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Abstract: In this study, an artificial neural network is designed and trained to predict the elastic
properties of short fiber reinforced plastics. The results of finite element simulations of three-
dimensional representative volume elements are used as a data basis for the neural network. The
fiber volume fraction, fiber length, matrix-phase properties, and fiber orientation are varied so that the
neural network can be used within a very wide range of parameters. A comparison of the predictions
of the neural network with additional finite element simulations shows that the stiffnesses of short
fiber reinforced plastics can be predicted very well by the neural network. The average prediction
accuracy is equal or better than by a two-step homogenization using the classical method of Mori
and Tanaka. Moreover, it is shown that the training of the neural network on an extended data set
works well and that particularly calculation-intensive data points can be avoided without loss of
prediction quality.

Keywords: artificial neural network; machine learning; short fiber reinforced plastics; composites; ho-
mogenization

1. Introduction

The reliable and proper design of composite components consisting of short fiber
reinforced plastics (SFRP) is still a big challenge. Especially the fact that the multi-phase
microstructure of the SFRP composite and the composite properties are largely influenced
by the manufacturing process further complicates the design process. One possibility
of a reliable prediction of the composite properties can be achieved by using material
models that take the microstructure of the composite into account. A frequently applied
and established approach is the method of Mori and Tanaka [1]. This method is easy
to implement and the predictions can be calculated relatively fast. However, it is based
on some assumptions, such as the uniform matrix stress or an ellipsoidal fiber geometry,
which may be questioned in some cases. To improve the model predictions, it is often
attempted to model the microstructure in more detail to integrate more information of the
microstructure into the material models and thus use fewer assumptions. This means that
the microstructure is modeled in more detail to achieve a more precise material model
of the composite. The term representative volume element (RVE) is widely used in this
context [2–4]. It defines a certain volume of the microstructure which is considered to
describe the microstructure statistically. To determine effective composite properties based
on an RVE, the local state variables, such as stress and strain, are numerically calculated
and then homogenized. The finite element method (FEM) [5] is suitable for this purpose.
A fundamental problem, however, is the required calculation time. Even with today’s
available computing power, detailed RVEs can result in unacceptable calculation times.
Especially with the FE2 Method [6], the required calculation time of complex technical
components can be extreme. Within this method, an RVE is considered and solved with a
finite element analysis (FEA) for each point of an FEA of a technical component.
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The tremendous numerical effort of the FE2 Method could be overcome by neural
networks. With neural networks, it is possible to approximate complex mathematical
relations by very fast evaluable functions. Necessary for this is a sufficiently large amount
of data about the relation, which will be approximated.

The modeling of composite properties by neural networks based on RVEs appears
therefore to be reasonable. Using neural networks, the required computation time of
technical components can be significantly reduced compared to a FE2 approach and the
results will still be based on detailed RVEs requiring less assumptions compared to homog-
enization methods like the method of Mori–Tanaka.

Recently, several studies have been presented that investigate material properties or
material modeling of composite materials using neural networks. In [7] linearly elastic,
two-dimensional RVEs for generic composites are used by Liu et al. to create a database,
and then a neural network is used to reproduce the data. In [8] Chen et al. investigate
the prediction of the strength of metal–matrix composites by neural networks, also based
on two-dimensional RVEs. Rao and Liu demonstrate that with convolutional neural
networks it is possible to predict the resulting stiffness for specific arrangements of spherical
inclusions [9]. In [10] nonlinear stress–strain relations of (binary) RVEs are used by Yang
et al. as a database for a neural network. A viscoelastic, one-dimensional material model is
investigated in [11] by Jung and Ghaboussi.

Elasto–plastic modeling is also found in some investigations. A proof-of-concept
study is carried out in [12]. It is demonstrated that it is feasible to describe the stress–strain
relationship of a von Mises material through a neural network model. A comparison
between a classical mesoscale constitutive, a hyper-reduction and neural networks is
presented [13]. It is found that neural networks are fast and can reproduce general stress
conditions and can be re-trained to use additional data. However, it is mentioned that
neural networks require proper architecture and training and are not well suited to be used
for extrapolation of their training base.

