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Abstract: Due to the high specific surface area, high mechanical strength and broad possibility
of surface modification, nanocellulose has obtained much attention as a new class of bio-based
nanomaterials with promising potential in a wide variety of applications. Recently, a considerable
amount of research has been aimed to the fabrication of nanocellulose based hybrid membranes
for water treatment. However, nanocellulose based hybrid gas separation membrane is still a
new research area. Herein, we force on recent advancements in the fabrication methods and
separation performances of nanocellulose-based hybrid membranes for CO2 separation, the transport
mechanisms involved, along with the challenges in the utilization of nanocellulose in membranes.
Finally, some perspectives on future R&D of nanocellulose-based membranes for CO2 separation
are proposed.
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1. Introduction

Nanocellulose is a class of nanomaterials (one or more dimensions between 1 and 100 nm) composed
of the biopolymer cellulose. Like the biopolymer from which these nanomaterials are composed,
nanocellulose are highly versatile; they have a very high tensile strength [1], high biodegradability, low
toxicity, can be made biocompatible and can readily be modified chemically. The biopolymer has a long
history in human endeavors. More recently scientific curiosity and financial interest have increased the
exploration of nanostructures composed of cellulose (Figure 1). Casting a wide net in Scopus with the
search term nano AND cellulos* we find 6449 results at the time of writing, and 132,109 patents. By the
end of 2018 this was 6131 and 130,143 respectively, suggesting a continued rapid climb. The admittedly
naive search term suggests a large and growing scientific and industrial interest in nanocellulose.
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Figure 1. Publications per year as well as publications by field. Data from Scopus search using search 

term TITLE-ABS-KEY (nano AND cellulos*). Search limited to the range 1976–2018. Search made 24 

March 2019 09:00 GMT. Note that one document may be counted as contributing to several fields. 

Various kinds of nanocellulose are produced, many of which are available commercially, or 

produced in a laboratory setting. These are commonly divided into three main groups: Cellulose 

nanofibrils (CNF), cellulose nanocrystals (CNC) or bacterial nanocellulose (BNC), each with sub-

groups with a wide range of properties and applications. In the history of these nanomaterials various 

names have been and to some extent still are used in literature. In the current paper, we will adhere 

to nomenclature suggested by TAPPI and ISO, namely CNF, CNC, and BNC, respectively. This 

versatility has led to applications in a wide range of fields, including but not limited to drug delivery 

[2], tissue engineering [3], packaging films [4], nanocomposites [5], paper and board [6], rheology 

modifiers [7] and photonics [8]. 

1.1. Chemistry and Structure of Nanocellulose 

Chemically, cellulose is a homopolysaccharide, specifically β (1→4) linked D-glucose units 

(Figure 2). Given that all substituents of the D-glucose monomer are equatorial, the repeating unit for 

cellulose is quite planar, or “flat”. The rotation around the glycosidic bond ensures the polymer itself 

is linear. The combination of planar monomers and linear polymers enables the polymer chains to 

bond to one another into larger structures like fibers. Interactions between polymers are through 

inter-chain hydrogen bonds (within the plane) and van-der-Waals interactions (out of the plane). This 

amphiphilic interaction as a basis for the insolubility of cellulose in water is termed the Lindman 

hypothesis [9–11]. 

 

Figure 2. Cellulose molecular structure (a). Cellulose consists of β-(1→4) linked D-glucose units. 

Literature frequently lists cellobiose as the repeating unit, though this is criticized [12]. Common 

model for cellulose elementary fibril cross-sectional structure in higher order plants (b). Each 

rectangle represents one cellulose polymer seen down its axis. Model for cross-section of cellulose 

microfibril structure in plants proposed by Fengel and Wegener [13] (c). One square represents one 

elementary fibril. Cellulose is dark green ( ), hemicellulose is light green ( ) lignin is brown ( ). 

Figure adapted from Reference [14]. Used with permission. 

Figure 1. Publications per year as well as publications by field. Data from Scopus search using search
term TITLE-ABS-KEY (nano AND cellulos*). Search limited to the range 1976–2018. Search made
24 March 2019 09:00 GMT. Note that one document may be counted as contributing to several fields.

Various kinds of nanocellulose are produced, many of which are available commercially, or
produced in a laboratory setting. These are commonly divided into three main groups: Cellulose
nanofibrils (CNF), cellulose nanocrystals (CNC) or bacterial nanocellulose (BNC), each with sub-groups
with a wide range of properties and applications. In the history of these nanomaterials various names
have been and to some extent still are used in literature. In the current paper, we will adhere to
nomenclature suggested by TAPPI and ISO, namely CNF, CNC, and BNC, respectively. This versatility
has led to applications in a wide range of fields, including but not limited to drug delivery [2], tissue
engineering [3], packaging films [4], nanocomposites [5], paper and board [6], rheology modifiers [7]
and photonics [8].

