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Abstract: In this paper, new mineralogical and petrographical data of asbestiform Magnesio-riebeckite
from ophiolite cropping out in the Pollino Unesco Global Geopark (southern Italy) are presented.
Magnesio-riebeckite schists with HP-LT index mineral assemblage recorded metamorphic events
in blueschist facies in the Frido Unit. Previous toxicological studies showed that asbestiform
Magnesio-riebeckite species exhibited high carcinogenicity in previous intraperitoneal injection
experiments with rats. The results have been obtained using different analytical techniques such
as X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive spectroscopy
(SEM-EDS), and electron probe micro analysis (EPMA). Results show that all the samples contain
fibrous Magnesio-riebeckite and/or prismatic, acicular crystals in aggregates. The concentration
of elements in Magnesio-riebeckite crystals is: Na2O (4.12–6.26 wt%), MgO (8.22–10.87 wt%), FeO
(19.07–23.81 wt%), SiO2 (52.05–56.06 wt%), CaO (1.12–4.53 wt%), Al2O3 (1.34–1.93 wt%), and MnO
(0.10–0.34 wt%). Magnesio-riebeckite crystals are documented in the Pollino Unesco Global Geopark
for the first time. For this reason, the aim of this paper is the characterization of Magnesio-riebeckite
to improve the knowledge of this mineral in the studied area, because the release of fibers into the
environment is dangerous for human health.

Keywords: magnesio-riebeckite; asbestos minerals; schists; blueschist facies; Pollino Unesco
Gobal Geopark

1. Introduction

The problem of toxicity and carcinogenicity of asbestos minerals has long been discussed since the
20 century, because it represents a clear consequence for human health. The term asbestos represents
a series of six natural asbestiform silicate minerals, which include serpentine (chrysotile), as well as
amphibole minerals (tremolite, actinolite, anthophyllite, amosite, and crocidolite that represent a variety
of commercial term of fibrous riebeckite) that are defined by law in Europe and in several countries
worldwide [1–4] and also by Italian law (D.Lgs. 2008). Asbestos minerals are flexible, heat-resistant,
and chemically inert. These minerals usually occur with an elongated, prismatic, acicular, or fibrous
habit, which can be easily separable in thin fibers and can be inhaled up the respiratory tract. Asbestos
fibers, when present in natural geologic outcrops, can be defined as naturally occurring asbestos
(NOA) [5,6]. In Basilicata, NOA are mainly concentrated in the ophiolitic sequences cropping out in
Pollino Unesco Global Geopark (southern Italy) [2,4,7]. In this area, the most common types of asbestos
are serpentine and tremolite, and in a recent study, also edenite [2]. The structure of amphiboles
minerals is characterized by the presence of Si4+ and Al3+ in the tetrahedral site that form double chains
running parallel to c-axis, forming columnar and fibrous crystals. Magnesio-riebeckite is a monoclinic
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(C2/m) sodic amphibole with ideal formula Na2 Fe2
3+ (Fe2+,Mg)3 [SiO8O22 (OH)2] [8,9]. The name

‘riebeckite’ was first used by [10] in order to describe a blackish amphibole in Socotra (Yemen) by
Dr. E. Riebeck. In the schist of the Frido Unit, in addition to the prismatic variety, the crystals of
Magnesio-riebeckite is very common, and shows fibrous habit comparable with size (length ≥ 5 µm
and width < 3 µm with aspect ratio > 3:1), as defined by Directive 2003/18/CE. In terms of geometrical
feature, morphology, and size, it belongs to the regulated asbestos minerals, together with chrysotile,
tremolite, actinolite, anthophyllite, and amosite. Riebeckite also occurs in mossy aggregate or in
fibrous habits. The term “blue asbestos” refers to the blue, highly fibrous variety. The crystallographic
structure of riebeckite consists of double chains of corner-sharing T (1,2) tetrahedra occupied by Si and
strips of edge-sharing M (1,2,3) octahedra occupied by Mg2+ Fe2+ and Fe3+, both of which extend in
the c-direction.