Wu et al. analyze the implementation of a neural network for cyclic and non-
proportional load paths [14]. Viscoplasticity is also modeled on the micro-scale with
recurrent neural networks in [15] by Ghavamian and Simone. Anisotropic, elastoplastic
modeling is presented by Settast et al. for two-dimensional foam structures in [16] and
in [17]. Multi-axial, path-dependent modeling of two-dimensional foam structures is pre-
sented in [18] by Gorji and Mozaffar. Properties that are determined by transformation pro-
cesses of the microstructure can also be modeled [19]. Electrical and electrical–mechanical
coupled properties are investigated in [20,21] for carbon nanotube composites.

All these investigations show that neural networks can be used to precisely pre-
dict complex material properties if a sufficient database exists. However, there is still
research necessary before neural networks can be used for the design process of technical
components. In this paper, the existing list of investigations will be extended for SFRP, es-
pecially for glass-fibers. The focus is particularly on a larger database of three-dimensional
linear-elastic properties as a function of microstructure and matrix properties. In total six
independent parameters are varied. RVEs are used to generate the database. The aim is to
design an optimal neural network under the aspect of absolute accuracy, robustness, and
computational effort. Furthermore, the creation of the database is also focused on in this
study. It is investigated to reduce the numerical effort without compromising the quality
of the predictions.

2. Materials and Methods

In this section, the used methods are presented. This includes the creation of the
database using FEA to calculate the local stress and strain fields under defined boundary
conditions in RVEs (e.g., periodic boundary conditions). Furthermore, the development
and training of the neural network are presented.

The first step in modeling RVE’s is to create the microstructure. For this purpose, n
fibers with a diameter d and a length l are considered. In this study, the diameter for each
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fiber in each RVE is set to a constant value of 10 µm. The length of every fiber in one single
RVE is also constant but can vary for different RVEs. This length is determined by an aspect
ratio aR = l/d. In principle, a length distribution in one RVE is also possible, but to reduce
the calculation effort a constant aspect ratio per RVE is used. Next, a volume is created for
the placement of the fibers. This must be dimensioned in such a way that the considered
fibers will take up a specific fraction of the volume, which is called fiber volume fraction
vF. For the exact procedure of dimensioning please refer to a previous work [22].

After the volume of the RVE is created, the fibers are randomly distributed in the
volume and rotated according to an orientation density function (ODF). Fibers protruding
from the volume are periodically attached to the opposite side of protruding, generating a
periodic microstructure. The generation of a deformation of the RVE is done by periodic
boundary conditions:

uk+
i − uk−

i + uRP
i = 0 (1)

where u describes the displacement of each node of the finite element mesh in direction
i. k+ and k− denote the opposite surfaces of the RVE. uRP describes the displacement
applied at a reference point. To avoid badly shaped elements, the mesh may not be periodic;
in this case, an interpolation of the periodic boundary conditions is used. For more details,
please refer again to [22].

In this study, the complete effective stiffness tensor is to be used as a database, so that
six independent simulations with different load directions must be performed with one
RVE. Three tensile deformations and three shear deformations in each principal direction
are carried out. For each simulation, j, the stress and strain fields of the FEA are averaged
by a homogenization scheme:

(σi)j =
1
V

∫
V

(σi)jdV (2)

for the stress σ in direction i and

(
εj
)

j =
1
V

∫
V

(εi)jdV (3)

for the strain ε. With the volume-averaged stresses from the six simulations, the effective
stiffness tensor

Cij =
(σi)j(

εj
)

j

(4)

is calculated. The procedure to determine the effective stiffness tensor is illustrated in Figure 1.
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Figure 1. Illustration of combined deformations to determine complete stiffness tensor.

The effective stiffness tensor of one RVE depending on the input parameters of the
creation represents a single data point of the database. As a first assumption, these individ-
ual data points should be distributed uniformly. For this reason, each input parameter for
each RVE is randomly selected in an interval. The input parameters include the Young’s
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modulus and Poisson’s ratio of the matrix, the aspect ratio, the fiber volume fraction, and
the second ordered fiber orientation tensor a2. To reduce the input parameters in this study
only glass-fibers are considered. Therefore, the mechanical properties of the fibers are
set to be constant with a Young’s Moduluse of 70,000 MPa and a Poisson’s ratio of 0.2.
As beforementioned, the ODF is required for the rotation of the fibers within the volume
of an RVE. Therefore, the ODF is reconstructed from the input parameter a2 using the
method of maximum entropy. Within this method a Bingham distribution is modified
in such a way that the second order fiber orientation tensor calculated of the modified
distribution corresponds to the given second order fiber orientation tensor. For more
information, please refer to [22]. It must be noted that the normalization property of the
fiber orientation tensor a2 should be considered for the entries aii to distribute the possible
fiber orientations properly. Independent random numbers for all three entries would lead
to an overrepresentation of the isotropic case. Therefore, the entries are generated by