1.1. Chemistry and Structure of Nanocellulose

Chemically, cellulose is a homopolysaccharide, specifically β (1→4) linked D-glucose units
(Figure 2). Given that all substituents of the D-glucose monomer are equatorial, the repeating unit for
cellulose is quite planar, or “flat”. The rotation around the glycosidic bond ensures the polymer itself is
linear. The combination of planar monomers and linear polymers enables the polymer chains to bond
to one another into larger structures like fibers. Interactions between polymers are through inter-chain
hydrogen bonds (within the plane) and van-der-Waals interactions (out of the plane). This amphiphilic
interaction as a basis for the insolubility of cellulose in water is termed the Lindman hypothesis [9–11].
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Figure 2. Cellulose molecular structure (a). Cellulose consists of β-(1→4) linked D-glucose units.
Literature frequently lists cellobiose as the repeating unit, though this is criticized [12]. Common model
for cellulose elementary fibril cross-sectional structure in higher order plants (b). Each rectangle
represents one cellulose polymer seen down its axis. Model for cross-section of cellulose microfibril
structure in plants proposed by Fengel and Wegener [13] (c). One square represents one elementary
fibril. Cellulose is dark green (
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1.2. Fabrication of Different Nanocelluloses

The most common sources of nanocellulose are plant matter. Nanocellulose, either CNF or CNC
from plant matter are prepared by the disintegration of the source material. Various methods, chemical
and/or mechanical, can be employed to produce these. This section will only briefly list the commonly
used methods for nanocellulose preparation. Further details on nanocellulose production can be seen
in a range of review papers and books focusing on this matter [15–18].

1.2.1. CNF

CNF, previously “microfibrillated cellulose” (MFC), was first reported in the early 1980s, then
produced through high pressure homogenization of softwood pulp [19]. Since the 1980s a wide range
of techniques have been applied to produce cellulose nanofibers. The primary means to produce CNF
by mechanical means remain high pressure homogenization, though microfluidization and grinding
are also common [16,17,20]. Other techniques are also applied, though they are less common [16,17,20].
Mechanical fibrillation is energy intensive and produces a morphologically heterogenous product
(Figure 3a) [21]. Chemical pre-treatments such as TEMPO-mediated oxidation [22,23] can be used
to produce fibrils with narrower size distributions, smaller diameters at substantially lower energy
requirements (Figure 3b).
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Figure 3. AFM (atomic force microscopy) micrographs of mechanically prepared (a) and
TEMPO-oxidized (b) CNF. Micrographs show height information, pixel values range from 0 nm
(black) to max (white). Max is 148. 1 nm for subfigure a and 47.3 nm for subfigure b. Imaged CNF
qualities are described in detail in Reference [24].

1.2.2. CNC

CNC is also referred to as nanocrystalline cellulose (NCC), crystallites, cellulose nano-whiskers
(CNW), whiskers, or rodlike cellulose microcrystals [15]. CNC can be produced by attacking and
removing areas with higher disorder. Classically this is done by acid hydrolysis, though other
approaches including enzymatic hydrolysis or TEMPO mediated oxidation [25] can also be used [11].

The morphology of CNCs, primarily their length, depends on the hydrolysis time [26], acid
concentration [27] and on the origin of the raw material [11].

1.2.3. BNC

Bacterial nanocellulose (BNC, also referred as bacterial cellulose (BC), microbial cellulose and
biocellulose) has been known since 1886 [28], when BNC pellicles produced by Gluconobacter xylinus
was first identified as cellulose. Since the initial discovery of BNC we have found that several bacterial
genera produce cellulose as a part of their metabolic processes [29].
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Fibrils produced by G. xylinus have a rectangular cross-section, and are frequently described as
ribbons rather than fibrils [30]. Nanofibrils produced by different bacteria have different morphologies
and properties [29]. BNC also has a higher degree of crystallinity than most plants [31,32], leading to a
higher tensile strength for BNC.

1.3. Nanocellulose Applications

Since the last decade, nanocellulose has been used in abundant various applications ranging from
composite reinforcement, food packaging materials, conductive materials to rheological modifiers.
However, many of the proposed applications were not marketed because of the high energy
consumption and production costs [33]. Currently, due to the fact that the isolation methods to produce
nanocellulose are much less costly, the perspectives on the industrial production of nanocellulose
have been changed. It has been applied in a wide range of fields, including but not limited to drug
delivery [2], tissue engineering [3], packaging films [4], nanocomposites [5], paper and board [6],
rheology modifiers [7] and photonics [8].

Nanocellulose has been widely studied as components of materials for food packaging. It has been
found out that the use of nanocellulose can extend the food shelf life and also improve the food quality
as they can work as carriers for some active substances, such as antioxidants and antimicrobials [34–39].