The release of Magnesio-riebeckite fibers in the study area is the result of weathering processes
and human activities, such as road construction, causing one or more respiratory diseases for the
people that are living in proximity of a naturally occurring asbestos area. For this reason, the crystal
chemical characterization of Magnesio-riebeckite in the schists of the Frido Unit is extremely relevant
for environmental and health issues. Furthermore, this study may provide new information for the
Italian mapping of natural sites that are characterized by the presence of the asbestos minerals in the
Pollino Unesco Global Geopark.

2. Geological Outline

The study area is located in the Southern Apennines, northeast of Pollino Unesco Global
Geopark (Figure 1a). The ophiolite-bearing terranes described as Liguride Complex [11,12] have
been interpreted as remnants of an accretionary wedge developed between the Calabria terrane
and Apulian platform involved in the orogenic wedge during the Neogene time [13]. It has been
subdivided into different tectono-metamorphic units. From bottom to top, it consists of the blueschist
Frido Unit, the Episcopia-San Severino Mélange, and non-metamorphic North Calabrian Unit [2,14,15]
(Figure 1b). The Frido Unit represents the uppermost unit of the ophiolite-bearing terranes [16],
and mainly consists of polydeformed sequence, including blocks of oceanic and continental type
rocks, and metasediments [13,17–22]. The ophiolite sequence from the Frido Unit consists of basalts
and tectonized serpentinites containing blocks of metabasites, and rodingites [7,17,21,23–29], foliated
metabasites [30], and metapillow lava [31]. Serpentinites result from serpentinization of mantle
peridotites, that show porphyroclastic texture [7,25,28]. Bodies of continental crust rocks, generally
overlying slices of serpentinites [17,21] (Figure 1b), are mainly composed of altered garnet gneisses,
garnet biotitic gneisses, and leucocratic gneisses and gneisses with albitic veins [17,32]. The mineral
assemblages in the rocks of the Frido Unit show a polyphase HP metamorphism, overprinted by a
lower pressure greenschist facies metamorphism [33]. Overprinting high-pressure metamorphism is
related to early Alpine event [17]. For the blueschist facies, pressure ranged between 8 to 12 kbar and
temperatures are 350 ± 50 ◦C [34], with a geothermal gradient of 8 ◦C/km [35].
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Figure 1. (a) Simplified tectonic sketch of the southern Apennines; (b) geological map of the 
northeast area of Pollino Unesco Global Geopark with samples site; (c) outcrop of mylonitic green 
Mg-riebeckite schists associated to foliated metabasites. 

3. Sampling and Analytical Methods 

Twelve riebeckite schist specimens associated with foliated metabasites were collected in the 
Mount Nandiniello area in the Pollino Unesco Global Geopark (Figure 1b). Three representative 
samples were georeferenced with GPS system and were selected for X-ray Fluorescence, SEM-EDS, 
and EPMA (SL269a, SL269b, and SL269c). Samples SL269a (N 40°03′33.2″–E 15°58′43.3″), SL269b (N 
40°03′12.3″–E 15°45′33.3″), and SL269c (N 40°02′42.9″–E 15°20′8.8″), are fine-grained, strongly 
foliated, and with mylonitic texture (Figure 1c). Petrographic observation was carried out by optical 
polarizing microscopy (OM), using a ZEISS microscopy, on thin sections of rocks. The chemical 
characterization of whole-rock was performed using an X-ray fluorescence (XRF BRUKER 
S8-TIGER) at the Department of Biology, Ecology, and Earth Sciences (DiBEST), University of 
Calabria (Arcavacata di Rende, Cosenza, Italy). Elemental analyses for major (wt%: SiO2, TiO2, Al2O3, 
Fe2O3, MnO, MgO, CaO, Na2O, K2O, and P2O5) and some trace elements (ppm: Ni, Co, Cr, V, Sc, Zn, 
Cu, Rb, Sr, Y, Zr, Nb, Ba, La Ce, Th, and Pb) concentrations were obtained at the Department of 
Biology, Ecology, and Earth Science, University of Calabria (Arcavacata di Rende-Cosenza, Italy) 
using XRF PHILIPS PW-1480 and following the matrix correction methods by [36,37]. The structural 
water was removed from sample powders by heating at 1030 °C for 1 h. Loss on ignition (LOI) was 
determined from the total weight change. SEM-EDS analyses were performed on the polished thin 
sections at the Istituto di Metodologie per l’Analisi Ambientale (CNR-Tito scalo, Potenza, Italy), 
using a FESEM ZEISS SUPRRA 40 Oxford INCA scanning microscope with detector X ACT SSD; 
analytical conditions were 3 to 20 kV accelerating voltage and WD from 3 to 8.5. Electron probe 
micro analysis were performed on Magnesio-riebeckite crystals, using a JEOL JXA-8200 probe, in 
wavelength-dispersive mode with 15 kV acceleration potential, 20 nA beam current, and a counting 
time of 20 s at the Freie Universität of Berlin. Natural and synthetic minerals were used for 
standardization. 
  

