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Abstract: Carbon fiber reinforced polymers (CFRPs) are continuously gaining attention in aerospace
and space applications, and especially their multi-scale reinforcement with nanoadditives. Carbon
nanotubes (CNTs), graphene, carbon nanofibers (CNFs), and their functionalized forms are often
incorporated into interactive systems to engage specific changes in the environment of application to a
smart response. Structural integrity of these nanoscale reinforced composites is assessed with advanced
characterization techniques, with the most prominent being nanoindentation testing. Nanoindentation
is a well-established technique, which enables quantitative mapping of nanomechanical properties
with the µm surficial and nm indentation resolution scale and high precision characterization. This
feature enables the characterization of the interface in a statistical and quantitative manner and the
correlation of (nano-) reinforcement to interface properties of CFRPs. Identification of reinforcement
is performed with k-Nearest Neighbors and Support Vector Machine classification algorithms.
Expertise is necessary to describe the physical problem and create representative training/testing
datasets. Development of open source Machine Learning algorithms can have an influential impact on
uniformity of nanometry data creation and management. The statistical character of nanoindentation
is a key factor to supply information on heterogeneity of multiscale reinforced composites. Both
the identification of (nano-) reinforcement and quality assessment of composites are provided by
involving artificial intelligence.

Keywords: artificial intelligence; machine learning; multiclass classification; clustering;
nanoindentation; carbon fiber reinforced composites; carbon nanotubes; interface

1. Introduction

The carbon fiber reinforced composites (CFRP) market is progressively growing [1,2]. The
increasing needs of CFRPs for construction, automotive, and (aero-) space fields raise the necessity
of improving interfacial properties [3]. Techniques with the potential of industrial application such
as “green” electroplating technology, thermal spraying, and laser cladding introduce a nanometer’s
thin film on carbon fibers (CFs) surface. The subsequent incorporation of functional groups
and novel sizing formulations improves the interphase and consequently, the CFRP mechanical
properties [4–6]. Moreover, reinforcement with nanomaterials, such as CNTs growth on CFs is
reported to effectively deal with the brittle fracture mechanism of the epoxy-based CFRPs similarly
to aforementioned processes [3,7,8]. These processes are commonly adopted to increase mechanical
interlocking unidirectionally in order to fulfil maximum potential of composites according to the law
of mixture [3,9]. In this scope, powerful and high-speed characterization through nanoindentation is
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suitable to describe in a statistically representative manner the impact of (nano-) engineering to the
mechanical properties of composites [10,11]. Grid nanoindentation is well-established to characterize
the interphase performance [6,12]. The technique sensitivity in the range of several nanometer’s depth
enables to gain insight into the reinforcement identity of functionalized CFs. Quantitative raw data
generated by nanoindenter instruments provide a wealthy source of information that can be used
for identification of matrix, interface, and CF properties [6,10]. The latter two classes demonstrate a
measurable scattering, which is useful in order to classify the mechanism of reinforcement through
Supervised Machine Learning algorithms [13]. This is an essential step to train machines towards
performing automated recognition of reinforcement type.

Existing classification models, such as decision tree (DT), neural network (NN), support vector
machine (SVM) and k-Nearest Neighbor (KNN) are usually involved to perform supervised machine
learning [14,15]. However, these models require representative and relatively balanced training datasets
to establish process–structure–property (PSP) relations [13], as in CFRPs’ case. Despite progress in
machine learning, it is still a challenging task to construct efficient algorithms for imbalanced
datasets. Re-sampling preprocess has been proven to minimize discrepancy between class samples [14].
Undersampling and oversampling are employed to modified non-uniform distribution in classes of
reinforcement to smallest or highest majority class, respectively [16]. However, undersampling contains
the risk of losing important information contained in the majority class [15], while oversampling
may increase computational cost. Often issues of ethics, confidentiality or lack of data, especially
in recently growing scientific fields do not facilitate accessibility [17]. A better strategy to deal with
imbalanced data may be a popular oversampling approach renowned as SMOTE (Synthetic Minority
Oversampling Techniques), which oversamples the minority class by creating synthetic examples
rather than by oversampling with replacement [14]. Thus, synthetic data produced in a representative
and repetitive manner can solve this shortcoming and offer balanced datasets by introducing new,
no-replicated minority class samples [18]. Consequently, better performance of the aforementioned
machine learning models is ensured. In fact, prediction accuracy of an algorithm has been reported to
be improved in a variety of datasets by applying these methodologies [19].

