
2k2n2

0

>
W0,

>
H0 = − 1

2k2n2
0
∇2
⊥ +

1
2n2

0

(
n2

0 − n2
)

,

Ĥ(1) is the nonparaxial correction to the operator of paraxial propagation, which has
the form

H(1) =
1
2
H2

0 −
1
2
<2, < =

P
2kn0

.

The Hamiltonian
>
H can be rewritten in terms of annihilation and creation operators

in cylindrical coordinates [17,27,62]. This allows the averaged values describing the light
beams to be calculated analytically.

3.1. Vector Laguerre–Gauss (LG) Beams in a Graded-Index Fiber

Diffraction and refraction forces govern a light beam propagating in an inhomoge-
neous medium in the scalar approximation. However, the vector Maxwell equations are
the basis of a consistent electromagnetic theory of light propagation. To analyze the vector
wave fields, the influence of additional effective forces associated with polarization (spin
angular momentum (SAM)) and orbital angular momentum (OAM) should be taken into
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account. It is known that when the linearly polarized optical beam propagates along a
spiral trajectory, the polarization vector undergoes a Rytov rotation [5,6].

In [28], the full three-component field Maxwell equations are solved to investigate the
effect of polarization (spin) and OAM on the shape of a vortex light beam with a nonzero
radial number propagating through a cylindrical graded-index fiber. Remote focusing
and highly efficient transfer of a strongly focused spot in a graded-index waveguide are
demonstrated in [54]. It is known that different paraxial modes or rays are periodically in
phase as they propagate in graded-index optical waveguides, and periodic focusing can be
observed [63]. However, nonparaxial effects destroy this periodic focusing. Surprisingly,
the restoration of the initial beam shape and strong focusing occur at extremely large dis-
tances due to the revival effect caused by interference between propagating modes [28,54].
Expressions of the path and beam width describing nonparaxial propagation in graded-
index (GRIN) media were obtained earlier in [64]. However, the resulting expressions do
not include the revival effect. In [65,66], the correct expressions for the beam trajectories
and widths are obtained, which contain the long-term period oscillations of the beam
trajectory and its width. In [67], the revival effect in GRIN media was considered up to a
second-order approximation. In [53,54,68–70], exact analytical expressions for the trajectory
and width of nonparaxial wave beams are obtained. It should be noted that the revival
effect in a cylindrical GRIN rod, which occurs during nonparaxial propagation, was also
recently studied in [71]. However, the problem was considered in the framework of the
scalar Helmholtz equation, which is not the case of nonparaxial propagation of a light beam
in a cylindrical waveguide. In addition, Hermite–Gauss beams were considered as modal
solutions, whereas for a cylindrical GRIN waveguide they may not be modal solutions.

Analytical solutions can be obtained for a rotationally symmetric graded-index optical
fiber:

n2 = n2
0 −ω2r2, 0 ≤ r ≤ a, (46)

where n0 is the refractive index on the waveguide axis, ω is the gradient parameter,
r =

√
x2 + y2, a is the waveguide radius.

The unperturbed Equation (44) has the form

>
H0|v, l〉 =

(
ω/kn2

0

)
(v + 1)|v, l〉,

where the Hamiltonian Ĥ0 is given in (45).
The solution of the unperturbed equation is described by the radially symmetric

Laguerre–Gauss functions (LG) ψvl(r, φ) = |v, l〉 (Figure 7) [62]:

ψvl(r, φ) =

(
kω

π

)1/2[ p!
(p + l)!

]1/2(
kωr2

)l/2
exp

(
− kωr2

2

)
Ll

p

(
kωr2

)
exp(ilφ), (47)

where v = 2p + l is the principal quantum number, p and l are the radial and azimuthal
indices, accordingly, and l = v, v − 2, v − 4, ...1 or 0, ω = 2/(kw2

0), w0 is the radius of
the fundamental mode. The numbers v and l express the eigenvalues of the unperturbed
Hamiltonian

>
H0|v, l〉 =

(
ω/kn2

0
)
(v + 1)|v, l〉, and eigenvalues L = l/k of the angular

momentum operator
_
L z|v, l〉 = (l/k)|v, l〉.

The hybrid wave functions consisting of transverse and longitudinal components are
solutions of Equation (43):

Ψ(r, φ, 0) =

∣∣∣∣∣∣
|vl〉

iσ|vl〉
ez

〉
, (48)

where σ = +1 and σ = −1 correspond to right-handed and left-handed circularly polarized
beams, accordingly, and σ = 0 corresponds to the linear polarization.
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Figure 7. Field amplitudes of even modes |00〉, |20〉, |22〉 (a) and odd modes |11〉, |31〉 (b).