Nanocellulose can be easily fabricated into aerogels with high porosity, large surface area and low
density; thus it has been proposed as adsorbents for different applications, including removing various
pollutants from waste water, such as heavy metals, dissolved organic pollutants, dyes, oil and other
undesired effluents [40].

The use of nanocellulose as reinforcement in nanocomposites has also become a popular research
topic [1,41,42]. The tailorability, design flexibility and processability of nanocellulose–polymer
composites permit broad utilization in the various applications, like automotive, electronics,
biotechnology industries, etc [43].

Besides these applications mentioned above, nanocellulose also have been used in many novel
applications such as rheological modifiers [44], food science [19,45], 3D-printing additives [46], printed
electronics [47], sensing and biosensing [48], energy devices [49,50], drug delivery vehicles [2,51], and
membrane separation [52,53].

2. Nanocellulose Hybrid Membranes

Membranes can be used to separate different mixtures by allowing some species to pass while
the others are stopped. Permeability and selectivity are the two key parameters for a membrane.
Developing membrane with both high permeability and selectivity is always desired to increase the
efficiency of the membrane separation processes.

The combination of unique features of nanocellulose, such as high strength, chemical inertness,
hydrophilic surface chemistry, and high specific surface area, makes it a very promising material
for high-performance membranes. In this section, the different methods to fabricate nanocellulose
based hybrid membranes are briefly introduced, and the separation applications of the membranes
are summarized.

2.1. Nanocellulose Based Membrane Fabrication

There are various basic methods to fabricate membranes of different morphologies [54,55].
In the case of nanocellulose base membranes, several membrane fabrication methods have also been
developed considering the special properties of the nanocellulose fibers and the membrane casting
suspension, as illustrated in Figure 4 and summarized as follows:
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2.1.1. Vacuum Filtration

Vacuum filtration is a fast, simple, and accessible process to produce layered structures of
nanocellulose membranes and nanopapers followed by optional hot-pressing. The thickness and pore
size of resultant membranes could be controlled by the amount and concentration of nanocellulose
suspensions [56]. Different porous supports have been used in this method, including cellulose
paper [57] and nylon filter membranes [56,58].

2.1.2. Casting Evaporation and Coating

Self-standing membranes for gas separation is normally prepared via casting evaporation of dilute
nanocellulose suspension in a petri dish [59,60]. Generally, the nanocellulose dispersion needs to be
diluted to a rather low concentration (heavily dependent on surface chemistry and fibril diameter, but
generally <1 wt%) to reduce possible agglomeration [61,62].

Nanocellulose based thin-film-composite (TFC) membranes can be fabricated by knife casting
method [59] or dip-coating method [62]. By controlling and optimizing the operation parameters,
TFC membranes with a selective layer thickness of ~500 nm can be obtained [62].

2.1.3. Electrospinning

Membranes prepared from electrospining usually consist of lower basis weight, larger effective
surface area, and higher effective porosity with continuously interconnected pores [63]. Incorporating
nanocellulose inside the electrospinning membranes could change the membrane surface charge density,
enhance the overall effective surface area and improve functional group density [64,65]. Moreover, the
CNC content could affect the mean pore size and pore size distribution of this multilayered nanofibrous
system, and thus the separation performance.

2.2. Nanocellulose Hybrid Membrane Applications

Cellulose fibers have a long tradition as filter materials dating back to ancient times [66]. In the
past decades, nanocellulose has been intensively studied as membrane materials for water purification,
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possibly due to the inherent hydrophilicity of nanocellulose combined with tunable surface chemistry,
which could be promising for reducing the bio-fouling or organic fouling [67–69]. Nanocellulose based
membranes have been also applied in many water purification processes, such as bacteria removal [70],
virus removal [58], and the removal of pollutants (e.g., heavy metal species and dyes) originated from
either industrial or natural sources [52], and oil/water separation [56,71,72].

In addition, adding nanocellulose into polymer electrolyte (e.g., Nafion) could not only improve
the mechanical and thermal stability, but also reduce water uptake plus area and volume swelling ratios
in proton conducting membrane, which is one of the essential and critical materials in both proton
exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The cross-linked structure
formed by the nanocellulose could also effectively reduce the undesired methanol crossover [73–76].

The nanocellulose based membrane has also been used in other process such as solar cells [77],
membrane distillation (MD) [78], organic solvent nanofiltration (OSN) [79] and hemodialysis [80].
A new application of nanocellulose membranes for CO2 separation have been emerged and attracted
great attention during the recent five years; Promising separation performances of the membranes
have been reported [59,62].