Figure 1. (a) Simplified tectonic sketch of the southern Apennines; (b) geological map of the northeast
area of Pollino Unesco Global Geopark with samples site; (c) outcrop of mylonitic green Mg-riebeckite
schists associated to foliated metabasites.

3. Sampling and Analytical Methods

Twelve riebeckite schist specimens associated with foliated metabasites were collected in the
Mount Nandiniello area in the Pollino Unesco Global Geopark (Figure 1b). Three representative
samples were georeferenced with GPS system and were selected for X-ray Fluorescence, SEM-EDS,
and EPMA (SL269a, SL269b, and SL269c). Samples SL269a (N 40◦03′33.2”–E 15◦58′43.3”), SL269b (N
40◦03′12.3”–E 15◦45′33.3”), and SL269c (N 40◦02′42.9”–E 15◦20′8.8”), are fine-grained, strongly foliated,
and with mylonitic texture (Figure 1c). Petrographic observation was carried out by optical polarizing
microscopy (OM), using a ZEISS microscopy, on thin sections of rocks. The chemical characterization of
whole-rock was performed using an X-ray fluorescence (XRF BRUKER S8-TIGER) at the Department of
Biology, Ecology, and Earth Sciences (DiBEST), University of Calabria (Arcavacata di Rende, Cosenza,
Italy). Elemental analyses for major (wt%: SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, and
P2O5) and some trace elements (ppm: Ni, Co, Cr, V, Sc, Zn, Cu, Rb, Sr, Y, Zr, Nb, Ba, La Ce, Th, and Pb)
concentrations were obtained at the Department of Biology, Ecology, and Earth Science, University of
Calabria (Arcavacata di Rende-Cosenza, Italy) using XRF PHILIPS PW-1480 and following the matrix
correction methods by [36,37]. The structural water was removed from sample powders by heating
at 1030 ◦C for 1 h. Loss on ignition (LOI) was determined from the total weight change. SEM-EDS
analyses were performed on the polished thin sections at the Istituto di Metodologie per l’Analisi
Ambientale (CNR-Tito scalo, Potenza, Italy), using a FESEM ZEISS SUPRRA 40 Oxford INCA scanning
microscope with detector X ACT SSD; analytical conditions were 3 to 20 kV accelerating voltage and
WD from 3 to 8.5. Electron probe micro analysis were performed on Magnesio-riebeckite crystals,
using a JEOL JXA-8200 probe, in wavelength-dispersive mode with 15 kV acceleration potential, 20 nA
beam current, and a counting time of 20 s at the Freie Universität of Berlin. Natural and synthetic
minerals were used for standardization.
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4. Previous Studies of Asbestos Minerals in the Pollino Unesco Global Geopark

The presence of NOA in ophiolite rocks had been documented in the Pollino Unesco Global
Geopark [4,7]. Previous studies on serpentinite rocks highlighted that they are made up of
fibrous minerals accounting for 55% of the total mineral composition [2]. The serpentinites have
been characterized using different analytical techniques µ-Raman spectroscopy, FT-IR spectroscopy,
SEM-EDS, and EPMA (electron probe micro analysis), and confirmed the presence of serpentine and
amphibole group minerals (lizardite, chrysotile, antigorite, and tremolite-actinolite) [7]. In addition, [2]
revealed for the first time the occurrence of edenite in the serpentinite rocks of the Frido Unit. Bloise et al.
(2019) showed that in the geographic area near Episcopia (Pollino Unesco Global Geopark), significant
health problems are NOA-correlated.