There is no mode conversion at propagation if the incident beam is expressed by (48).
Note that the hybrid wave function (48) cannot be factorized into the product of spin and
orbital parts since the mixing of OAM and SAM exists. Thus, the modal solutions of the
Maxwell equations in a GRIN media are the hybrid vector Laguerre–Gauss modes with
the spin-orbit entanglement. The longitudinal field component can be expressed through
the transverse field components, i.e., |ez〉 = (i/kn0)∇⊥e⊥. Note that besides SAM and
OAM, the LG beams possess the radial number associated to the intensity distribution in
the transverse plane [72–74].

The propagation constant that is correct to the first-order nonparaxial term has the
form [23]:

βvlσ = kn0

{
1− η(v + 1)− η2

32

[
11(v + 1)2 − j2 − 2jσ

]}
, (49)

where η = ω/kn2
0, j = l + σ.

It follows from (49) that the group velocity vg =
(

1
c

dβ
dk

)−1
depends on the OAM and

SAM of the propagating pulsed beam [26]. Analogically, the speed of the vortex light beam
in the free space also depends on the OAM value [75].

Below, we consider the vector vortex beams with right-circular and left-circular po-
larizations, accordingly:

〈
Ψ+

0

∣∣ = (〈v′l|, i〈v′l|, ez) and
〈
Ψ−0
∣∣ = (〈v′l|, i〈v′l|, ez), where |v′l〉

is given by (47), and ω′ = 2/(ka2
0), a0 is the radius of a beam, which is different from the

radius of the fundamental mode of the medium w0 =
√

2/(kω).
The incident beam can be decomposed into modal solutions, so the evolution of the

beam in the medium (46) can be represented as [27]:

Ψ(r, φ, z) = ∑
vlσ

avlσ

∣∣∣∣∣∣∣
|vl〉

iσ|vl〉
(i/kn0)

→
∇⊥
(→

x + iσ
→
y
)
|vl〉

〉
exp(iβvlσz), (50)

where avlσ are the coupling coefficients.
Only propagating modes are considered below, i.e., all the propagating power is inside

a waveguide, the evanescent waves do not reach the far-field zone [76].
For the incident beam described by the Laguerre–Gauss function

Ψ∗v′ l′σ =
(

1/
√

2
)
〈〈v′l′|,−iσ〈v′l′|, e∗z |, the coupling coefficients avlσ can be calculated ana-

lytically [28]:

〈
vlσ
∣∣v′lσ〉 = (2

√
ωω′

ω + ω′

)l+1(
ω′ −ω

ω′ + ω

)p−p′( p′!(p + l)!
(p′ + l)!p!

)1/2

P[p−p′ ,l]
p′ (z), (51)
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where z = 1− 2
(

ω′−ω
ω′+ω

)2
, P[p−p′ ,l]

p′ (z) are the Jacobi polynomials, ω′ = 2/ka2
0, ω = 2/kw2

0.

Simulation Results

The intensity distribution changes with distance are determined by the functions
I⊥(r, ϕ, z) = |Ψ⊥(r, ϕ, z)|2 and Iz(r, ϕ, z) = |ez(r, ϕ, z)|2. Figure 8 shows the intensity
distributions of the linearly polarized beams with the radial number p′ = 1 and different
OAMs in the focal plane. The gradient parameter ω = 7 · 10−3µm−1 of the medium (46)
and the refractive index n0 = 1.5 are considered. The beams with wavelength λ = 0.63 µm
are considered. The numerical aperture is determined by NA = aω = n0

√
2∆, where a is

the waveguide radius and ∆ ≈ (n0 − n(a))/n0. The initial beam width is a0 = 45 µm. As
can be seen, the intensity distributions depend on the SAM and OAM of the incident beam.

The focused spot in the longitudinal field is split into two equal parts if l = 0
(Figure 8b). An asymmetry occurs between the intensity distributions of the longitu-
dinal field component for incident beams with opposite OAM (Figure 8f,h). There is no
such asymmetry for the transverse field components.

Note that the modes exhibiting hybrid entanglement between SAM and OAM may
be useful for classical implementations of quantum communication and computational
tasks [77].