The rapidly growing interest in coupling Material Science with Data Science and Machine Learning
to support innovation in design and technology transfer [10,11,13] is closely connected to accessibility
of data and open source software engagement [17]. In this direction, R language can be proved a
useful tool to analyze nanoindentation experimental data using artificial intelligence. R language
was developed in the mid-1990s from the more archaic S language (mid-1970s at Bell Labs), which is
free, facilitates good visualizations, and over 8700 free third party packages can be attached in the
user-friendly interface. Additionally, connectivity is supported by popular software, such as Microsoft
Excel, Origin Pro, etc. Moreover, data fit is limited to 50% RAM size, while R can be run in Cloud on
the Apache Hadoop ecosystem. In this work, the case of nanoindentation testing of CFRPs specimens
is presented by clustering attributes data to obtain quantitative modulus mapping. A methodology is
implemented to generate a microstructural colormap by allocating grid nanoindentation output to
epoxy matrix, interface, and CFs via R language and k-means unsupervised clustering. Data of pristine
and modified CFs in CFRPs were used to create training and testing datasets for Supervised Machine
Learning with KNN and SVM classification models. Undersampling, oversampling and SMOTE
strategies were used to optimize model performance to identify the mechanism of reinforcement.
Finally, the model functionality was demonstrated by efficiently predicting the class of reinforcement
for new datasets.

2. Materials and Methods

2.1. Computational Data

Nanoindentation testing data were obtained from specimens received. The matrix phase consisted
of Epoxy Araldite LY 556 resin, and reinforcement was performed using HEXCEL CFs. The CFs were
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pre-treated to facilitate enhanced bonding in the interface prior to manufacturing. Functionalization
techniques contain Low Pressure Plasma (LPP) modification, Active Screen Plasma (ASP) modification,
electropolymerization with methacrylic acid, and Chemical Vapor Deposition of carbon nanotubes,
while unmodified CFs were used for the reference specimen preparation [20–22]. This study aims
to classify CFRPs with different modifications on CF’s surface. For instance, since LPP and ASP
functionalize CFs by developing oxygen species on the surface, both belong to the same ontology
and the mechanism of reinforcement is thus considered as one class. The reinforcement mechanism
by monomer electrografting and carbon nanotubes growth was independent and belong to separate
classes of reinforcement. The data have undergone preprocessing via k-means clustering [13] to
identify the phases of CFRPs and retrieve the information derived by interface, reinforcement cluster,
and CFs. Epoxy matrix properties tend to mislead classification statistical metrics by increasing false
positive predictions due to high similarity of nanomechanical properties, since epoxy properties are
not affected by interfacial reinforcement. A total of 649 indentations and data from four different
classes (pristine, with oxygen functionalities, monomer sizing, growth of CNTs) were used in this
work to construct classification models. This is a useful concept since it is not necessary to test all
components of the dataset, but only those that are representative. This can be done in practice by
grouping a set, for instance, by similarity in order to handle diversity [23]. Similarly, chemical structure
is used as a descriptor to define the class of reinforcement by grouping oxidation functionalities, sizing
formulations with monomers, and grown carbon nanostructures on CF’s surface.

2.2. Nanoindentation Testing

In order to determine the nanomechanical properties of CFRP specimens, Hysitron TriboLab®

Nanomechanical Test Instrument (Minneapolis, MN, USA) was used. The instrument capabilities
enable loading from 1 × 10−3 mN to 30 mN and with a high load and displacement resolution of 1 nN
and 0.04 nm, respectively. All measurements have been performed by keeping constant the maximum
indentation depth 200 nm, in accordance to ISO 14577-1 [24]. A standard three-sided pyramidal
Berkovich tip was used, with an average curvature radius of 100 nm [13]. In all measurements, a total
of 64 indents were performed by applying a square 8 × 8 grid, with spacing of 5 µm to avoid any
indentation-to-indentation interaction [6,25]. The measurement environment was characterized by
45% humidity content, and 23 ◦C ambient temperature. In order to operate under closed loop control,
the feedback control option was selected. A smooth surface was obtained by wet polishing using SiC
grinding papers. The used granulometry involved grit papers of 400, 1000, 1200, 2000 and 4000 for 10
min each, by Struers LaboPol-2 grinding, lapping and polishing machine.

