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Abstract: Analyzing representative volume elements with the finite element method is one method
to calculate the local stress at the microscale of short fiber reinforced plastics. It can be shown
with Monte-Carlo simulations that the stress distribution depends on the local arrangement of the
fibers and is therefore unique for each fiber constellation. In this contribution the stress distribution
and the effective composite properties are examined as a function of the considered volume of the
representative volume elements. Moreover, the influence of locally varying fiber volume fraction is
examined, using statistical volume elements. The results show that the average stress probability
distribution is independent of the number of fibers and independent of local fluctuation of the fiber
volume fraction. Furthermore, it is derived from the stress distributions that the statistical deviation of
the effective composite properties should not be neglected in the case of injection molded components.
A finite element analysis indicates that the macroscopic stresses and strains on component level are
significantly influenced by local, statistical fluctuation of the composite properties.

Keywords: RVE; SVE; short fiber reinforced; fiber orientation; homogenization; composite

1. Introduction

For an accurate numerical design of a component made of short fiber reinforced
plastics, knowledge of the local and especially the fiber orientation-dependent effective
composite properties are necessary. Several modelling techniques are discussed in the
known literature. Besides the Meanfield approaches [1–4], which are based on the work of
Eshelby [5], the Fullfield analysis of the composite is also known [6–14]. In this method
a certain volume of the composite is modelled and usually numerically analyzed. The
modelling includes the geometric representation of the composite, the use of appropriate
constitutive equations for the individual phases of the composite and the application of
suitable boundary conditions. The resulting boundary value problem can then be solved
with various methods, for example with the finite element method (FEM) [6] or a Fast
Fourier approach [15].

In the literature, the influences of different modelling of the finite volume on the
effective composite properties can be found [16–27]. This includes the definition of the
finite volume itself, which is usually referred to as a Representative Volume Element
(RVE). Different approaches for RVEs have been discussed so far. Hill [12] coined the
term RVE. By his definition, an RVE is a section of a composite that must be statistically
representative of the entire composite. Additionally, he demands a sufficiently high number
of inclusions to neglect boundary effects. Another definition of the term RVE is provided
by Drugan and Willis [13]. They define a RVE as the smallest volume that can be used
to calculate an effective average of a composite property. Using two-dimensional RVEs
with circular inclusions, Gitman et al. [14] work out the existence or non-existence of RVEs
depending on the constitutive equations used and the influence of size and periodicity on
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the effective composite properties. Moreover, it is known that each (different) realization
of a RVE can provide a different value of the effective composite properties, so that a
statistical consideration must be made, for which Monte-Carlo simulations are particularly
suitable [9]. It has been shown that an effective mean value can be calculated over several
small RVEs instead of one large one [28–30]. Thereby, the probability of a large deviation
from the mean value is less for larger volumes. Accordingly, the Hill and the Drugan and
Willis approaches must provide the same mean value but a different standard deviation of
the effective composite properties.

The question that arises from this is whether such a standard deviation has a physical
significance for applications of short fiber reinforced plastics and must be computed cor-
rectly or whether it can be neglected. To answer this research question, this paper calculates
the standard deviation of the effective composite stiffness of a short fiber reinforced plastic
as a function of the volume under consideration. Therefore, two different approaches
for the definition of the finite volume are used. This is followed by a subsequent critical
evaluation, especially against the background of a locally different fiber orientation of real
components. This is accomplished with a finite element analysis (FEA) at the macroscopic
component level, considering the local distribution of composite properties.

2. Materials and Methods

The standard deviation of the effective composite stiffness of a short fiber reinforced
plastic is calculated by running a Monte-Carlo simulation of RVEs. The modelling and
subsequent homogenization for the calculation of the effective composite properties is
largely taken from a previous study [25] and briefly presented in the following.