3.2. The Splitting of the Degenerate Modes

In [23], the splitting of modes in a graded-index optical fiber due to the spin-orbit
interaction is shown by solving the Maxwell equations using perturbation analysis. Due to
the axial symmetry of the fiber, the modes are (v + 1)-fold degenerated, and for a given
value of principal number v = 2p + l, where p and l are the radial and azimuthal indices,
the modes are degenerate by l. The modes are 2(v + 1)-fold degenerated if the polarization
degeneracy of the modes is taken into account.

The polarization degeneracy is eliminated by an additional term in the Hamiltonian
describing the spin-orbit interaction. It is shown in [26] that the first order correction to the
eigenvalue ε(1) = 〈vlσ|H(1)|vlσ〉 depends on the sign of the helicity and the total angular
momentum

ε(1) =
η2

32

[
11(v + 1)2 − j2 − 2jσ

]
, (52)

where 〈vlσ| = 〈〈vl|,−iσ〈vl|, ez|, η = ω/kn2
0 is the small parameter, j = l + s is the

total angular momentum, σ is the helicity, s is the spin angular momentum, and the
longitudinal field component can be expressed through the transverse field components,
i.e., |ez〉 = (i/kn0)∇⊥e⊥.

The last term in (52) refers to the spin-orbit interaction and is analogous to the correc-
tion obtained for the modes of a ring resonator from a circular dielectric waveguide [78].
However, in their calculation results, the terms corresponding to the nonparaxiality were
omitted. In fact, the first two terms in Equation (52) do not contribute to splitting a level
with the same principal number and total angular momentum.

Using (49) the group delays of the modes are expressed by

τ =
z
c

∂β

∂k
∼=

zn0

c
+

zn0

c
η2

32

[
11(v + 1)2 − j2 − 2jσ

]
, (53)

where z is the length of the fiber, c is the velocity of light in free space.
The group velocities vg = z/τ of the vortex modes with right- and left-handed

polarizations differ from each other, so the effective anisotropy is induced due to the
spin-orbit interaction. In the case of zero orbital momentum, there is no such asymmetry.
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Figure 8. Intensity distributions of the transverse electric field component (left column) and the
longitudinal electric field component (right column) in the focal planes z f = 331 µm (a–d) and
z f = 333 µm (e–h): (a,b) l = 0; (c,d) l = 0 —3D intensity patterns; (e,f) l = 1; (g,h) l = −1.
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3.3. Simulation of Delay Time and Group Delay Splitting

In Figure 9a the dependences of the propagation delay time of modes in comparison
with the fundamental mode on the radial mode number for different fundamental mode
radii w0 = (2/kω)1/2 are presented. In Figure 9b the group delay splitting of the azimuthal
modes of fixed radial indices (p = 0) is presented. It follows that the group delay splitting
is an order of magnitude smaller than the relative propagation delay of modes.
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Figure 9. Dependence of the delay time (a) and group delay splitting (b) on the radial and azimuthal indices, accordingly,
z = 1 km, n0 = 1.5.

Laguerre–Gauss beams are also modes of the Fabry–Perot resonator and fiber ring
resonators made of a graded-index fiber. It follows from the resonance condition that the
frequency shift and the corresponding wavelength shift are expressed by [26]:

∆ f
f

=
∆λ

λ
=

11(v + 1)2 − j2 − 2jσ
8k4n4

0w4
0

, (54)

where f = cn0/λ.
Note that the frequency shift of the same order of magnitude was obtained in [79,80].

In Figure 10a the wavelength shifts ∆λl = λl+1 − λl as a function of the azimuthal mode
number for different beam radii are presented. The splitting is very sensitive to the size
w0 of the fundamental mode and increases with the azimuthal index. A similar result was
obtained in almost hemispherical micro-cavities experimentally [81].
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Figure 10. Dependence of the mode splitting (a) and degeneracy lifting (b) on the azimuthal index. p = 0, n0 = 1.5.
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In addition to the polarization degeneracy, there is the degeneracy of modes with
different orbital angular momentum and polarization, but with the same total angular
momentum. In this case, corrections to the eigenvalues cannot be obtained from (52). The
eigenvalues of the modes can be obtained analytically using the degenerate perturbation
theory [26]:

ε
(1)
1,2 =

(
η2/32

)[
11(v + 1)2 − j2 + 2j ±10(v + 1)

√
(p + 1)(p + l)

]
. (55)

There is a degeneracy lifting δε = (5/8)η2(v + 1)
√
(p + 1)(p + l) of the levels with the

same total angular momentum j. The hybrid modes, which are solutions of Equation (44),
correspond to these levels

ψvl(r, φ) = a||v, l〉,−i|v, l〉, ez1〉+ b||v, l − 2〉, i|v, l − 2〉, ez2〉.