2.3. Computational Details

The KNN [26] and SVC [27] algorithms were used to perform classification of nanoindentation data.
In order to deal with imbalanced original training sets, undersampling and SMOTE algorithms [18] were
involved to balance classification populations. The caret and e1017 packages were used to implement
the KNN, SVM, and tuning (accessed date: 1 August 2019) in R 3.6.1. Synthpop, tidyverse, sampling,
and partykit (accessed date: 16 August 2019) in R 3.6.1 were used to implement the undersampling
and SMOTE computation. The final SVM models were constructed and validated using the same
caret package. All statistical calculations were performed using R 3.6.1 on 64-bit Windows 10 Home
(Intel® Core™ i5-8250U CPU @ 1.60 GHz, 1801 Mhz, 4 Cores, 8 Logical Processors and 8.00 GB RAM).
Computational time did not exceed a few minutes, except from the polynomial SVC kernel, which
required 40 min in order to be tuned to optimum prediction accuracy.

2.4. Statistical Metrics

In order to evaluate the performance of the prediction model, commonly adopted statistical
metrics were measured. The use of Accuracy, Precision, Recall, F1 was performed in each case [28–30],
after tuning each model to optimum Accuracy after parameterization.
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Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 Score = 2×
Precision×Recall
Precision + Recall

. (4)

True positives (TP) represent correct classifications of reinforcement mechanisms (positive sample),
true negatives (TN) symbolize correct classifications of negative samples, false positives (FP) signify the
incorrect classifications of negative predictions into positive, and false negatives (FN) denote positive
samples that were incorrectly identified as negative samples. Recall is the proportion of positive
samples that were correctly classified. Precision is the proportion of positive samples out of the sum of
positive observations. F1 score is used to evaluate the model ability to classify (best value: 1).

3. Results and Discussion

3.1. Nanoindentation Mapping and Data Clustering

CFRP specimens were tested with nanoindentation and the methodology to perform quantitative
mapping of Er is described. As derived by load-displacement curves, which were fitted with the
Oliver–Pharr model [31], the Er was measured for each nanoindentation event. A total of 6 attributes
generated by nanoindentation testing raw data were used to perform data clustering and establish
unsupervised connections of these features to the identity of the CFRP phase. Parameters of contact
depth (hc in nm), maximum force (Pmax in µN), Er (in GPa), nanohardness (H in GPa), final depth after
fully unloaded (hf in nm), and m is determined by a least square fitting procedure.

The optimum number of clusters was calculated according to using the elbow method [32]. The
optimum number was 4 (Figure 1a), but the physical problem suggested that clusters can be more
(Table 1). In this case, the data were clustered in four groups using R Studio, namely epoxy matrix, CF
interface, CF, and the “reinforcement” cluster (Figure 1b, Table 1).
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Table 1. Reduced elastic modulus of carbon fiber reinforced polymers (CFRPs) phases.

CFRP Phases Epoxy
Matrix

Matrix (Fiber
Constraint Effect)

CF
Interface

CF Interphase/Tip in
Mere Contact with CF CF

Er (GPa) 2–4 4–10 GPa 10–28 28–40 >40
Reference [33–37] [34,37–39] [34,36,40] [34,36,40–42] [36,40,43]
k-means

centers (GPa) 7 27 43 48

Information obtained by Table 1 was used to correlate colors, increment from blue to red to
increment of Er as depicted in Figure 2.
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Figure 2. Quantitative elastic modulus mapping of tested CFRP specimens: (a) pristine, (b) PMAA
electropolymerized, (c) low pressure plasma modifies, and (d) with carbon nanotubes grown on carbon
fiber surface; (e) represents the memo of Er.