The microstructure investigated in this paper is defined by a fiber geometry, a fiber
lengths distribution (LDF), a fiber volume fraction, a fiber orientation distribution (ODF), a
fiber arrangement and the phase properties. For a realization of the microstructure within
the Monte-Carlo simulation it is first necessary to determine how many fibers are used. The
length l of the fibers is defined according to a given fiber length distribution. Analogously,
the spatial orientation of the fibers is defined based on a fiber orientation density function.
The volume of the matrix phase is determined in relation to the realized fibers and the
prescribed fiber volume fraction. Subsequently, the fibers are randomly placed in the
volume so that the microstructure is periodic and none of the fibers are overlapping with
each other. The described procedure for the creation of a fiber ensemble is illustrated in
Figure 1.
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Figure 1. Procedure of the creation of a model with a unique fiber ensemble. (a): Considering the number of fibers. (b): Fiber
length according to LDF. (c): Spatial orientation of fibers according to ODF. (d): Determining volume. (e): Placing fibers to
achieve periodic microstructure.

In addition to the procedure described above, another variant is also examined in this
paper. Here, the volume is not determined based on the defined fibers but based on the
total fiber length distribution and fiber orientation. In each realization the total volume is
therefore constant. Thus, the fiber volume fraction for a single realization allows a deviation,
but on average over many realizations the fiber volume fraction equals the defined value.
In the following, this variant will be referred to as Statistical Volume Element (SVE), while
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the variant with the constant fiber volume fraction will be referred to as Representative
Volume Element (RVE).

It is assumed that the mean value of the effective composite properties, calculated
from many realizations, is identical for both variants. This assumption is to be checked by
the findings of this study. However, the standard deviation should be different depending
on the size of the finite volume.

Figure 2 further illustrates the difference between the SVE and RVE approach. For
this purpose, a composite is shown in a two-dimensional way. The SVE approach can
be interpreted as a section of constant size, where the fiber volume content vF can vary
accordingly. The RVE, on the other hand, must be adjusted in size to maintain the same
fiber volume content. Table 1 summarizes the different definitions of SVE and RVE.
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Figure 2. Two different approaches to define the finite volume: Statistical Volume Element (SVE) with constant dimensions
and Representative Volume Element (RVE) with constant fiber volume fraction.

Table 1. Comparison of the definition of parameters with the SVE and RVE approach.

Parameter SVE RVE

number of fibers constant constant
fiber geometry constant constant

fiber length defined by LDF defined by LDF
fiber volume fraction defined by fibers and total volume constant

total volume constant defined by fibers and fiber volume fraction
fiber orientation defined by ODF defined by ODF

fiber arrangement random random
phase properties constant constant

In this paper, the effective stiffness of the composite in the fiber direction is investi-
gated. For this purpose, the local stress fields for an applied periodic displacement are
calculated by the FEM using the commercial software ABAQUS from DASSAULT SYS-
TEMS. Since in this study the resulting volume averaged stress σ̂r is uniaxial, the effective
stiffness Êr of a fiber ensemble r is determined by

Êr =
σ̂r

ε̂r
, (1)

with the volume averaged strain ε̂r. Note that, for simplicity, the directional indexing of
the tensorial variables is not shown. Stresses and strains used are in the direction of the
applied displacement. For the exact application of the periodic displacement boundary
conditions in a non-periodic network, as well as the exact procedure of homogenization,
reference is made to a previous investigation [25]. Figure 3 summarizes the calculation of
the effective stiffness with a Monte-Carlo simulation. First, a microstructure is realized
and the local stress and strain fields are determined by means of a FEA. Consequently, the
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volume averaged stress and strain is calculated by homogenization. From this the effective
stiffness of the individual realization can be derived. This procedure is repeated n-times
with further fiber ensembles.
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Figure 3. Method of homogenization: creation of the microstructure (1), use of FEM to determine local stresses and strains
(2), volume averaging (3) and calculation of effective modulus (4).