aii = Ai·(1− s1) + Bi·(1− r2)·s1 + Ci·r2·s1 (5)

with
A, B, C = [1, 0, 0], [0, 1, 0], [0, 0, 1] (6)

and
si =

√
ri. (7)

ri is a random variable, which is equally distributed between 0 and 1.
Figure 2 shows an example of 4 different RVEs with various input parameters. In

this study, each RVE consist of 100 fibers. With different fiber volume fractions and aspect
ratios and an identical number of fibers, the RVE’s volume can therefore be very different.
However, based on preliminary tests by a convergence study, the used mesh size of the FEA
is always identical. In the convergency study, the entries of the effective stiffness tensor
show a maximum deviation of 1% from a converged reference solution. The used mesh size
for this is 8 with a deviation factor of 0.1 and a minimum size factor of 0.1. The same mesh
size and various volume sizes result in a very different number of elements. For example,
with a low aspect ratio and high fiber volume fraction approximately 100,000 nodes per
RVE are required but with a high aspect ratio and low fiber volume content about 4,000,000
nodes can be necessary. This also means that computing costs are different for each data
point. Therefore, it might seem reasonable to prefer combinations of input parameters
that results in lower computational effort, for example avoiding low volume fraction in
combination with high aspect ratios. However, this conflicts with the reasonable demand
for uniform distribution of data points. Therefore, this study evaluates if data sets must be
distributed randomly or if they can be composed more favorable for cheaper data points to
save computing time without loss of prediction quality of the neural network.
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Within the scope of this investigation two datasets are generated, in which the input
parameters are distributed uniformly as described but with different limits. With this
division, it shall be shown that, for the elastic behavior of SFRP, a lot of computing time can
be saved. Therefore, compared to the first dataset, in the second dataset the minimum fiber
volume fraction is increased, as this is the parameter with the highest impact on computing
time. Moreover, the two datasets demonstrate the case that an existing dataset is extended
by one more input parameter. The considered case of expanding an existing dataset is
thereby very important because the data set creation is extremely time-consuming. An
extension of an existing data set would therefore offer an enormous time advantage for
new investigations if less new data must be created. However, extending the data set has
no direct benefit for this study, as it is one single study, but shows the possibility to reuse
the data set in further studies, making the data creation much faster. In the first dataset,
the Poisson’s ratio is set to a fixed value while in the second dataset the Poisson’s ratio is a
random number. Table 1 summarizes the input parameters and lists the limits.

Table 1. Range of the parameters of the two datasets.

Parameter Dataset 1 Dataset 2

EM 500–2000 MPa 500–2000 MPa
nuM 0.42 0.1–0.45
aR 1–20 1–20
vF 0.01–0.2 0.05–0.2
aii 0–1 0–1

In Figure 3, all data points of the two datasets are shown as a correlation plot between
each parameter pair. On the diagonal is also a histogram of the respective parameter. Both
exclude a direct correlation between two input parameters per dataset due to an incorrect
RVE creation. This would be recognizable here by empty regions in the correlation plots.
Note that a uniform distribution of aii has a triangular shape, as they are not independent
of each other. The differences between the two data sets are also visible in the figure. The
constant Poisson’s ratio of dataset 1 can be seen, as well as the missing data points with
a fiber volume fraction of less than 0.05 in dataset 2. A total of 1015 individual RVE’s are
examined in total, 596 of which are contained in dataset 1 and 419 in dataset 2.

The next part of the section describes the neural network used. The implementation is
carried out with Keras 2.3.1 [23] based on Tensorflow 1.14.

In general, a neural network consists of j layers, each consisting of a set of neurons.
Each neuron represents a numeric value vj

i . The number of neurons per layer can be
different. The first layer is usually called the input layer with the input xi. Here the
parameters for the creation of the RVEs are used as input parameters. The last layer is
called the output layer with the output yi. Here the effective stiffness tensor of the RVEs is
used as output. The layers in between are referred to as hidden layers. The hidden layers
can be designed to be able to approximate any mathematical functions. The principal
design is shown schematically in Figure 4. In this study, only dense layers are used. In
dense layers the value of a neuron vj

i in one layer is linked to all neurons vj−1 of the

previous layer. The calculation of vj
i is done by an activation function f j

A with weights wj

and bj [21,23]:
vj

i = f j
A

(
wj

ikvj−1
k + bj

i

)
(8)
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The weights wik and bi are also associated with a neuron. These weights can be
fitted by numerical algorithms in such a way that a target function fT is minimized. This
procedure is called training.