By the observation of the colormap, it is possible to make assumptions over the composite
performance upon a different reinforcement mechanism. A robust mechanical response is obtained in
the case of PMAA and carbon nanotubes compared to the pristine specimen, while another positive
feature is the gradual continuity of interface, which allows uniform load transfer. Additionally,
composite attributes attained the properties of CFs in a high extend in the case of carbon nanotube
reinforcement (Figure 2d), as determined by k-means microstructure clustering. Low pressure plasma
treatment demonstrated slightly deteriorated reduced elastic modulus overall, compared to the
pristine specimen.

3.2. Descriptor Preprocessing

Epoxy matrix is not correlated to the mechanism of reinforcement, and these data do not
contribute to identification of the reinforcement by surface modification of CFs. As a result, it was
reasonable to remove these data using R language. After performing k-means clustering, the epoxy
matrix nanoindentation events with a mean value of Er of about 7 GPa were not included by using
library “dplyr” in order to obtain a proper descriptor of reinforcement and enhance classification
model performance.

3.3. Split of Training and Test Sets

A leave-some-out (LSO) method was used to create a random partition split into a 70% training
set used for model construction, and a 30% test set for holdout validation on observations. In detail,
datasets of untreated CFRPs were used as reference, while CFRPs with CFs surface modification were
included. Surface modification contained the introduction of oxygen species on the fiber surface, the
attachment of monomers (sizing formulations), and the growth of CNTs, which are commonly adapted
in literature [3–8]. Seed of random numbers was called to achieve a statistically unbiased estimation.
Then, the statistical metrics were calculated and reported for each case.
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3.4. Results and Statistical Performance of Model Grid Tuning, Undersampling and SMOTE Setup

A KNN classification model was initially used, as it is reported to be efficient in small datasets
due to the use of Euclidean distance to construct the model [44]. However, as demonstrated in Table 2,
the KNN model does not function well in regard to the imbalanced dataset.

Table 2. Confusion matrix and metrics of k-Nearest Neighbor (KNN) model.

KNN CF PMAA Growth CNTs Oxygen Species Pristine

CF PMAA 0 0 3 0
Growth CNTs 5 9 5 0

Oxygen species 1 2 12 2
Pristine 11 0 13 29

Metrics CF PMAA Growth CNTs Oxygen species Pristine

Accuracy 0.543
Precision 0.000 0.818 0.364 0.935

Recall 0.000 0.474 0.706 0.547
F1 NaN 0.600 0.480 0.690

In this direction, SVM classification was employed in order to improve the metrics
(Equations (1)–(4)) and resolve the issue of insufficient prediction efficiency of CF modified with PMAA
and with oxygen species. Four different kernels were used in the analysis, namely sigmoidal, linear,
radial, and polynomial kernel. The last was comparatively more descriptive. In all kernel cases studies,
the model was optimized by grid tuning. The model input parameters values are, in the case of gamma,
were tuned in-between 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 4, 6, 8, and 10; and cost 1, 10, 50, 100, 200, 400, 1000,
and 2000 in a total of 88 interactions. Polynomial kernel was tuned in two steps: firstly, optimal degree
between 3, 4, 5, 6, 7, and Coef0 between 0.01, 0.1, 0.5, 1, 2, 4, 6, 8, 10, and 12 in a total of 50 interactions
were selected. In the next step, gamma was tuned at values 0.01, 0.1, 0.5, 1, 4, while cost was ranging
between 1, 10, 50, 100, 400, 1000, 2000 in a total of 30 interactions. The flow chart is summarized in
Figure 3.
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Optimized SVM model with polynomial kernel was obtained at (degree, Coef0, gamma, cost): (3,
0.5, 0.01, 100) and results are presented in Table 3.

Table 3. Confusion matrix and metrics of Support Vector Machine (SVM) model.

SVM CF PMAA Growth CNTs Oxygen Species Pristine

CF PMAA 3 0 0 0
Growth CNTs 3 11 5 0

Oxygen species 1 0 7 5
Pristine 10 0 21 26

Metrics CF PMAA Growth CNTs Oxygen species Pristine

Accuracy 0.511
Precision 0.176 1.000 0.212 0.839

Recall 1 0.579 0.538 0.456
F1 0.300 0.733 0.304 0.591

The F1 values of CF_pmaa and oxygen_species are still considered low. Regarding the fact that
this result is affected by the imbalanced dataset, undersampling methodology was used. The selected
data population was random and representative of each class. The model was tuned at (degree, Coef0,
gamma, cost): (4, 2, 0.1, 50) using a polynomial kernel.