3. Nanocellulose Hybrid Membranes for Gas Separation

Membrane separation has been widely accepted as a promising alternative for traditional CO2

separation technologies (e.g., absorption and/or adsorption) due to its high cost efficiency, high
modularity, small footprint, lower or no chemical emissions, and ease of operation. However, both high
selectivity and high gas permeability is required to make the gas separation membranes economically
favorable in industrial applications [54,81].

As previously discussed, CNC and CNF differ in length as well as crystallinity (CNC is
pre-dominant crystalline; CNF is frequently described as amorphous with crystalline regions).
The advantages of CNC include uniform size with nanometric dimensions in both length and
width. In certain applications such as high pressure gas separations, CNF with a higher aspect ratio
and tensile strength might be desirable [82]. As mentioned in Section 1.2, CNF is often produced in a
two-step process starting with a chemical/ enzymatic pre-treatment step followed by a mechanical
step. In addition to improve the processability as well as making the size distribution more uniform,
the pre-treatment step can contribute to nanocelluloses with different properties tailored different gas
separation applications (e.g., introduction of CO2 reactive groups) [82].

Based on the previous studies on nanocellulose, nanocellulose membranes have very low
gas permeability, hence they are usually used as gas barrier materials, not for gas permeation
applications [83]. In 2010, Minelli et al. investigated the O2 and H2O transport properties in CNF
(labelled MFC by the authors) films [84], and found out that dry CNF films showed excellent oxygen
and H2O barrier properties. However, a 4~5 orders of magnitude increase in both O2 and H2O
permeability was observed when the water content inside membranes was increased.

Wang et al. summarized studies of applying nanocellulose for gas barrier application [85].
Similar results were obtained for different nanocellulose: they could work as excellent oxygen barrier
materials at the dry state and the performances are still good at low relative humidity (<65%), but they
are a poor moisture barrier. In addition, the O2 permeability increases 5 orders of magnitude as the
relative humidity (RH) value increases from 0 to 60% (as shown in Figure 5). Further increasing the
RH value may lead to even higher gas permeability.
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3.1. Facilitated Transport Membranes

Inspired by the findings from Minelli et al., which concluded that the nanocellulose membrane
characteristics could be changed from barrier to highly permeable by simply controlling the RH value,
Ansaloni et al. firstly investigated the possibility of applying CNF as CO2 separation membrane
materials [59]. In their work, CO2 transport properties of membranes fabricated from neat CNF and
CNF/ polyvinylamine (Lupamin®) was studied under different RH values, ranging from ~50 to ~100.
In the case of pure CNF membranes, similar to the trend of O2 reported before, a dramatic increment
was found for all the tested gases (i.e., CO2, CH4 and N2), which shows at least 3 orders of magnitude
enhancement as the RH increases from 50% to ~100%. Under optimized conditions, a CO2/N2 selectivity
of over 500 can be obtained. However, the maximum CO2 permeability value obtained from the pure
CNF membrane is only about 25 Barrer, which is a rather low value compared to many commercially
available polymeric membranes (e.g., polyimide, polyethylene glycol-based polymers).

On the other hand, mixing CNF into Lupamine®resulted in a clear enhancement of the permeation
coefficient for all the three tested gases with respect to neat CNF films in the entire humidity range.
However, due to high swelling and dilation of the matrix at high water content, a major increase
of methane and nitrogen permeability was obtained, which resulted in a reduction of CO2/N2 and
CO2/CH4 selectivity at high humidity conditions. The gas permeation results for CO2/N2 and CO2/CH4

separation are presented in Figure 6.
In another report from the same group [60], carboxymethylated CNF was employed to mix with

Lupamin®, followed by a thermal treatment at 105 ◦C. Different from the neat CNF, in which the
CO2/CH4 selectivity firstly increases and then decreases at high RH condition, both CO2 permeability
and CO2/CH4 selectivity increase with RH in carboxymethylated CNF membranes. In the case of
carboxymethylated CNF/Lupamin®membranes, quite comparable results were obtained with respect
to the neat CNF/Lupamin®membranes [86].
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CNF was also employed in making nanocellulose/Lupamin®hybrid membranes [86].
Self-standing films with different nanocellulose content (from 30 to 70 wt%) were fabricated. It has
been found out that the membrane permeability consistently increased with water vapor, and a
higher content of Lupamin in the film led to an increment of both gas permeability and selectivity.
The maximum selectivity (135 for CO2/CH4 and 218 for CO2/N2) was obtained at 60 RH%, while the
maximum CO2 permeability (187 Barrer) was observed at 80% RH.

