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Abstract: In composites, a strong interphase between the components is essential for mechanical
properties. By using a suitable sizing (i.e., surface modification) of the fiber, the interphase may be
varied, e.g., by suppressing or promoting heterogeneous nucleation of a thermoplastic matrix. In the
latter case, three-dimensional transcrystallized interphases with properties differing from those of
the bulk matrix are formed. Polypropylene-glass fiber composites are prepared as single-fiber model
composites with (a) sizings either inducing or suppressing a transcrystalline interphase, (b) different
amounts of modifier maleic acid anhydride grafted polypropylene, and (c) different molecular
weights of the matrix polymer. These are studied in quasi-static or cyclic load tests. Static tests
permit insights in the interfacial characteristics such as critical interface energy release rate, adhesion
strength and frictional stress. Cyclic tests on these model composites can be used to study the nature
of dissipative processes and the damage behavior. Atomic Force Microscopy (AFM) investigations
of the fiber fracture surfaces provide supplementary information. The transcrystalline layer can
indeed improve the mechanical parameters (a 70–100% increase of strength and a 25 or 125% increase
in toughness, depending on the molecular weight (MW) of the matrix polymer at low modifier
concentration). However, the effect is partially neutralized by an opposing effect: high nucleation in
the bulk in samples with commonly used concentrations of modifier.

Keywords: polypropylene; glass fiber; polymer-matrix composites; interface; mechanical behavior;
transcrystallinity; micromechanical tests

1. Introduction

Semicrystalline thermoplastics crystallize in spherulites. In absence of external nuclei,
the homogeneous crystallization can only occur at temperatures below the crystallization temperature
Tcr. The nucleation rate is material-dependent, it generally increases with the temperature difference
Tcr-T [1]. Once nucleated, the growth of spherulites in the bulk occurs in all directions until it reaches
the neighboring spherulites, which impede further growth. On surfaces, the nucleation may occur
by heterogeneous nucleation at the surface and can be significantly higher than in the bulk. In this
case, the impedation by neighboring crystallites occurs almost immediately in the lateral directions,
leaving only the outward direction for crystal growth. Thus, a so-called transcrystalline (TC) layer at
the surface is formed. Transcrystallization is a nucleation controlled crystallization process which can
occur in a semicrystalline polymer in contact with a second material [2,3]. The growth mechanism
itself, as well as the growth rate, is identical in the bulk and within the TC layer [4–7]. The thickness of
the TC layer is therefore determined by the different rates of the two nucleation processes in the bulk
and at the surface, in relation to the growth rate [5,8,9]. These three quantities depend on a number
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of thermodynamic and physicochemical conditions, such as the surface free energy, the nucleation
density and the sample temperature.

In the case of a semicrystalline thermoplastic/glass fiber (GF) composite, the fiber surface may be
sized with the aim to induce a high nucleation density. The closely packed nuclei enforce a primarily
outward growth of the crystallites. This leads to a TC interphase layer between the fiber surface and
the semicrystalline bulk. Since early reports of transcrystallization [10,11], much effort has been put
into the topic and there is still a controversial discussion, as the existence and structure of a TC layer
have significant influence on the mechanical properties of the composite [1,4–6,12–17].

The surface free energy is determined by the type of fiber and the sizing or finish components,
especially the coupling agent. The nucleation density can be increased by appropriate sizing
components at the surface or by matrix additives for the bulk [18–20]. The roughness of the fibers
can play a role [5,14,18], especially if epitaxial ordering at the surface is possible [21,22]. The sample
temperature influences the nucleation rate at the interface and in the bulk, and the crystallization
kinetics [23,24]. Due to the memory effect of incompletely melted polymer crystals, the “temperature
history” since the last complete melting plays a role.

Occasionally, the term „transcrystallization“ is used in the literature in connection with another
phenomenon [25,26]. By applying a shear stress along the fiber axis, a columnar superstructure
is formed even at T > Tcr,trans which resembles a TC layer. It was even supposed that TC layers
only occur as a result of shearing. However, Wu et al. [27] observed that shear leads to a cylindric
crystallization. Varga and Karger-Kocsis [28] determined that this structure does not lead to increased
adhesion strength, as the cylindric crystallites are nucleated homogeneously, unlike the heterogeneous
nucleation of the TC layer, so no physical coupling occurs.