In this investigation, the “NAdam” algorithm [23] is used with the numerical param-
eters set to β1 = 0.8 and β2 = 0.9. The mean square error between predictions ypred

i and
data provided by the RVEs ydata

i is used as the target function [23]:

fT =
1
n

n

∑
i=1

(
ydata

i − ypred
i

)2
(9)



Fibers 2021, 9, 8 7 of 14Fibers 2021, 9, x FOR PEER REVIEW 7 of 14 
 

 
Figure 4. Schematic design of neural network with dense layers. 

The weights 𝑤௜௞  and 𝑏௜  are also associated with a neuron. These weights can be 
fitted by numerical algorithms in such a way that a target function 𝑓  is minimized. This 
procedure is called training. 

In this investigation, the “NAdam” algorithm [23] is used with the numerical param-
eters set to 𝛽ଵ = 0.8 𝑎nd 𝛽ଶ = 0.9. The mean square error between predictions 𝑦௜௣௥௘ௗ and 
data provided by the RVEs 𝑦௜ௗ௔௧௔ is used as the target function [23]: 

𝑓 =  1𝑛 ෍൫𝑦௜ௗ௔௧௔ − 𝑦௜௣௥௘ௗ ൯ଶ௡
௜ୀଵ  (9)

This target function is chosen to provide an average-based prediction. In Monte-
Carlo simulations where only the position of the fibers within an RVE is varied, the calcu-
lated effective stiffness can be shown to be subject to statistical variation. This variation 
depends on the size of the RVE [24–26]. For the component design, however, a mean value 
of the effective stiffness is more appropriate. For this reason, the above-mentioned target 
function is used to train the neural network to an average value between the RVEs. To 
achieve training the average value, the architecture of the neural network must be suitable 
for this specific case, and overfitting must be avoided. Overfitting is referred to as the 
numerical behavior with which training data can be reproduced very well by the neural 
network, but new data cannot. A technique to check and control the overfitting is to split 
all data into training and validation data. Only the training data are used for the numerical 
adjustment of the weights. The evaluation of the target function is carried out for both 
separately. 

In this study, all data are divided in the ratio ¾ into training data and ¼ into valida-
tion data. Furthermore, the division is performed randomly (for each data point) to create 
different sets of training and validation data if needed. All output is further normalized 
to the interval ሾ0; 1ሿ acc. to: 𝑦௜ௗ௔௧௔ =  𝑦௜ௗ௔௧௔ − 𝑦௜௠௜௡𝑦௜௠௔௫ − 𝑦௜௠௜௡ . (10)

Figure 4. Schematic design of neural network with dense layers.

This target function is chosen to provide an average-based prediction. In Monte-Carlo
simulations where only the position of the fibers within an RVE is varied, the calculated
effective stiffness can be shown to be subject to statistical variation. This variation depends
on the size of the RVE [24–26]. For the component design, however, a mean value of the
effective stiffness is more appropriate. For this reason, the above-mentioned target function
is used to train the neural network to an average value between the RVEs. To achieve
training the average value, the architecture of the neural network must be suitable for this
specific case, and overfitting must be avoided. Overfitting is referred to as the numerical
behavior with which training data can be reproduced very well by the neural network, but
new data cannot. A technique to check and control the overfitting is to split all data into
training and validation data. Only the training data are used for the numerical adjustment
of the weights. The evaluation of the target function is carried out for both separately.

In this study, all data are divided in the ratio 3
4 into training data and 1

4 into validation
data. Furthermore, the division is performed randomly (for each data point) to create
different sets of training and validation data if needed. All output is further normalized to
the interval [0; 1] acc. to:

ydata
i =

ydata
i − ymin

i
ymax

i − ymin
i

. (10)

This step is necessary to treat the different entries of the stiffness tensor equally.
Otherwise, the training could be favored for entries of higher stiffnesses such as the normal
directions C11 compared to other entries e.g., C12. For the input, it is not necessary.