The vector modes of a graded-index fiber are hybrid polarization-OAM-entangled
states. Note that a similar OAM mixing of LG modes was also found in micro-cavities [82].
Because of the fact that the shift also takes place for the level with zero OAM, its mechanism
is not only connected with the spin-orbit interaction, but also with nonparaxiality and
tensor interaction [61]. The degeneracy lifting can be considered as an optical analogue of
the Lamb shift, in which there is a separation of levels between degenerate states with the
same total angular momentum.

The relative degeneracy lifting δλl/λ for different beam radii w0 is shown in Figure 10b.
The degeneracy lifting affects the quality Q-factor, which characterizes the resonant band-
width of the modes. For resonators with the radius of the fundamental mode of the order of
the wavelength of light, this splitting is about 1 nm, which can be observed experimentally.

3.4. Vector and Tensor Polarization Degrees of Light

The polarization state of the most general two-dimensional field can be fully described
by three parameters. This is related to as vector polarization. For a three-dimensional field,
in addition to the three components of the vector polarization, there are five components
of tensor polarization.

Many works have been devoted to the description of the polarization of a three-
dimensional field, in particular, several measures of the 3D degree of the polarization P
have recently been proposed [83–90]. There is no unambiguous mathematical definition
of the degree of polarization, that is, different measures of P are not equivalent, which
indicates that a single parameter is not enough to fully describe all the properties of a three-
dimensional field. The problem is that all measures of the 3D degree of polarization cannot
distinguish between the two fields with different polarization matrices [84,85]. It is shown
in [59] that two measures of the degrees of polarization (vector and tensor) are sufficient for
a complete description of three-dimensional polarization, i.e., for distinguishing two fields
with different polarization matrices. Examples illustrating various possible polarizing
states are considered.

The elements of the Stokes vector are the intensity, vector and tensor polarizations
which are defined in terms of the density matrix [61,62] (coherence matrix) ρ:

tKQ =
〈

T̂KQ
〉
= tr

(
ρT̂KQ

)
/trρ, (56)

where T̂KQ are the spherical tensor operators, K = 1, 2; Q = 0, ±1, ±2.
Using the Equation (56) the density matrix may be written in terms of the expectation

values tKQ:

ρ =
1
3

I

(
∑
KQ

tKQT̂+
KQ

)
=

1
3

I

{
1 + ∑

Q
t1QT̂+

1Q + ∑
Q

t2QT̂+
2Q

}
, (57)
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where the scalar, vector and tensor components corresponding to monopole, dipole and
quadrupole radiations are separately presented.

The spherical tensor operators in terms of components of the spin operator σ̂
are [61,62]:

τ̂00 = I, τ̂11 = −
√

3
2
(
σx + iσy

)
, τ̂10 =

√
3
2

σz, τ̂1−1 =

√
3

2
(
σx − iσy

)
;

τ̂22 =

√
3

2
(
σx + iσy

)2, τ̂21 = −
√

3
2
[(

σx + iσy
)
σz + σz

(
σx + iσy

)]
,

τ̂20 =
1√
2

(
3σ2

z − 2
)

, τ̂K,−Q = (−1)Qτ+
KQ,

where >σx = 1√
2

 0 1 0
1 0 1
0 1 0

, >σy = 1√
2

 0 −i 0
i 0 −i
0 i 0

, >σz =

 1 0 0
0 0 0
0 0 −1

,

>
I =

 1 0 0
0 1 0
0 0 1

 is the unit matrix and >σ+ = 1√
2

(>σx + i>σy
)
, >σ− = 1√

2

(>σx − i>σy
)
.

The advantages of this representation are that these irreducible operators are trans-
formed in the polarization space in the same way that spherical harmonics are transformed
in the coordinate space [91], and that the measured light beam intensities can simply be
expressed in terms of their mathematical expectations. The correspondence of the tensor
elements tKQ to the field correlation components

〈
E∗i Ej

〉
is easy to find from the expan-

sion (57). Note that spherical operators can also be defined in terms of the Gell-Mann
operators [58,59,83]. However, unlike the decomposition of three-dimensional fields onto
Gell–Mann matrices, this decomposition has a physically clear interpretation.