The investigation in this paper is performed using a polybutylene terephthalate based
(PBT) composite with 20.0 percent by weight (11.6 percent by volume) of glass fibers
(PBT-GF20). The composite material is of type 2300 GV1/20 from Celanex [31]. In this
section, a mechanical characterization of the composite and the non-reinforced matrix
material is given. The characterization is performed from test specimens cut out of 2 mm
thick injection-molded plates (90 mm × 90 mm × 2 mm). The shape of the test specimen
corresponds to DIN EN ISO 527 1BA. The injection-molded plates and the orientation of the
specimens on the plates are shown in Figure 4. Furthermore, the used coordination system
is given. The specimens are prepared in such a way that the tensile direction corresponds to
the flow direction of the injection molding process. This direction is labelled as 2-direction,
the 1-direction is perpendicular to the flow direction and the 3-direction points in the
thickness direction of the plate. Moreover, Figure 4 shows the true stress and strain of the
experimental tests. Shown are the mean value and the standard deviation of 5 repetitions
of the measurement. Furthermore, a fit of linear–elastic material models to the mean value
of the characterization tests is shown, as used in the simulations. At approx. 35 MPa and
45 MPa, respectively, a substantial deviation of the measured stress curves from the linear
model can be recognized. As a second parameter for the isotropic, linear–elastic material
model, the poisons ratio is taken from [32]. Values for the glass fibers, which are also
modelled as isotropic, linear–elastic material, are taken from [32,33]. The used parameters
are shown in Table 2.
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Figure 4. Mechanical characterization of PBT-GF20 and PBT by tensile testing of specimens milled
out of injection molded plates. The tensile direction with the PBT-GF20 corresponds to the flow
direction of the injection molding process (2-direction).

Table 2. Parameters of the isotropic, linear–elastic material model used for the individual phases and
parameter of linear elastic fit of the PBT-GF20 composite for comparison.

Phase Young’s-Modulus [MPa] Poisson’s Ratio

composite 5275 -
matrix 2000 0.42 [32]
fibers 73,000 [32,33] 0.22 [32]

Microcomputed tomography (µCT) can be used to determine the fiber orientation of
short fiber reinforced plastics. Therefore, a cylindrical specimen with a diameter of 2 mm is
taken from the center of a plate. The specimen is examined with a resolution of 1.80 µm
voxel edge length and evaluated in 20 equidistant slices. For each slice, the fiber orientation
tensor of second order a determined by

a = aij =
1

∑N
k ∆zk·r2

k

·
N

∑
k

∆zk·r2
k ·(nk)i·(nk)j (2)

where ∆zk is the length, ∆rk the radius and nk is the direction of a fiber k. Figure 5 shows the
components of the experimentally determined fiber orientation tensor a over the thickness
of the injection molded PBT-GF20 plates.
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Figure 5. Measured components of fiber orientation tensor through thickness of the plates.

According to Figure 5, the fiber orientation can be divided into two outer boundary
layers and one middle layer. The middle layer can be identified between 0.9 mm and
1.2 mm. In the boundary layers the largest value of the fiber orientation tensor is a22, in the
middle layer it is a11.

The ODF is reconstructed by the method of maximum entropy [34] from the averaged
fiber orientation tensor of the boundary layers, neglecting the core layer between 0.9 mm
and 1.2 mm. Figure 6 shows the procedure with the used fiber orientation tensor a and
the resulting ODF. The color of the ODF shows the probability that a fiber points in this
specific direction.
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The fiber length distribution and fiber diameter is determined by incinerating a sample
of PBT-GF20 and measuring the fibers exposed with an optical microscope of type DSX500
from OLYMPUS. The exposed fibers are separated from each other for the measurement
process with the help of an alcohol suspension. Figure 7 shows a histogram with the
probabilities of the fiber lengths. The fiber diameter d is 11.6 µm, resulting in a mean aspect
ratio l/d of the fiber length distribution of 15.4.
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3. Results

In this section the numerical results of the Monte-Carlo simulations are presented.
First the comparison between the SVE and the RVE approach is discussed followed by an
analysis of the standard deviation of the composite stiffness as a function of volume.