Instead of mixing nanocellulose into a polymeric matrix, Zhang et al. developed nanocellulose
free standing membranes by dissolving α-Cellulose in zinc chloride/calcium chloride solution [87].
Zn2+ ions reduce the pristine hydrogen bonds that normally bind the cellulose chains together, and
Ca2+ ions facilitate interactions among the Zn2+–cellulose chains to form nanofibrils. It is claimed that
the Zn2+ ion could work as fixed site carriers for CO2 gas molecule. The highest CO2 permeability
(155.0 Barrer) was obtained from the membrane with the highest Zn2+ content (22.2%), with selectivity
of 27.2 (CO2/N2) and 100.6 (CO2/O2).

In another study, BNC (labelled bacterial cellulose, BC, by the authors) was used as membranes
for CO2 separation purpose [88]. From the FTIR results, it has been found out that there is a strong
interaction of CO2 with the BNC membrane. The BNC membrane was further modified with silk
fibroin protein as well as ZnO nanoparticles to improve the interaction between the CO2 and the
membrane. However, all the three membranes show rather low gas permeability, which is 2.73, 2.69
and 2.66 Barrer for the pristine, silk fibroin-modified and ZnO nanoparticles-modified BNC membrane,
respectively. As the CO2 is the only gas tested, there is no selectivity reported.

3.2. Nanocellulose/Polymeric Hybrid Membranes Based on Solution-Diffusion Mechanism

Uribe mixed nanocellulose with two commercially available polymeric membrane materials,
which are cellulose acetate (CA) and poly ether imide (PEI) [89]. Even though high variability (>60%)
was observed on the gas permeation test, it can be clearly observed that adding only 0.1wt% of CNFs
into the polymeric matrix leads to a significant improvement on CO2 permeance, for both CA and
PEI membranes. However, the CO2 permeance falls in the low region: the maximum CO2 permeance

obtained is about 2 GPU (GPU = 10−6 cm3
STP

cm2·s·cmHg ) for CA/nanocellulose membranes and around 50 GPU
for the PEI/nanocellulose membranes. In addition, the addition of CNF improved the permeance of
both gases, at the cost of a decrease in CO2/N2 selectivity (reduced from ~20 to 5~10).

Jahan et al. mixed CNC with polyvinyl alcohol (PVA) and fabricated them into thin-film-composite
(TFC) membranes for CO2/CH4 separation application [90]. It is found out that increasing CNC
concentration of CNC in coating solution, the thickness of the selective layer (PVA + CNC) is also
increased. So 1.5 wt% CNC is the optimized content in the PVA matrix, a higher or lower content
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resulted in reduced CO2 permeance and CO2/CH4 selectivity. Under optimized conditions, a CO2

permeance of ~100 GPU and a CO2/CH4 selectivity of 39 can be obtained. The same system has also
been employed to separate CO2/CH4 at high feed pressure conditions [91]. By introducing small
amount of CNC (1~2 wt%) into the PVA matrix, followed by adjusting the pH of the resultant solution,
a CO2 permeance of 107 GPU with a CO2/CH4 selectivity of 3 was obtained under optimized conditions.
Due to the low CNC content in the membranes, it seems the effect of pH is more important than the
CNC. Increasing feed pressure from 5 to 15 bar leads to a dramatic decrease in both CO2 permeance
and CO2/CH4 selectivity.

Torstensen et al. synthesized several different types of nanocellulose and used them for CO2

capture from flue gas [82]. Three different in-house CNF’s are compared to commercially CNC and the
main focus of the publication was investigating which properties of nanocellulose are important for
gas separation membranes. Some of the different nanocellulose properties (different charges, size and
functional groups) of CNFs obtained by different pre-treatment steps (TEMPO-mediated oxidation,
phosphorylation) are discussed in this paper. The nanocellulose was mixed with PVA and then cast
onto a flat sheet polysulfone ultrafiltration membrane. It is a screening study where the nanocellulose
content in the hybrid membranes was maintained at 4 wt% as this concentration would not significantly
change the suspension viscosity. The results from mixed gas separation testing show that a high
nanocellulose charge and uniform nanoscopic size are favorable nanocellulose properties. A suggested
transport mechanism for CO2 in the membrane is suggested where CO2 is transported along the water
dense nanocellulose/PVA interfaces.

Very recently, Dai et al. employed CNC and CNF as nanofillers into PVA matrix. The hybrid
membrane was fabricated onto a PPO (polyphenylene oxide) hollow fiber substrate [62]. Up to 80 wt%
of nanocellulose was used in the hybrid membranes. By incorporating a large amount of nanocellulose
into the PVA matrix, significant improvement can be obtained: increasing CNC content from 0 to
80 wt% resulted in a dramatic increase in CO2 permeance, from ~400 GPU to ~700 GPU. The CO2/N2

selectivity is almost unchanged. On the other hand, adding CNF into PVA matrix only leads to
moderate enhancement in CO2 permeance and the increased selective layer thickness counteracts the
improvement raised from the nanocellulose. In addition, the long term stability test was carried out in
a period of one year, the membrane maintained good stability in the whole tested range.