The reduction of the data population to 144 observations lead to inability of this model to classify
the mechanism of reinforcement in most cases (Table 4). This may be attributed to the undersampling
risk of losing important information contained in the majority class [15], especially in small datasets.
Consequently, it would be ideal if oversampling is performed and each class population reaches
the number of majority class observations. However, lack of data in this case identifies SMOTE
(selective oversampling of minority classes) as a more appropriate strategy to handle the imbalanced
dataset. Synthetic data were produced by using package “synthpop.” The results are reproducible
and representative for each class (Figure 4), in order to create the new training dataset. The model
was tuned at (degree, Coef0, gamma, cost): (6, 0.5, 0.1, 1). Afterwards, an original test set was used to
evaluate the model functionality.

Table 4. Confusion matrix and metrics of SVM model after undersampling.

SVM: Undersampling CF PMAA Growth CNTs Oxygen Species Pristine

CF PMAA 5 2 5 2
Growth CNTs 1 6 0 0

Oxygen species 4 2 1 6
Pristine 4 0 4 3

Metrics CF PMAA Growth CNTs Oxygen species Pristine

Accuracy 0.333
Precision 0.357 0.600 0.100 0.273

Recall 0.357 0.857 0.077 0.273
F1 0.357 0.706 0.087 0.273
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As it is evidenced by Table 5, SMOTE strategy was more appropriate to deal with the imbalanced
dataset and achieve better metrics of SVM model. F1 score is improved regarding the overall
performance and could enable the detection of an unknown dataset.

Table 5. Confusion matrix and metrics of SVM model after Synthetic Minority Oversampling Techniques
(SMOTE).

SVM: SMOTE CF PMAA Growth CNTs Oxygen Species Pristine

CF PMAA 4 0 2 2
Growth CNTs 4 11 4 0

Oxygen species 1 0 4 1
Pristine 2 0 1 8

Metrics CF PMAA Growth CNTs Oxygen species Pristine

Accuracy 0.614
Precision 0.364 1.000 0.364 0.727

Recall 0.500 0.579 0.667 0.727
F1 0.421 0.733 0.471 0.727

3.5. Model Validation

For each class of reinforcement, a representative sample was obtained in order to validate
the classification model. In Table 6, it evidenced that the maximum counts recognize the type of
reinforcement in unknown specimens and could be used as a criterion for the effective application of
the trained polynomial kernel SVM model.

Table 6. Model validation using sample datasets of each class to already trained polynomial SVM.

SVM Model CF PMAA
Validation Dataset

Growth CNTs
Validation Dataset

Oxygen Species
Validation Dataset

Pristine
Validation Dataset

CF PMAA 15 2 2 18
Growth CNTs 2 36 13 0

Oxygen species 10 0 20 3
Pristine 6 0 0 31

4. Conclusions

In this work, an effective methodology is presented for constructing the Er mapping of a tested
CFRP by using k-means algorithm. The quantitative map and cluster centers are correlated to
literature reports, while five more nanoindentation data categories were clustered, which can support
nanohardness, maximum load mapping, etc. The most promising prediction of SVM was improved by
tackling imbalance issues by using typical undersampling and SMOTE strategies. Undersampling
did not work well for the specific dataset, contrary to SMOTE through which an accuracy of 64.1%
was reached. Additionally, F1 score, which is generated by the contribution of recall and precision
metrics, ranged between 42.1% and 73.3%. As a validation, for the functionality of the classification
model, random datasets were tested in order to monitor classification ability. In all cases, the
maximum number of classified nanoindentation events leads to the correct detection of mechanism of
reinforcement, and consequently, F1 scores were identified as sufficient for the case of classification in
the nanoindentation case.

The effect of modification of carbon fibers surface was examined; reinforcement of the interface
was correlated to three ontological subclasses of reinforcement type class, namely the growth of
fibrous nanotubes (high aspect ratio), the addition of oxygen functional groups on the graphitic crystal
lattice of carbon fibers, and the electrodeposition of thin films using acrylic monomers. In this case,
the structure-property relations are established using Machine Learning models in order to describe
efficiently relevant cases of an interface reinforcement type class.
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