The degree of polarization is described by the expression

D =

(
1
2 ∑

K=1,2
∑
Q

∣∣tKQ
∣∣2)1/2

. (58)

It is reasonable to consider the vector and tensor polarization components in (59)
separately, i.e., representing the total degree of polarization as [61]

D2 = D2
v + D2

t , (59)

where Dv =

(
1
2 ∑

Q

∣∣t1Q
∣∣2)1/2

and Dt =

(
1
2 ∑

Q

∣∣t2Q
∣∣2)1/2

are the vector and tensor polariza-

tion degrees, accordingly.
Vector polarization is defined by three parameters t10, t1−1, t11 and the tensor po-

larization is defined by five parameters t20, t2±1, t2±2, and the normalization Trρ is not
considered as a parameter. The values of Dv and Dt are determined by the possible values
of the components t1Q and t2Q, which can be determined from the condition of positivity
property of the diagonal elements of the density matrix (ρ11 ≥ 0, ρ22 ≥ 0, ρ33 ≥ 0), and the
normalization condition for the total intensity.

Geometrically, each possible vector polarization state can be represented by a point
P in a sphere with radius of

√
3/2 whose coordinates are t10,

√
2Ret11, and

√
2Imt11,

respectively (Figure 11).
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Figure 11. Geometrical representation of possible vector polarization states. The vector polarization
state is determined by the point P in the sphere and the degree of vector polarization by the length of
vector OP: Dv = Rv/

√
2, Rv = OP. The maximum radius of the sphere is Rmax

v =
√

3/2.

Acceptable values of the degree of vector polarization are 0 ≤ Dv =
(

1
2 R2

v

)1/2
≤

√
3/2, where Rv is the length of the vector OP (Figure 11). If we determine the vector

polarization in the direction of the z-axis, the components t1±1 disappear. In the case of the
direction of the polarization vector along the principal axis of the symmetric second-rank
tensor formed by

〈
T̂2Q

〉
, the components t2±1 also disappear. The possible states of tensor

polarization cannot be represented by a spherical area; these points form a cone inside a
sphere with a radius of

√
2, and the permissible values of the degree of tensor polarization

are 0 ≤ Dt ≤ 1 (Figure 12).
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√
2. The cross-section aAc of the cone is the

equilateral triangle.

The degree of polarization is determined by the length of the vector OP: D = R/
√

2,
R = OP. Thus, the degree of polarization D < 1 for a pure vector polarized beam (Dt = 0),
i.e., the vector polarized beam is only partially polarized (Figure 11). This indicates
that it cannot be represented by a pure polarization state. However, there is a com-
pletely polarized beam that does not have a preferred direction of the polarization vector
(t11 = t1−1 = t10 = 0), and this light beam is a pure tensor polarized beam (D = Dt = 1).
This corresponds to the point t20 = −

√
2 at the top of the cone (point A in Figure 12). As

can be seen from Figure 12, there are completely polarized states consisting of vector and
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tensor components of polarization on the circle abcd of the cone basis (for example, points
a and c with t10 = ±

√
3/2 and t20 =

√
1/2). The points on the circle abcd correspond to

circularly and linearly polarized beams and elliptically polarized states.
The unpolarized state of the beam is located in the center of the sphere. Note that

in the 2D case, an unpolarized beam can be represented as the sum of two orthogonally
(linearly or circularly) polarized beams, or as an incoherent mixture of equal amounts
of two oppositely polarized beams. In the 3D case, an incoherent mixture of opposite
polarization states χ11 = (1, 0, 0)T and χ1−1 = (0, 0, 1)T does not give a density matrix
equal to the density matrix for an unpolarized beam [61]. The degree of polarization of this

mixture is equal to D =
(

1
2 |t20|2

)1/2
= 1

2 . Moreover, the degrees of vector polarization

for the pure state χ0 = (0, 1, 0)T and the incoherent mixture of beams in the states χ11
and χ1−1 are equal to zero [61]. This means that vector polarization is not sufficient to
completely determine the polarization state of a 3D light beam. Additional parameters
(tensor polarization components) should be taken into account.

In the classical domain, there are nonzero intrinsic fluctuations of the Stokes pa-
rameters ∆σ2

i =
〈
σ2

i
〉
− 〈σi〉2 associated with tensor polarization components. Here,〈

σ2
i
〉
= tr

(
ρσ2

i
)

and 〈σi〉 = tr(ρσi). For an unpolarized light beam with the density

matrix ρunpol =
1
3

 1 0 0
0 1 0
0 0 1

, the total fluctuations are equal to ∑
i

∆σ2
i = 5/3.