1.1. Structure of the TC Interphase

According to Pompe und Mäder [20], three different sections of the TC layer can be specified
(Figure 1), which are influenced by the above mentioned parameters.
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Section 1, the nucleation region, includes the interface between fiber and the TC part of the matrix.
It is here the nucleation takes place. A TC layer is only formed if the nucleation rate at the surface is
higher than in the bulk, e.g., if the crystallization temperature of the interface induced nucleation is
higher than that of the bulk crystallization, Tcr,bulk < Tcr,TC. The thickness of Section 1 is determined
by the roughness of the interface. The crystal morphology within a layer of the thickness of around
the distance of two nuclei is less well ordered compared to the TC layer beyond, where the crystal
growth direction is primarily perpendicular to the surface. Within the surface layer, the nuclei grow in
a hemisphere, until they are impeded by the neighboring nuclei. For some fiber/matrix combinations,
the nuclei themselves have a preferred crystal orientation.

The adjacent Section 2 is the homogeneous part of the TC layer. Its extension is delimited by
the impeding bulk spherulites. When its thickness δi,2 is bigger, therefore, the more the TC layer
can grow in the time interval between the nucleation at the interface and (a mean point in time of)
bulk nucleation. These parameters can be adjusted via a sizing/finish with high nucleating ability,
or by nucleating agents/nucleation suppressants within the polymer matrix. The crystal growth rate
is determined by the temperature resp. the cooling rate. In the case of slow cooling or isothermal
annealing at temperatures T with Tcr,bulk < T < Tcr,trans, an extended TC layer is formed [4–6,8,29].
In samples with high fiber density, the bulk spherulite region can even be fully suppressed [20].

Section 3 (cf. Figure 1) encloses the interface between the TC region and the surrounding bulk,
i.e., between the TC and the spherulitic morphology. The thickness δi,3 of this section as well as the
specific surface area of the interface are determined by the size of the bordering spherulites [12].

1.2. The TC Interphase and Its Impact on the Micromechanics and Composite Properties

The influence of a TC interphase on the mechanical properties of the composite is actively
and controversially discussed in the literature [26,28–32]. Clark et al. [16] report on polyamide
(PA)/GF or PA/carbon fiber (CF) composites with higher strength but lower toughness in the case
of transcrystallinity. In another experiment [29,33], PA/GF-composites were cooled at different rates,
resulting in TC layers of different thicknesses. The slowly cooled samples with thicker TC layers had
a Young’s modulus increased by 30% and a bending modulus increased by 70%. However, slowing
the cooling rate not only increased the TC layer thickness, but also the degree of crystallization of the
matrix and the fraction of α-crystallized PA, making a comparison more difficult.

An intermediate step to study the interplay between the local crystal morphology and the
composite properties is the micromechanical study of the influence of transcrystallization on the
adhesion strength. The results so far are controversial. Bessel et al. [11] determined a reduced adhesion
strength for TC samples. In a fragmentation test, Folkes and Wong [34] determined an increase in
the critical fiber length, i.e., also a decrease of the adhesion strength due to TC layers in PP/GF
composites. Similar results have been reported by Rolel et al. [35] for polyethylene (PE) matrix
composites. In contrast, Carvalho and Bretas [36], Huson and McGill [31] as well as Feldman et al. [14]
observed an increase in the adhesion strength due to transcrystallinity, for a number of different fibers
in different thermoplastic matrices such as polypropylene (PP), polyethylene (PE) und polyamide (PA).
Similarly, Clark et al. [15,16] found high interfacial shear strength and cohesive failure in TC samples,
in contrast to adhesive failure of the interface in absence of a TC layer. Hsiao and Chen [30] observed
that transcrystallinity had no significant effect on the adhesion strength for a number of composites.
The situation is obviously complex, due to interaction and superposition of a number of parameters,
influencing the interphase and the adhesion strength. The following paragraphs will discuss these
parameters according to the scheme in Figure 1.

Section 1: this section is determined by the fiber interface, i.e., generally by the sizing or finish of
the fiber. Sizings (on GF) or finishes (on CF) are used to increase the interfacial strength. Considering
transcrystallinity, it is of importance if the surface can induce nuclei for heterogeneous crystallization.
The resulting TC layers should act as a “physical coupling” between fiber and matrix [15], increasing
the shear strength of this first section. This has been experimentally confirmed [37]. However, usually
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the TC is reached via a sizing, which also influences the adhesion. In the present work, GF composites
are compared whose sizings are identical except for the film former, with the aim to modify the
nucleating properties at comparable adhesion strengths.