3.1. Influence of Finite Volume Approaches

The two approaches, SVE and RVE, respectively, are each investigated using 100 fibers
in 60 different fiber ensembles. The evaluation is presented as histograms of the effective
composite stiffness in Figure 8. A normal distribution is here assumed as null hypothesis,
not rejected by the D’Agostino–Pearson test [35,36] with p-values of 0.365 (SVE) and
0.629 (RVE) being each greater than a selected significance level α = 0.05. In addition to
the histograms Figure 8 shows the normal distributions and their mean values and the
experimentally determined value of the mechanical characterization of the PBT-GF20.

The mean values of both approaches differ from each other with 5.269 MPa (SVE)
and 5.300 MPa (RVE) only by 0.6%. The fact that both mean values deviate only slightly
validates the assumption made in Section 2. The reason for this is that the average fiber
volume fraction ∑n

r=1
v f ,r
n of the SVE approach is equal to the given fiber volume fraction,

which is realized in each RVE ensemble. However, more interesting at this point is the
different standard deviation of the effective composite stiffness. The absolute value of the
standard deviation is 235 MPa for the SVE approach and 151 MPa for the RVE approach,
respectively. As the standard errors are sufficiently small at 30.0 MPa (SVE) and 19.5 MPa
(RVE), the standard deviation is determined in sufficient accuracy by the 60 samples.
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3.2. Influence of Finite Volume Size

Next, the influence of volume size on the standard deviation of the effective composite
stiffness is investigated. The aim of this section is to prove that the standard deviation
is a function of the volume under consideration. For this purpose, the SVE approach is
used since the volume is constant in every realization. The investigation is carried out with
50 and 100 fibers, again with 60 fiber ensembles each. The number of fibers is of course
proportional to the volume. Figure 9 shows the result of the Monte-Carlo simulation,
analogous to Figure 8.

The p-values of the distributions are 0.365 (100 fibers) and 0.255 (50 fibers), not
rejecting the null hypothesis of a normal distribution. The mean values are 5269 MPa with
100 considered fibers and 5296 MPa with 50 fibers. Thus, both mean values differ only
very slightly with 0.5% from each other. However, the scattering is significantly more
pronounced with 50 fibers than with 100 fibers. Correspondingly, the standard deviation is
larger with 364 MPa to 235 MPa. The standard errors are 47 MPa (50 fibers) and 30 MPa
(100 fibers), respectively, which shows that enough samples are considered.

The Monte-Carlo simulations with 50 and 100 fibers could be repeated in principal
for any fiber numbers to work out the influence of the considered volume on the standard
deviation. However, this is not very effective, as it would require a lot of computing costs,
especially at a higher number of fibers. Therefore, the influence of the considered volume
is worked out by a statistical analysis of the already available simulations results using 50
and 100 fibers. This procedure requires the stress probability within the fiber ensembles.
Exemplarily, the stress probability of three randomly selected fiber ensembles, at a volume
averaged strain of 0.01, is shown in Figure 10a. The probability plotted is defined as the
normalized probability of stress at each node of the finite element model, weighted by the
integration weight of the corresponding node. The volume averaged stress of the entire
composite is also shown as a dashed line. The first peak of the probability plot is caused
by the matrix phase, which is shown separately in Figure 10b. Note that the mean value
shown in Figure 10b is also the mean value of the composite, not of the matrix phase.
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An interesting side aspect for this study can also be derived from Figure 10b. A high
volume-averaged mean stress of the composite (Ensemble 1) does not necessarily indicate
a high matrix stressing. In fact, the probability of critical stresses above 35 MPa (cf. tensile
tests in Section 3) is lowest for Ensemble 1 and highest for Ensemble 2, which has the lowest
volume-averaged mean stress of the composite. If an initial local matrix failure is assumed
as the main failure criterion for a composite, Ensemble 2 has the highest probability of
failure. Consequently, a volume-averaged mean stress of the composite does not seem
to be an appropriate failure criterion since the volume-averaged stress of the composite
corresponds not necessarily to a high probability of high matrix stress above a critical value.