It can be shown that two parameters corresponding to the vector and tensor degrees of
polarization are sufficient for a complete description of the characteristics of the electromag-
netic field, i.e., to distinguish between the two fields with different polarization matrices.
Let us consider two diagonalized polarization matrices ρ and ρ̃ with different eigenvalues
(λ1, λ2, λ3) and (λ̃1, λ̃2, λ̃3), respectively, having the same degrees of polarization D = D̃. It
is easy to demonstrate that Dv = D̃v and Dt = D̃t if only the matrices ρ and ρ̃ are identical,
i.e., λ1 = λ̃1, λ2 = λ̃2, and λ3 = λ̃3. Indeed, the degrees of polarization for these fields are
determined by the expressions [61]:

D2 = D2
v + D2

t = 3
2 (λ1 − λ3)

2 + 1
2 (λ1 − λ2 + λ3)

2,

D̃2 = D̃2
v + D̃2

t = 3
2
(
λ̃1 − λ̃3

)2
+ 1

2
(
λ̃1 − λ̃2 + λ̃3

)2.
(60)

The condition of equality of the vector and tensor polarizations (D = D̃, Dv = D̃v,
Dt = D̃t) leads to the equalities λ1− λ3 = λ̃1− λ̃3 and λ1− λ2 + λ3 = λ̃1− λ̃2 + λ̃3. It can
be seen that these equations are valid only in the case of λ1 = λ̃1, λ2 = λ̃2, and λ3 = λ̃3,
i.e., two different density matrices cannot obey the condition Dv = D̃v, and Dt = D̃t,
simultaneously. Thus, an unambiguous description of the polarization state of a light beam
can be carried out using two parameters corresponding to the vector and tensor polarization
degrees. Indeed, for the polarization matrices considered in [85], we have different vector
and tensor polarization degrees for two different fields. For example, two density matrices
with the eigenvalues λ1 = 0.7, λ2 = 0.2, λ3 = 0.1 and λ̃1 = 0.65, λ̃2 = 0.343, λ̃3 = 0.007 have
the same values of the total degree of polarization D = 0.56. However, these matrices have
different degrees of vector and tensor polarization: Dv = 0.52, Dt = 0.2, and D̃v = 0.56,
D̃t = 0.0145, respectively.

To obtain a simple physical interpretation of the tensor polarization, it is useful to use
the analogy between the polarization tensors and the multipole moments of the electrostatic
potential generated by the distributed charge. It can be noted that the decomposition into
irreducible representations of the rotation group SO(3) used above is actually a multipole
decomposition [91]. The total intensity corresponds to an electric monopole, the vector
polarization to an electric dipole, and the tensor polarization components to an electric
quadrupole. However, there are limitations to the analogy with electric moments. If the
electric dipole is a polar vector, then the polarization vector is an axial vector. Geometrically,
tensor polarization can be represented by an ellipsoid of charge or an ellipsoid surface.
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In the case where one of the expectation values
〈
σ2

x
〉
,
〈

σ2
y

〉
, and

〈
σ2

z
〉

disappears, the
polarization tensor is represented by a degenerate ellipsoid, namely, a cylinder.

Note that the polarization ellipsoid associated with the polarization tensor is also
analogous to the moment of inertia ellipsoid. The geometrical interpretation of the 3D po-
larization matrix in terms of the inertia ellipsoid and the orientation vector was considered
in [88].

Since all the polarization components are associated with field correlations, the vector
and tensor degrees of coherence corresponding to the vector and tensor parts of the density
matrix decomposition can be introduced. In the far zone Ez→ 0, and all tensor components
of the second-rank are transformed into vector components. This means that the 2D
formalism can be applied to describe the field in the far zone.

Thus, to describe an arbitrarily polarized light beam, the vector and tensor polariza-
tion degrees can be introduced. The representation in terms of vector and tensor operators
allows us to obtain a simple physical insight into the proposed parameters for the polar-
ization of an arbitrary field. It is shown that the tensor polarization components can be
associated with the intrinsic fluctuations of the Stokes parameters. It is shown that for a
complete description of three-dimensional polarization, two measures of the degrees of
polarization (vector and tensor) are sufficient, i.e., to distinguish two different polarized
fields. The proposed definition of polarization can be useful for describing electromagnetic
fields in near field optics and analyzing propagation of a focused light beam.