5. Results and Discussion

In addition to asbestos serpentine, tremolite, and edenite described in other works [2,4,7,28],
in ophiolite rocks from the Frido Unit (Pollino Unesco Global Geopark), a presence of fibrous
Magnesio-riebeckite has been detected in schists. Samples analyzed by optical microscopy shows
that the schists cropping out close to the Mount Nandiniello area in the Pollino Unesco Global
Geopark are fine-grain foliated rocks and mainly consist of Magnesio-riebeckite, glaucophane, epidote,
stilpnomelane, quartz, and chlorite. The schists exhibit evidence of a very pervasive deformation, as
indicated by the preferred orientation of Magnesio-riebeckite, glaucophane, chlorite, and stilpnomelane.
Magnesio-riebeckite occurs as elongated prismatic fibrous or radial fibrous aggregates (Figure 2a,b)
with dark green-blue color and vitreous luster. Glaucophane is light blue to deep bluish violet with
strong pleochroism and occur as prismatic crystals in the matrix. Epidote crystals have a subidioblastic
habit and are found in matrix. Subidioblastic stilpnomelane crystals are present along the main
schistosity and are associated with the other crystals along the main foliation (Figure 2a). Quartz grains
commonly show undulose extinction and recrystallization to smaller new grain aggregate. Chlorite
crystals occur as fibrous-radiated aggregates and form the schistosity (Figure 2b). Two generations of
chlorite are observed, one coarse-grained and the latter are oriented parallel to the foliation with the
main assemblage and are also a product of the breakdown of Na-amphiboles.
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Figure 2. Photomicrographs of Mg-riebeckite schists (crossed polars); (a) Magnesio-riebeckite and
stilpnomelane crystals along the main schistosity; (b) chlorite crystals occur as fibrous-radiated
aggregates along the schistosity. (The small red circles indicate the position of point analysis with
electron probe micro analysis (EPMA)).

Whole-rock chemical analyses for investigated samples are reported in Table 1. X-ray fluorescence
analyses suggest relatively homogeneous compositions between the three samples. Major element
data show that SiO2 is the dominant oxide (55.00 to 56.87 wt%), followed by Al2O3 (16.66 to 17.03 wt%),
Fe2O3 (8.26 to 9.20 wt%), MgO (6.47 to 7.00 wt%), and Na2O (7.66 to 8.01 wt%). Concentrations of
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the other major elements are low. In order to testify the occurrence of Magnesio-riebeckite fibrous
crystals, we made morphological investigation with scanning electron microscope and microanalytical
investigation (EDS analyses) on single crystals of amphiboles. Results showed that the crystals have
Magnesio-riebeckite composition.

Table 1. Major and minor elements abundances of schists of the Frido Unit in the Pollino Unesco Global
Geopark. (n.d. = not detected).

Sample SL269a SL269b SL269c

Oxides (wt%)
SiO2 56.87 55.00 55.34
TiO2 0.75 0.82 0.80

Al2O3 16.66 17.00 17.03
Fe2O3tot 8.26 9.00 9.20

MnO 0.12 0.10 0.13
MgO 6.47 7.00 6.90
CaO 0.9 0.82 0.93

Na2O 7.66 8.01 7.90
K2O n.d. 0.2 0.4
P2O5 0.06 0.09 0.07
LOI 2.25 1.96 1.3
Sum 100 100 100
ppb
Ni 0.203 0.210 0.204
Co 0.107 0.110 0.109
Cr 0.118 0.130 0.120
V 0.117 0.120 0.119
Sc 0.028 0.025 0.030
Zn 0.315 0.29 0.30
Cu 0.239 0.241 0.237
Rb 0.216 0.220 0.218
Sr 0.039 0.037 0.040
Y 0.132 0.133 0.132
Zr 0.985 0.985 0.987
Nb 0.076 0.08 0.078
Ba 0.0004 0.0002 0.0003
La 0.0081 0.009 0.008
Ce 0.0151 0.014 0.015
Th 0.013 0.014 0.011
Pb 0.0051 0.005 0.0053