Figure 11 shows the average stress distribution of all 60 fiber ensembles for 50 and
100 fibers each. Figure 11a shows the entire composite and Figure 11b the matrix phase for
a better differentiation. In both figures it is evident that the stress distributions are almost
identical. This implies that this representation is independent of volume and can therefore
be assumed as a statistical population. Additional samples do not further change the stress
distribution. The assumption of the statistical population means that all possible stresses
within the composite are covered and their statistical probability of occurrence is known.
It should be noted that there must be a minimum number of fibers per ensemble so that
a statistical population can be determined. This becomes evident from the scenario of an
ensemble with a single fiber, which shows no variation in fiber arrangement and therefore
no variation in the stressing of the fibers.
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The assumption of the average stress distribution of all fiber ensemble as a statistical
population allows a procedure to determine the volume-dependent distribution of the
composite stiffness. The procedure is structured as follows:

1. Sampling stress values from a statistical population;
2. Calculating mean value of samples;
3. Calculating stiffness out of mean of samples with global strain;
4. Repeating steps 1–3 several times to achieve stiffness distribution;
5. Repeating steps 1–4 for different volumes.
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In step one, stress samples are generated from the statistical population according to
their probability. Hereby, the number nd of values drawn is proportional to a volume VS
being considered. The relationship is

VS =
nd

nST
, (3)

where nST is the total number of discretization grid points of the statistical population.
Here, it should be recalled that the stress probability is normalized. The physical unit of
the volume VS is defined by the unit system used in FEA—in this investigation it is µm.

Figure 12 illustrates the sampling procedure using the matrix phase. It shows the
statistical population for the matrix stress as well as 500 samples drawn from the population.
The samples are shown as a histogram.
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Figure 12. Average stress distribution and illustration of drawn samples.

The sampling can be carried out separately for matrix and fiber phase, or directly com-
bined for the composite. Thus, the sampling can be conducted within the SVE (combined)
or RVE (separated) approach. In the case of the RVE approach, the exact ratio of the samples
of the matrix and the fibers must be ensured so that the volume ratio corresponds to that
used for the Monte-Carlo simulation. For further investigation in this paper, the samples
are taken from the stress distribution of the composite, i.e., the SVE approach is used.

To calculate the effective composite stiffness from the drawn stress values, the arith-
metic mean value of the drawn stress values is first calculated. Then, the stiffness is
determined according to Equation (1) (here: 1% volume averaged strain).

A distribution of the stiffness can be generated by a repeated procedure, which is
performed here as an example with three selected volumes. The selected volumes are
calculated by V = l3 with l = 300 µm, 500 µm and 700 µm. For these volume numbers,
10,000 repetitions of the drawing of stiffness values are made and the result is shown
in Figure 13 as histogram and normal distribution. To avoid large numbers, the unit is
converted to mm3 in the legend. The identical mean value of the three stiffness distributions
and the different scattering are clearly visible. The largest scattering is the sampling with
the smallest volume and vice versa.
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The standard deviation determined from the drawn stiffness distributions can be
further represented as a function of size and is shown in Figure 14. The representation
over one edge length, with l = 3

√
V, is chosen for better understanding in the context

of a component design. Furthermore, the standard deviation is shown relative to the
mean value of the composite stiffness. The values are directly taken from the Monte-Carlo
simulations of 50 and 100 fibers and are used as validation of the sampling method. The
values of the Monte-Carlo simulation and the sampling procedure match very well. This
validates the sampling procedure for determining the size-dependent standard deviation
from a statistical population.
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A main result of this study is the exact relationship between standard deviation
and edge length: with increasing edge length, the relative standard deviation of the
effective composite stiffness decreases rapidly and is negligible for large edge lengths. For
smaller edge length, however, the deviation is not negligibly small. This seems particularly
important against the background of a fiber orientation (Figure 5), which is only constant
for a small length, especially in thickness direction of shell-like components.

4. Discussion

According to the current state of the art, mean values of effective composite stiffness
are usually considered when designing components made of short fiber reinforced plas-
tics [37]. This is based on the assumption that the volume of interest in a component design
is very large and the scatter of the mean properties is therefore small. This assumption is to
be discussable against the background of the results of the study shown (cf. Figure 14).