4. Discussion

The polarization of electromagnetic waves play an important role in the interaction of
light and matter, optical transmission, photonics, nanoplasmonics, high-power lasers and
amplifiers, optical coherence tomography and imaging.

Multimode fibers are becoming important for improving the capabilities of next-
generation telecommunication systems due to the spatial division multiplexing tech-
nique [92]. In recent years, they have attracted considerable attention in optical com-
munication [93,94], soliton dynamics [95,96], ultrafast photonics [97,98], and other areas.
In [99], the formation and manipulation of breathing solitons in graded-index multi-mode
fibers was numerically demonstrated. Multimode fibers and nonlinear propagation within
them can also be used to improve the efficiency of all optical data processing devices [100].

It was shown in [70] that classical beam propagation in optical waveguides can
simulate quantum phenomena such as squeezing, Schrodinger cat states, collapse and
revival. The possibility of measuring extremely small displacements, which can be used in
laser gravitational-wave experiments and in ultra-high resolution spectroscopy, is shown.
The results obtained can be useful in various fields, such as gravitational wave experiments,
high-precision spectroscopy, and quantum information processing and metrology.

Due to the high mode dispersion, it is important to continuously analyze and mon-
itor the dynamics of the modes propagating in multimode fibers. In [101], the complete
polarization control of coherent light transmitted through an MMF with a strong mode
and polarization coupling is experimentally demonstrated. It is necessary to propose a
new measure of the degree of depolarization for simultaneous monitoring of the evolution
of polarization. Recently, a new definition of the depolarization degree of partially polar-
ized beams—the dispersion degree of polarization—has been proposed to measure the
performance of fiber depolarizers [102].

It is of interest to determine the length of depolarization of light in real optical fibers. It
is known [8,9,12] that when coherent light propagates in optical fibers, significant changes
in the state and degree of polarization occur. As can be seen from Formulas (30) and (37),
the degree of polarization depends on the gradient parameter ω of the fiber, the axial
displacement x0 of the beam and the wavelength λ. From Equations (30) and (37), it is
possible to determine that the depolarization length corresponds to a 50% decrease in the
degree of polarization:

ld ≈ (kn0/ω)1/2
(

n2
0/
(

ω2x0

))
.
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Substituting here the values for the gradient parameter ω = 7 · 10−3 µm−1 (a fiber with
a radius r0 = x0 = 25 µm and a relative difference in the refractive index ∆ ≈ 6.9 · 10−3) and
the wavelength λ = 0.63 µm, we get the resulting distance ld ≈ 8.3 cm. Such depolarization
was experimentally observed in an isotropic multimode optical fiber [12]. Depolarization
is enhanced by increasing the axial displacement of the incident beam or the angle of its
inclination to the waveguide axis. Since rays with a large axial displacement x0 correspond
to high-order fiber modes, the depolarization of modes with large numbers will be stronger
compared to low-order modes. Therefore, in coherent communication systems, it is better to
use single-mode fibers without birefringence, where the degree of polarization is retrieved
with a period z = π/ω on propagation. This length in graded-index optical fibers is equal
to z ≈ 0.5 mm.

Note that the depolarization of light has a diffraction origin and the consideration of
the Rytov rotation as a “geometric” depolarization mechanism is not correct. The Rytov
rotation leads only to the rotation of the plane of polarization and not to a change in the
degree of polarization. In addition, the angle of rotation of the polarization plane does not
decrease with decreasing wavelength, whereas depolarization disappears at λ→ 0. As
shown above, depolarization also occurs for meridional rays for which there is no Rytov
rotation.

Physically, depolarization corresponds to a decrease in the degree of correlation
between different components of the field or to the appearance of a field component that
is not correlated with the original component. In real situations, depolarization is most
often caused by the scattering of light on small-scale inhomogeneities of the medium.
The physical cause of depolarization in our case is the scattering of light on large-scale
inhomogeneities of the medium. Since the influence of large-scale inhomogeneities on
the polarization characteristics is small, it is usually neglected. However, in waveguide
problems, small corrections accumulate with distance and can lead to noticeable effects.

Thus, the decrease in the degree of polarization in multimode optical fibers has a
diffraction origin and can only be explained using the wave approach. Since depolarization
disappears at both λ→ 0 and x0→ 0, it can be interpreted as the result of the interaction of
polarization (spin) and trajectory (orbital angular momentum). The degree of polarization
of both linearly and circularly polarized beams decreases with distance according to the
quadratic law. The depolarization of the meridional rays is less than that of the sagittal
rays. For right- and left-handed circularly polarized light, the effect of asymmetry with
respect to the sign of the twist of the sagittal ray trajectory is observed. Depolarization is
enhanced by increasing the axial displacement of the beam, the gradient parameter of the
fiber and the radiation wavelength.