3.3. Nanocellulose/Metal Organic Frameworks Hybrid Membranes

Metal-organic frameworks (MOFs) have been became as a new class of materials in membrane
areas due to their high surface area, controllable pore size, and versatilities in group modification [92].
However, it is challenging to fabricate pure MOF membranes without defects and voids. Thus MOF
particles are normally mixed into various polymeric matrices to form hybrid membranes with reasonable
flexibility needed in membrane processing [93]. Recently, nanocellulose fibers have been also employed
as the flexible polymeric phase to fabricate hybrid membranes containing different MOF particles.

Matsumoto et al. developed a ZIF-90/nanocellulose hybrid membrane by in-situ growth of the
MOF particles on the nanocellulose fiber surfaces [94]. The nanocellulose fibers were treated via
a TEMPO-mediated oxidation process. Thus, the nanofiber surface has a high density of carboxyl
groups, which could form metal–carboxylate complexes with the metal ions in the MOF particles.
The MOF/nanocellulose hybrid membranes were fabricated onto a paper filter, with a thickness in the
range of 20~50 µm. Gas permeation properties of the resultant membrane were tested using a CO2/CH4

mixture (50:50 vol%) as the feed gas. As shown in Figure 7, the fabricated MOF/nanocellulose hybrid
membranes exhibited ultrahigh CO2 permeance, which is around 3000 GPU. If taking into account
of the membrane thickness (~50 µm), the gas permeance is corresponding to a CO2 permeability of
~15,000 Barrers, which is only slightly lower than the well-known the most permeable polymeric
material in the world—poly(1-trimethylsilyl-1-propyne) (PTMSP) [95].
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In terms of the CO2/CH4 selectivity, the MOF/nanocellulose hybrid membrane also exhibited a
high but unusual trend: the selectivity increases with membrane thickness. The selectivity of the same
membrane material can be thickness-dependent when the membrane selective layer thickness is lower
than 1 µm [96]. However, increasing membrane thickness in micrometer range normally does not
change the selectivity. In another work [94], a CO2/CH4 selectivity value of up to 123 was obtained
with a membrane thickness of ~50 µm. The combination of the gas permeability and selectivity make
this MOF/nanocellulose hybrid membrane extraordinarily promising for CO2 separation applications.

Inspired by Reference [94], Zhang et al. also carried out research work on developing
MOF/nanocellulose hybrid membranes [97]. In their work, UiO-66-NH2 particles were used instead
of the ZIF-90 particles, and nanocellulose fibers with –COOH group on the surface was employed.
The MOF/nanocellulose hybrid membranes were fabricated by vacuum filtration of the MOF and
nanocellulose dispersion through a MCE filter with micrometer-sized pores (0.22 µm). The resultant
membrane shows a thickness of ca. 24 µm, and the thickness can be controlled by changing the
volume of the dispersions. Gas permeation results reveal that, under optimized conditions, adding
UIO-66-NH2 particles into the nanocellulose matrix greatly improved both CO2 permeability and
CO2/CH4 selectivity. A CO2 permeability of 139 Barrer and a CO2/N2 selectivity ratio of 46 was
obtained, which is almost 20 times of the neat nanocellulose membranes. However, even though the
materials used in Zhang’s report and Matsumoto’s report, the gas permeability data obtained from
Reference [97] is 2 orders of magnitude lower than the value reported in Reference [94].

3.4. Comparison of Gas Separation Performances and Transport Mechanisms

Table 1 listed all the CO2 separation performances of various nanocellulose based
hybrid membranes.

Based on Table 1, it can be clearly seen that in most of the reported nanocellulose based
membranes, the selectivity of CO2/N2 and CO2/CH4 are extraordinarily high at humid state, especially
when nanocellulose was mixed with facilitated membrane materials (e.g., PVAm) [59]. However, when
mixed with polymers based on solution-diffusion mechanism, the presence of nanocellulose does not
resulted in a significant change in selectivity (e.g., PVA [62]). Conversely, adding different nanocellulose
into non-facilitated transport polymeric matrix normally resulted in a high CO2 permeability/permeance,
while the selectivity of CO2 over other gases are almost unchanged [62,82].

The gas separation performances were also plotted in Robeson upper bound, as shown in Figure 8.
For both cases, i.e, CO2/N2 and CO2/CH4 separation, extremely high selectivity can be obtained in pure
nanocellulose membranes or nanocellulose based facilitated transport membranes [59,86]. However,
for membranes with high selectivity, the CO2 permeability were almost all always in the low region
(<200 Barrer). In addition, the maximum selectivity were normally obtained in the RH range of 65% to
80%, further increasing the RH resulted in a higher CO2 permeability but lower selectivity. Based on
the gas transport results, a possible gas transport mechanism in nanocellulose based membranes were
proposed as shown in Figure 9.
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Table 1. Comparison of CO2 separation performances of different nanocellulose based hybrid
membranes.