SEM images of the Magnesio-riebeckite evidence the presence of fibrous minerals with acicular
and also lamellar habit. Fiber sizes are approximately between 5–20 µm in length and have diameters
of about 1 µm. Representative images of Magnesio-riebeckite fibers are reported in Figure 3a–c. EDS
chemical analysis (Figure 3) showed the presence of a substantial amount of Fe; in fact, crocidolite is
among amphibole asbestos, one of the richest in iron [38]. Fe catalyze generation of reactive oxygen
species (ROS) [39–41], and therefore is important for asbestos toxicity.
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Figure 3. SEM images and relative point analysis of asbestos (a) and acicular/lamellar
(b,c) Magnesio-riebeckite.

Crystals of sodium amphibole don’t show zoning and compositional variation. Microprobe
analysis of amphibole crystals are reported in Table 2.
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Table 2. Representative EPMA analyses of selected fibrous Magnesio-riebeckite crystals in the schists
from the Frido Unit in the Pollino Unesco Global Geopark. (n.d. = not detected).

Number of
Analyses 269-5 269-4 269-4a 269-3 269-3a 269-2a8 269-4b 269-1 269-1a 269-11

SiO2 54.1 54.97 54.81 55.60 55.39 54.48 54.90 54.83 54.74 52.52
TiO2 0.12 0.10 0.06 0.04 0.04 0.08 0.08 0.23 0.11 0.18

Al2O3 1.34 1.43 1.55 1.39 1.58 1.31 1.52 2.26 1.52 1.93
FeO 22.08 22.57 22.90 22.14 22.78 21.41 22.18 21.39 22.49 23.81
MnO 0.34 0.10 0.20 0.28 0.32 0.33 0.22 0.13 0.15 0.20
MgO 9.75 9.24 8.87 9.79 9.01 10.08 9.14 8.33 9.08 8.79
CaO 3.93 3.03 2.07 3.98 2.25 4.32 3.07 1.12 2.41 2.90

Na2O 4.66 5.01 5.62 4.70 5.47 4.60 5.09 6.02 5.29 4.61
K2O 0.07 0.06 0.03 0.05 0.05 0.05 0.02 0.08 0.10 0.05

Cr2O3 n.d. 0.04 0.09 n.d. n.d. n.d. 0.03 n.d. 0.02 0.02
Sum 96.40 96.56 96.21 97.96 96.90 96.66 96.24 97.13 96.64 95.00

Si 7.90 7.99 7.99 7.98 8.00 7.93 8.01 8.09 7.99 7.75
Ti 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.03 0.01 0.02
Al 0.23 0.24 0.27 0,23 0.27 0.23 0.26 0.39 0.26 0.33

Fe3+ 1.39 1.39 1.51 1.26 1.49 1.24 1.30 1.28 1.47 1.88
Fe2+ 1.31 1.35 1.28 1.39 1.26 1.37 1.41 1.36 1.27 1.05
Mn 0.04 0.01 0.02 0.03 0.04 0.04 0.03 0.02 0.02 0.02
Mg 2.12 2.00 1.93 2.09 1.94 2.19 1.99 1.83 1.98 1.93
Ca 0.61 0.47 0.32 0.61 0.35 0.67 0.48 0.18 0.38 0.46
Na 1.32 1.41 1.59 1.31 1.53 1.30 1.44 1.72 1.50 1.32
K 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.01

XMg 0.62 0.60 0.60 0.60 0.61 0.62 0.59 0.57 0.61 0.65
XFe3+ 0.91 0.85 0.85 0.85 0.85 0.88 0.83 0.76 0.85 0.95
XFe2+ 0.38 0.40 0.40 0.40 0.39 0.38 0.41 0.42 0.39 0.35