As described in Section 2 the datasets 1 and 2 are used in combination. That means
there is no separate evaluation for the two data sets. The objective of separate data sets is
to be able to extend datasets. Therefore, a combined dataset is used.

In pre-trials the activation function fA was tested with

fA(x) =
{

α·(exp(x)− 1)
x

∣∣∣∣ x < 0
x > 0

}
(11)

Here α denotes a scalar and x the input of a neuron. This function is referred to as
“Elu” [23,27] and was found to be promising; hence, it is used for all hidden layers in this
work. For input and output layers linear layers are used. For the input layer, 7 neurons
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are used according to the database for the input parameters EM, nuM, aR, vF, a11, a22, a33.
For the output, 9 neurons are used for the stiffness values C11, C12, C13, C22, C23, C33, C44,
C55, C66. This reduction is justified based on symmetrical stiffness tensors and negligible
tensile-shear coupling.

3. Results and Discussion

In this section the results are presented and discussed. This includes the development
of an optimal structure of the neural network, accuracy of the neural network and a
comparison with the classical method of Mori–Tanaka.

A typical training behavior for one layer and nine neurons is shown in Figure 5. The
evaluations of the target function are plotted for the training data (Loss) and the validation
data (Validation Loss) in double logarithmic order. From approximately 103 epochs onwards
the learning success becomes much more difficult and especially the Validation Loss is subject
to strong fluctuations per epoch. Overfitting cannot be detected here.
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function for the training data (Loss) and the validation data (Validation Loss).

In general, the neural network’s design is one of the most important factors in de-
termining how it performs in terms of prediction accuracy, numerical robustness, and
evaluation time. A neural network design with more layers and more neurons leads to
a lower Loss and higher training time. If too many layers and neurons are used, over-
fitting may also be problematic. Therefore, a full factorial design of experiments (DOE)
is performed to develop an optimal architecture of the neural network. The number of
hidden layers is varied for 1, 2, 3, and 5 layers as well as the number of neurons per hidden
layer with 9, 12, 15, and 18. A total of 105 epochs are trained for each architecture. For the
evaluation of the DOE, the epoch in which the absolute minimum of the Validation Loss is
achieved is used. Due to the random division into training and validation data and the
random initial weights [23], each neural network architecture is trained and evaluated for
the DOE in a total repetition of 10. Figure 6 shows the result of the DOE as a boxplot of the
minimum Validation Loss for each neural network architecture. Furthermore, each boxplot
is color-coded with the average learning time per epoch. The training takes place on an
Nvidia Tesla T4 16 GB.
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Figure 6. Boxplot of minimum Validation Loss and mean training time per epoch for each architecture.

For one and two layers it can be concluded that more neurons result in a lower
minimum validation loss. With more layers, the number of neurons becomes less important.
Furthermore, both the mean value and the variance of the minimum Validation Loss is
significantly higher with one layer than with more layers. The conclusion is that with
more layers the network becomes more robust and more accurate. Furthermore, it can
be shown that here only the number of layers and not the number of neurons has a
significant influence on the training time. In the later application with two hidden layers
and 18 neurons, it is possible to calculate about 117,000 predictions per second with the
neural network on an average PC (AMD Ryzen 3600 @ 4.1 GHz). For further investigation,
an architecture of two hidden layers with 18 neurons each was used since it provides
a low time of training and a low minimum Validation Loss. As a first evaluation, the
validation data were compared with the predictions of the neural network. Furthermore,
the predictions by a two-step homogenization are additionally performed to better judge
the achieved accuracy of the neural network. The input parameters used for both methods
are identical. In the first step of the two-step homogenization, the method of Mori–Tanaka
is used [1]. A single ellipsoidal inclusion in a homogeneously stressed matrix is assumed.
In the second step, the stiffness of the composite is composed of the stiffnesses for the
individual directions of an ODF using the Voigt approach [28]. For the ODF, the method
of maximum entropy [29] is used like for the creation of the RVEs (see Section 2). The
neural network method is abbreviated with NN and the two-step homogenization with
the Mori–Tanaka Method as MT in the following.

Figure 7 shows the predictions of NN and MT against the validation data. Ideally, the
predictions would lie on one line. For better visibility of the data points, a small section
from the center is shown enlarged. In general, it can be concluded that both NN and MT
can reproduce the values of the RVE with a small error. Systematic errors, such as a greater
deviation with higher stiffness, cannot be determined here for the NN.