Material
CO2

Permeability
(Barrer)

CO2/CH4
Selectivity

CO2/N2
Selectivity Operation Condition References

CNF

0.45 262.4 - Single gas, 1 bar, 35 ◦C, 65% RH

[59]
0.94 332.0 - Single gas, 1 bar, 35 ◦C, 70% RH
2.64 428.6 614.59 Single gas, 1 bar, 35 ◦C, 75% RH
7.39 424.9 591.11 Single gas, 1 bar, 35 ◦C, 80% RH
17.66 363.7 515.79 Single gas, 1 bar, 35 ◦C, 85% RH

CNF Lup

0.82 46.07 Single gas, 1 bar, 35 ◦C, 40% RH

[59]

12.82 58.42 Single gas, 1 bar, 35 ◦C, 50% RH
49.22 73.98 214.75 Single gas, 1 bar, 35 ◦C, 60% RH

100.55 59.12 154.23 Single gas, 1 bar, 35 ◦C, 70% RH
143.56 36.99 74.31 Single gas, 1 bar, 35 ◦C, 80% RH
182.86 25.52 50.83 Single gas, 1 bar, 35 ◦C, 90% RH

CNF G2

0.03 3.01 -

Single gas, feed pressure of 1 bar,
35 ◦C

[60]
0.09 6.08 -
0.42 23.24 -
3.42 143.32 -
36.19 480.09 -

CNF/PVAm

1.31 263.54 -

Single gas, feed pressure of 1 bar,
35 ◦C

[60]
12.88 432.00 -
38.33 211.72 -
83.33 111.73 -

243.70 36.63 -

CNF pure

4.84 105.12 223.37

Single gas, feed pressure of 1 bar,
35 ◦C

[86]
8.15 109.01 200.43
23.13 93.41 100.00
53.89 66.75 79.08

127.07 48.13 64.25

L30NFC70

7.01 89.27 81.25

Single gas, feed pressure of 1 bar,
35 ◦C

[86]
28.82 100.46 137.17
34.30 62.64 98.21
42.74 35.67 63.10
79.00 20.31 32.93

L70NFC30

67.95 120.47 186.46

Single gas, feed pressure of 1 bar,
35 ◦C

[86]
91.85 133.13 221.36

118.53 105.12 195.07
156.54 58.25 133.50
209.16 29.21 86.55

CM-0 155 - 27.2
Single gas, feed pressure 2 bar at

25 ◦C
[87]CM-10 93.5 - 17.4

CM-20 42.4 - 8.4
CM-30 39.3 - 8

basic BC membrane 2.73 - - Single gas, feed pressure of 480 Pa
at room temperature [88]silk fibroin-modified BC membrane 2.69 - -

ZnO nanoparticles-modified BC 2.66 - -

PEI 2.48 - 36.37

Single gas, feed pressure 100 psig,
room temperature [89] *

PEI U 0.05% 6.41 - 7.03
PEIU 0.1% 9.31 - 14.48
PEIU 0.07% 9.65 - 15.57
PEIB0.05% 11.74 - 3.06
PEIB0.07% 31.69 - 31.48
PEIB 0.1% 50.21 - 9.91

CA 0.26 - 66.17
CAU 0.05% 0.32 - 14.35
CAU0.07% 0.30 - 67.38
CAU 0.1% 0.42 - 12.95
CAB 0.05% 0.39 - 62.93
CAB 0.07% 0.52 - 3.84
CAB 0.1% 1.95 - 1.51

PCNC 0.5% 69.92 31.18 -

Mixed gas, feed pressure of 5 bar
at 100RH% and RT

[90] *
PCNC1% 92.60 33.98 -

PCNC 1.5% 100.28 39.16 -
PCNC 2% 86.06 32.02 -
PCNC 4% 77.60 29.08 -
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Table 1. Cont.

Material
CO2

Permeability
(Barrer)

CO2/CH4
Selectivity

CO2/N2
Selectivity Operation Condition References

PVA 105 - 36

Mixed gas, feed pressure of
1.2 bar, 100 RH% and 23 ◦C

[82] *
PVA/L-CNF 92.6 - 37.5
PVA/H-CNF 90.7 - 42
PVA/P-CNF 100 - 42
PVA/CNC 128 - 39

MOF-TOCN 3000 123 - - [94] *

CNF/UiO-66-NH2 139 - 46 Single gases, 25 ◦C [97]