The amphibole structural formula in samples is recalculated on the grounds of 23 oxygens.
Cations per formula obtained by electron microprobe of these amphibole range from: Si = 7.75–8.09,
Na = 1.32–1.72, CaO = 0.32–0.67, Mg = 1.83–2.19, Al = 0.23–0.39, and Fe3+ = 1.26–1.88. Low amounts
of several trace element (Mn and Cr) are also present in the crystals. Magnesio-riebeckite is grouped as
sodic types amphiboles according to [42,43]. The diagram [44] allowed us to classify all the analyzed
samples as Magnesio-riebeckite (Figure 4).
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XFe2+ 0.38 0.40 0.40 0.40 0.39 0.38 0.41 0.42 0.39 0.35 

The amphibole structural formula in samples is recalculated on the grounds of 23 oxygens. 
Cations per formula obtained by electron microprobe of these amphibole range from: Si = 7.75–8.09, 
Na = 1.32–1.72, CaO = 0.32–0.67, Mg = 1.83–2.19, Al = 0.23–0.39, and Fe3+ = 1.26–1.88. Low amounts of 
several trace element (Mn and Cr) are also present in the crystals. Magnesio-riebeckite is grouped as 
sodic types amphiboles according to [42,43]. The diagram [44] allowed us to classify all the analyzed 
samples as Magnesio-riebeckite (Figure 4). 

 
Figure 4. Amphibole classification diagram [42,43]. Figure 4. Amphibole classification diagram [42,43].

The chlorite structural formula was recalculated on the basis of 14 oxygens. The chlorite is
associated with the epidote crystals and occurs along amphibole. Chlorite shows high contents in
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FeO ranging between 24.05 to 26.50 wt% and MgO ranging between 16.08 to 18.10 wt%; consequently,
chlorite is classified as Fe-Mg chlorite. The composition of epidote crystals corresponds to epidote s.s.
The epidote structural formula was recalculated on the basis of 12.5 oxygens and are recalculated to
the formula X2Y3(Si,Al)3O12 (OH), assuming all the iron is ferric. Epidote crystals occur as inclusions
in Magnesio-riebeckite crystals.

6. Conclusions

In the schists cropping out in the Mount Nandiniello area in the Pollino Unesco Global Geopark,
fibrous minerals such as Magnesio-riebeckite, for the first time, were identified by cross-checking
the data obtained through several analytical techniques. In this area, the ophiolitic rocks contain
asbestos minerals. The most common are fibrous serpentine and amphiboles such as tremolite and
edenite [2]. Schists of Mount Nandiniello showed that the samples have a high amount of fibrous
Magnesio-riebeckite and is almost associated with other phases (glaucophane, chlorite, epidote, quartz,
and stilpnomelane). Under optical microscope, Magnesio-riebeckite appears as needle-shaped crystals
with dark green-black and bluish-green color. SEM observation allowed us to characterize the habit
of Magnesio-riebeckite. Crystals appears with fibrous habit and size between 5–20 µm in length
and diameter about 1 µm, respectively, comparable to regulated asbestos minerals with aspect ratio
(length:diameter) major of 3:1.

EPMA and EDS analyses proved that FeO is abundant in the Magnesio-riebeckite crystals as
compared with riebeckite from Alinci (Republic of Macedonia) [45]. In the Pollino Unesco Global
Geopark, serpentinites and Magnesio-riebeckite schists are employed as civil constructions and
building stones and this could lead to release of fibers in the air, of which the effects may be not
negligible. It would be important to take into consideration the degree of risk of the presence of
these minerals in the study area, as it could represent a potential hazard for human health, although
Magnesio-riebeckite is currently not regulated as asbestos by either the European Parliament or the
European Council of 27 March 2003. Further studies are able to establish the correlation between
exposure and health effects. The identification by different analytical techniques in this area of fibrous
minerals such as serpentine, tremolite, edenite, and now also Magnesio-riebeckite is important for
public health and environmental protection [46]. In conclusion, we think that the mapping of these
minerals and detailed field and laboratory analysis [47] are compulsory to improve our knowledge on
the mode of occurrence of minerals, with size regulated by international normative definitions, in the
rocks of the Pollino Unesco Global Geopark.
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