The influence of a local scattering of the composite stiffness on the component level will
be shown. For this purpose, a tensile test specimen is numerically analyzed in the following
with consideration of the local scattering of the composite stiffness. The composite is
modelled as a liner–elastic material. A tensile specimen according to DIN EN ISO 527, type
1BA (Figure 4) is used for this purpose. For simplification, only the boundary layer with a
homogeneous fiber orientation is considered in the analysis. With this simplification, the
effect of scattering by the fiber ensembles can be separated from the effect of scattering by
the fiber orientation.

The numerical analyzation is carried out with two selected mesh sizes, 1.0 mm edge
length in the first case and 0.25 mm in the second case. The used elements are quadratic
brick elements (C3D20). For each node of the finite element model the modulus of elasticity
is drawn according to the values of a normal distribution calculated in Section 4 with
respect to the selected mesh size. The mean value of this normal distribution in both cases
is 5300 MPa and the standard deviations are 1060 MPa (0.25 mm) and 132.5 MPa (1.0 mm).

As a boundary condition for the FEA of the test specimen, one end of the specimen is
fixed, and a displacement of 1 mm is applied to the opposite end. As a result, the von-Mises
stress is shown in Figure 15.
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The FEA with 1.0 mm mesh size yields a nearly constant stress of approximately
83 MPa with a maximum scattering of ±1.0 MPa. However, with the finer mesh an
inhomogeneous stress distribution of the tensile test specimen due to the scattering of the
composite stiffness is clearly visible. In an enlarged section of the surface, stress values
between about 75 and 95 MPa occur. From the results two main points can be derived.
First, the stresses on macroscopic scale can differ from those calculated by a purely mean-
based model. A design based on constant value would therefore not be able to take the
locally occurring higher stresses into account. This involves the potential risk that the
design of the components is not sufficiently safe against mechanical failure. Second, the
scattering of stress values is mesh-dependent, with a greater deviation at a finer mesh
size. Obviously, it does not make sense to reduce the mesh size more and more until the
limit of the assumption of the composite as a continuum is reached, or rather to model
induvial fibers in component analysis. Instead, it seems to be more useful to develop a
material model that can determine the scattering of stress on a statistical basis. Especially
in a critical section of a component, this would provide import information for the design
process of short fiber reinforced plastics.

5. Conclusions

In this research the statistical deviation of the effective stiffness of a short fiber re-
inforced composite is investigated. For this purpose, a Monte-Carlo simulation of finite
volume models is performed. The finite volume model is defined by two different ap-
proaches. One is the RVE approach, where the fiber volume fraction is fixed for each
realization of the finite volume. On the other hand, the SVE approach, where the fiber
volume fraction may differ for each realization, is used. With both approaches the mean
value of the effective composite stiffness calculated from the Monte-Carlo simulations is
identical, but the scattering is different. With the SVE approach, the standard deviation
is larger due to the fluctuating fiber volume content. Therefore, if the standard deviation
is of interest, the SVE approach should be used. If only the mean properties are to be
calculated, the RVE can be more efficient since fewer realizations are required to reach a
certain confidence level.

Besides the influence of a locally varying fiber volume content, the influence of the fi-
nite volume size is considered. For this purpose, the volume-dependent standard deviation
of the effective composite stiffness is calculated in this investigation using sampling of the
statistical population. With this procedure it becomes evident that the smaller the volume,
the greater the standard deviation. If the volume of interest is small enough, for example
edge length < 0.25 mm, the standard deviation can become meaningful. In the context of
dimensioning technical plastic parts this means that stresses and strains on a macroscopic
level, caused by an applied external load, can be significantly affected by statistical fluctua-
tions on the fiber scale. These fluctuations occur not only within one component, but also
over different components. Modelling techniques based solely on mean values cannot take
these fluctuations into account and can lead to inaccurate component design.
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