PVA 407.16 - 33.74

Mixed gas, feed pressure of 2 bar
at 100 RH% and RT

[62] *

PVA 20CNC 480.99 - 39.94
PVA 40CNC 549.78 - 36.16
PVA 60CNC 616.20 - 42.84
PVA 80CNC 671.95 - 43.60
PVA 20CNF 408.46 - 41.93
PVA 40CNF 412.85 - 32.61
PVA 80CNF 470.79 - 34.57

* Gas permeance (GPU) was reported instead of gas permeability (Barrer).
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As discussed before, due to the low gas permeability at dry state or low RH condition, nanocellulose
has been proposed as food packaging material. In the case of CO2 separation application, nanocellulose
based membrane normally show rather low gas permeability for both CO2 and other gases (e.g., N2) at
dry state. The densely packed nanocellulose fibers work as gas barrier, which stopped most of the gas
molecules from the feed side. When the RH was increased to a medium level (e.g., 60~80 %RH), the
CO2 gas permeability could be greatly improved, while the gas permeability of other gases (e.g., N2 and
CH4) were still maintained at a rather low level, thus resulting in extraordinarily high CO2 selectivity
over other gases. In this phase, the polymer phase swells with the presence of water vapor, thus
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the distance between the nanocellulose slightly increased. Due to the size difference (CO2 ~ 0.34 nm,
N2 ~ 0.36 nm and CH4 ~ 0.38 nm), the nanocellulose worked as molecular sieve, the CO2 molecules
could diffuse through the space between the nanocellulose fibers whereas N2 and CH4 could not, thus
resulted in high CO2 selectivity. Further increase the RH value resulted in a higher swell degree of
the polymeric matrix and consequently larger space between nanocellulose fibers. Therefore, these
spaces are big enough for all the gases to pass through, causing the nanocellulose based membrane
lose their high selectivity. At high RH conditions, the selectivity of the nanocellulose based membrane
are normally dominated by the host polymeric matrix [62,86].
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4. Conclusion and Perspectives

Nanocellulose holds many different unique properties, such as high mechanical strength and
stiffness, high surface reactivity (with numerous hydroxyl groups), specific organization, and nano-sized
dimensions. In addition, nanocellulose is abundant, renewable, nontoxic, and biodegradable. All these
properties make it a promising material for a diverse range of applications such as paper and packaging
products, adsorbents, additives, electronics, and membrane separation processes. The application of
nanocellulose based membranes for waste water treatment has also been intensively studied. However,
as described in this review, using nanocellulose hybrid membranes for gas separation is a relatively
recent application.

According to aforementioned literatures, using nanocellulose in gas separation membranes are
quite promising. The presence of nanocellulose in the hybrid membranes leads to either high selectivity
or high permeability. In facilitated transport membranes (e.g., (Polyvinylamine, PVAm)), the presence
of nanocellulose results in ultrahigh selectivity of CO2 over other gases (e.g., CH4 or N2), while the
improvement of gas permeability is not as effective. On the other hand, in nanocellulose hybrid
polymeric membrane based on solution-diffusion model (e.g., PVA and PEI), the gas permeation can
be greatly improved while the selectivity was maintained unchanged. Hybrid membranes fabricated
from nanocellulose and (in)organic particles were also studied. Some of these membranes exhibited
ultrahigh CO2 permeance and CO2/CH4 selectivity simultaneously. However, big variations were
obtained from membranes fabricated from similar materials. The gas transport mechanism inside
these membranes should be further studied and the results should be more concrete.

We expect that the applications of nanocellulose in gas separation membranes will be a topic of
intense study in the coming years. However, to make nanocellulose base membrane more competitive to
other conventional polymeric membrane materials, some perspectives for future research are proposed:

(1) Fabrication of defect-free TFC membranes with feasible gas permeance is critical. Up to now,
many of the reports are using self-standing membranes with a thickness of 50~100 µm. However,
for practical considerations, to reach a sufficient gas flux through membranes and thus making the
separation process economically feasible, membranes containing a defect-free selective layer with
athickness ranging from 0.1 to 1.0 µm are usually required;
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(2) Work should be done on understanding the gas transport mechanism in nanocellulose based
hybrid membranes, thus providing theoretical support for developing optimal membrane materials
with both high CO2 permeability and high selectivity;

(3) Gas permeation of the nanocellulose based membranes is moisture sensitive. For most of
the nanocellulose hybrid membranes, the highest selectivity was not obtained at the highest relative
humidity, thus work should be done to either control the relative humidity in the feed gas, or optimize
the nanocellulose hybrid membrane material structure to have the best separation performance at the
highest RH.

(4) Functionalization of the nanocellulose may further improve the gas separation performances
of the membranes, such as by grafting CO2-philic compounds onto the nanocellulose fiber surface.

(5) The cost of the nanocellulose addition in the hybrid membranes should be evaluated for
the possible industrial applications, by considering the balance between the gain from the improved
properties and the increased expenses for the nanocellulose addition.
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