Fibers 2021, 9, 8 10 of 14

Fibers 2021, 9, x FOR PEER REVIEW 10 of 14 
 

Figure 7 shows the predictions of NN and MT against the validation data. Ideally, 
the predictions would lie on one line. For better visibility of the data points, a small section 
from the center is shown enlarged. In general, it can be concluded that both NN and MT 
can reproduce the values of the RVE with a small error. Systematic errors, such as a greater 
deviation with higher stiffness, cannot be determined here for the NN. 

 
Figure 7. Comparison between Stiffness by RVE and Stiffness predictions by the neural network method (NN) and 

Mori–Tanaka Method (MT). 

Further information about the accuracy of the NN in comparison with the MT 
method can be obtained in Figure 8. Here, for each stiffness entry a box plot with the 
relative error 𝐸௥௘௟ = 𝐶ௗ௔௧௔ − 𝐶௣௥௘𝐶ௗ௔௧௔  (12)

is shown. 𝐶ௗ௔௧௔ is provided by the RVEs and only validation data are used. 

Figure 7. Comparison between Stiffness by RVE and Stiffness predictions by the neural network method (NN) and
Mori–Tanaka Method (MT).

Further information about the accuracy of the NN in comparison with the MT method
can be obtained in Figure 8. Here, for each stiffness entry a box plot with the relative error

Erel =
Cdata − Cpre

Cdata (12)

is shown. Cdata is provided by the RVEs and only validation data are used.



Fibers 2021, 9, 8 11 of 14Fibers 2021, 9, x FOR PEER REVIEW 11 of 14 
 

 
Figure 8. Boxplot of relative Error by NN and MT. 

With the NN method, the median of all relative errors is approximately zero, the 
interquartile distance is between 1.5% and 2.2%. Some outliers are in the range of 2.5% to 
15 %. Note that the statistic distribution of relative errors is not only based on insufficient 
prediction, but also on the statistical deviation of the RVEs (see Section 2). Therefore, it 
can be concluded that NN is very well suited to predict the average stiffness of short fiber 
reinforced plastics. 

With MT the absolute value of the mean error for the off-diagonal entries (𝐶ଵଶ, 𝐶ଵଷ, 𝐶ଶଷ) and the shear entries (𝐶ସସ, 𝐶ହହ, 𝐶଺଺) is approximately 3%. While the values are too 
high for the off-diagonal entries, they are too low for the shear entries. Moreover, the in-
terquartile distances of 3.6–4.4% for the shear entries are significantly larger than those of 
the main entries (𝐶ଵଵ, 𝐶ଶଶ, 𝐶ଷଷ) with 1.4–1.6%. As with the NN, the outliers also lie in a 
range from 5% to 20%. Comparing both methods with each other shows that the NN is on 
average more precise than the MT. Moreover, with the NN there is no systematic devia-
tion for the median error. In normal directions, both methods perform similarly. 

Figure 9 further clarifies the difference between predictions of NN and MT. A matrix 
of comparisons with the stiffness values (𝐶ଵଵ, 𝐶ଵଶ, 𝐶ଶଶ, 𝐶ସସ) in the rows and the input 
parameters (𝐸ெ, 𝑛𝑢ெ, 𝑎ோ, 𝑣ி) in the columns is shown. These input parameters are con-
stant for one entry of the matrix except that one which is varied in the associated column. 
The fiber orientation is chosen to be represented by three typical orientations (almost 
transversal isotropic, planar isotropic, and isotropic). The input parameters for the pre-
diction are presented in Table 2. 

Table 2. Input parameter for the prediction. 

Parameter Constant Value 𝐸ெ 1500 MPa 𝑛𝑢ெ 0.42 𝑎ோ 15 𝑣ி 0.15 𝑎ଵଵ 0.8, 0.5 and 0.33 𝑎ଶଶ 0.15, 0.5 and 0.33 𝑎ଷଷ 0.05, 0.0 and 0.33 

Figure 8. Boxplot of relative Error by NN and MT.

With the NN method, the median of all relative errors is approximately zero, the
interquartile distance is between 1.5% and 2.2%. Some outliers are in the range of 2.5% to
15 %. Note that the statistic distribution of relative errors is not only based on insufficient
prediction, but also on the statistical deviation of the RVEs (see Section 2). Therefore, it
can be concluded that NN is very well suited to predict the average stiffness of short fiber
reinforced plastics.