For three-dimensional polarization, the coherence matrix of three-dimensional electro-
magnetic fields is represented as spherical or rectangular tensors, similar to the Gell–Mann
matrices. The evolution of the coherency matrix can be defined in terms of the Hamiltonian
obtained from the three-component field Maxwell equations. It is shown that two measures
of the degrees of polarization (vector and tensor) are sufficient for a complete description
of the three-dimensional polarization, that is, for distinguishing two fields with different
polarization matrices [61]. The paper [59] shows the possibility of an unambiguous de-
scription of three-dimensional polarization using two measures, namely, the vector and
tensor degrees of polarization. Note that the polarization matrix of any three-dimensional
field can be directly measured using nanoprobe scatterers [103,104], which enables an
experimental determination of the vector and tensor degrees of polarization of the light
under consideration.

Finally, we present the fundamental effect of spin symmetry breaking via spin-orbit
and tensor interactions, which occurs even in rotationally symmetric fibers. Due to this
effect, the conversion of the incident linear polarized light into a particularly left- or right-
handed circularly polarized light can be achieved. Although the effect manifests itself
in a graded-index fiber, it manifests itself in general cylindrical potentials, in particular
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the Coulomb cylindrical potential. The phenomenon can be used in polarization control
applications, such as new circular polarizers, polarization transformers and modulators.

Recently, new developments in the phenomenon known as transverse spin, which
occurs in laterally confined electromagnetic waves, have been of great interest [105]. The
spin-pulse blocking effect associated with transverse spin has already found promising
applications for efficient spin-directed couplers [106,107].

More recently, interesting optical phenomena related to the angular momentum of
light have been demonstrated theoretically and experimentally [108–110]. In [109], vectorial
optomechanical effects mediated by the anisotropy of a nematic liquid crystal material and
the longitudinal field component were discovered. It was shown in [108] that transverse
spin is essentially a polarization-independent phenomenon that persists even in fields
generated by completely unpolarized sources. The transverse spin appears in any paraxial-
to-nonparaxial transformation, even without a change in the degree of polarization. This
result establishes an important connection between three-dimensional polarization in
the transverse spin [103,111] and non-paraxial fields [58–61,112,113]. The origin of this
phenomenon lies in the intrinsic spin-orbit interaction of light. These results provide a
new opportunity to use polarization-independent spin from unpolarized sources, such as
in nanoelectronics, telecommunications, photovoltaics, optical imaging, etc. Transverse
spin can also be useful for unidirectional coupling of light in and from optical fibers or
waveguides, which may have implications for future quantum networks [114,115].

5. Conclusions

In this review, we focused on studying the effects of spin-orbit interactions in the
propagation of vortex light through multimode graded-index fibers. Several detailed
examples discussed in this review demonstrate that optical fibers supporting vortex beams
can be considered using an operator approach well-developed in quantum mechanics.
With this approach, all the dynamics of the system are transferred to the operators. This
makes it possible to study the evolution of the beam parameters using purely algebraic
procedures, i.e., without using explicit expressions for the wave functions of the field and
without calculating the corresponding integrals. This model is simple and provides a
physical clarification of the phenomenon. Note that the operator approach can be used
to study the evolution of polarization in optical fibers with birefringence, absorption, or
amplification, as well as with random inhomogeneities.

Understanding the relationship between the degree of polarization, the spin-orbit
interaction and the Berry phase is important for the design of optical devices, such as
new polarizers, polarization transformers, and modulators. Fluctuations of the Berry’s
phase, which have a wave nature, during the propagation of light in an optical fiber were
found in [57]. It was shown that the variance of the rotation angle of the polarization plane
increases with distance and can be determined by measuring the degree of polarization.

Spin-dependent effects on vortex light beams propagating in an optical fiber are
demonstrated by solving the full three-component field Maxwell equations using perturba-
tion analysis. The splitting of degenerate modes due to the spin-orbit interaction is shown.
Vector and tensor polarization degrees are introduced to characterize the polarized beam.
It is shown that the degree of the pure vector polarized light beam is less than 1, that is,
the vector polarized light beam is only partially polarized. The geometric interpretation of
vector and tensor polarizations is presented.
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