With MT the absolute value of the mean error for the off-diagonal entries (C12, C13,
C23) and the shear entries (C44, C55, C66) is approximately 3%. While the values are too
high for the off-diagonal entries, they are too low for the shear entries. Moreover, the
interquartile distances of 3.6–4.4% for the shear entries are significantly larger than those
of the main entries (C11, C22, C33) with 1.4–1.6%. As with the NN, the outliers also lie in a
range from 5% to 20%. Comparing both methods with each other shows that the NN is on
average more precise than the MT. Moreover, with the NN there is no systematic deviation
for the median error. In normal directions, both methods perform similarly.

Figure 9 further clarifies the difference between predictions of NN and MT. A matrix
of comparisons with the stiffness values (C11, C12, C22, C44) in the rows and the input
parameters (EM, nuM, aR, vF) in the columns is shown. These input parameters are
constant for one entry of the matrix except that one which is varied in the associated
column. The fiber orientation is chosen to be represented by three typical orientations
(almost transversal isotropic, planar isotropic, and isotropic). The input parameters for the
prediction are presented in Table 2.

Table 2. Input parameter for the prediction.

Parameter Constant Value

EM 1500 MPa
nuM 0.42
aR 15
vF 0.15
a11 0.8, 0.5 and 0.33
a22 0.15, 0.5 and 0.33
a33 0.05, 0.0 and 0.33
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Figure 9 shows that both methods provide almost identical predictions of the stiffness
entry C11 and C22 for all input parameters. Larger differences can be observed for C12
depending on the aspect ratio aR and the fiber volume fraction v f .

In both cases, the calculated stiffness value of MT is greater than that of NN. A
possible explanation for the differences may be the assumptions of MT. On the one hand,
the ellipsoid fiber geometry, especially with small aspect ratios, could lead to the deviation
from the NN for C12. On the other hand, the assumption of homogeneous matrix stress
is an explanation for the differences with increasing fiber volume content. However, it is
interesting here that this is much more pronounced for off-diagonal entries than for the
other stiffness entries. Further differences can be found in C44. Here, apart from EM, a
difference can generally be found, usually with the higher values for the MT method. An
exception is the prediction for aspect ratio with planar isotropic fiber orientation. Finally,
the question of whether a combined dataset (cf. Section 2) is applicable can be answered.
Neither in Figure 7 nor Figure 8 are systematic errors of the NN to be recognized. This
indicates that no overfitting occurs at a Poisson’s ratio of 0.42 at the expense of other
Poisson’s ratios. This is also supported by Figure 9, where the calculated values C11, C12
and C22 independent of the Poisson’s ratio do not deviate much from the MT. Only for
the shear entry C44 can larger deviations be recognized. However, these are more likely
to be attributed to the general deviation (compared to the RVEs) of the MT prediction of
C44. In addition, no statistically significant deviations of the NN can be found with a fiber
volume fraction of less than 0.05. Therefore, it can be validated that an existing dataset can
be extended by one more input parameter and numerically costly combinations of input
parameters can be avoided if already enough data are available.
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4. Conclusions

In this paper, an artificial neural network is developed and trained to predict the
elastic properties of short fiber reinforced plastics. Representative volume elements are
used as a data basis for this. For an input parameter field as wide as possible, Young’s
modulus of the matrix, Poisson’s ratio of the matrix, aspect ratio, fiber volume fraction,
and fiber orientation are varied.

With two separate data sets, it can be validated that an existing dataset can be extended
by more input parameters without a loss of prediction accuracy. Moreover, it is shown that
numerically costly combinations for the RVE creation can be avoided.

In principle, the prediction of the effective composite properties with the neural
network is very accurate and robust. An optimal architecture of the neural network is
found with 2 hidden layers, each with 18 neurons and an “Elu” activation function. The
input and output layers are implemented with a linear activation function.

Compared to a two-step homogenization using the Mori–Tanaka method, the neural
network performs equally (C11, C22, C33) or slightly better (C12, C13, C44, C55, C66) in
calculating the mean elastic properties of short fiber-reinforced composites.

Furthermore, the evaluation shows a special strength of neural networks concerning
material modeling: information on the micro-scale can be incorporated to make predictions
more precise without generating uneconomical computational time on the macro-scale.
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