Section 2: The homogeneous region of the TC layer influences the composite properties via the
properties of the TC morphology as compared to that of the bulk. The degree of crystallization is
often higher than in the spherulitically crystallized regions [38]. Karger-Kocsis proposes that in an
extended Section 2 the crystallization shrinkage might lead to a weak interface [39]. In the TC layer,
the crystallites are smaller and radially aligned in reference to the fiber direction.

There are few experimental results focusing on this region in fiber-reinforced systems. By using
specific scanning probe microscopic techniques (phase imaging, nanoindentation), the extension and
the Young’s modulus of the interphase between GF and PP matrix could be determined [40]. Within a
TC layer, the local modulus is higher than in the bulk. Folkes and Hardwick [41] found an increase of
storage modulus E’ by a factor of 2 and higher shear and tensile strengths for a TC layer compared to a
finely spherulitic layer. Marom et al. [38] confirmed these results by dynamic mechanical studies of
microtomed sections containing predominantly TC polymer. The TC layer forming samples were more
brittle and the fracture energy was smaller than comparable bulk samples. Microbeam synchrotron
measurements of TC PP showed that under small load, no change in the microstructure is visible [42].
The authors attribute this to an “anchoring” of the TC layer lamella, confining the strain mainly to the
amorphous phase.

Section 3: At the contact of the two crystallization fronts, a second interface is formed in Section 3.
This interface is mechanically weak, due to the enrichment of low molecular weight species [43,44] as
well as due to low entanglement density [45].

Transcrystallinity occurs in many technically relevant thermoplastics. It has a great influence
on composite properties. The existence of a TC layer depends on a number of parameters, on
the combination of the materials used as well as on processing conditions. More often than not,
the resulting effect of TC morphology is an improvement, but this is by no means unequivocal. The aim
of the present work is to study the effect of adhesion strength in PP/GF microcomposites where the
fiber sizings are as similar as possible while either inducing a TC crystallization or suppressing it.

2. Experimental

2.1. Methods

In the last decade, several pieces of micromechanical equipment have been developed and set
up at the IPF to investigate the interphase characteristics between fiber and matrix in composites.
The micromechanical experiments include quasi-static pull-out tests, a hysteresis/micro-fatigue test
as well as a dynamic test with sinusoidal loads up to 350 Hz. Figure 2 presents a scheme of the
experiments. A vessel with matrix and an end-embedded fiber is clamped on an actuator that
generates the displacement. The fiber end protruding out of the matrix is glued onto a mandrel that is
fixed to a force sensor.
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The investigation of the adhesion strength parameters between fiber and polymer matrix is
carried out with the pull-out setup [46]. Force-displacement curves are obtained by quasi-statically
pulling a single fiber out of a polymer matrix. One distinctive feature of the device is the extremely
low pull-out speed down to 10 nm/s. Forces between 1 mN to 5 N can be detected by a load cell.
The experiment as well as data acquisition, analysis and statistical evaluation are performed by means
of a “traditional approach” [47,48].

For the hysteresis and long-term loading test, the fiber is periodically loaded and the hysteresis
loop is analyzed for the failure behavior [49]. The general setup (cf. Figure 2) is optimized for
hysteresis measurements (low frequency range: 0–10 Hz) of single-fiber model composites, especially
for long-term tests. A piezotranslator in combination with a piezoresistive load cell provides a zero
backlash deflection and a long-term stable force measurement. Measurement data are the amplitude of
the measured value, hysteresis, root point drift as well as elastic and loss energy. In long-term load
tests (e.g., Wöhler, relaxation or load increase tests), the periodic change of the phase angle between
force and elongation and the periodic change of stiffness and damping are analyzed.

An atomic force microscope AFM (Bruker, dimension) was used in the tapping mode to
characterize the fiber surface and fracture surfaces.

Polarization microscopy is used to study the crystallization behavior of the PP matrix.
Matrix material and separated single fibers are sandwiched between two glass plates. The thickness of
the layer is determined by spacers (150 µm). The sandwiches are observed by polarization microscopy
(Scope A1, Carl Zeiss, Oberkochen, Germany) using a hot plate (LTS350, Linkam, Tadworth, UK).
The sandwich structures were heated to 192 ◦C for five minutes to fully melt the matrix. Then they are
cooled to the crystallization temperature at 60 K/min.

2.2. Materials

GF were spun at the IPF spinning device. Yarns of 204 filaments were spun and sized with
aqueous sizings. Two sizings are compared:

On the one hand APS-PP containing gamma aminopropyl triethoxisilane (APS) as coupling agent,
and a PP film former (maleic acid anhydride grafted PP, MaPP), and on the other hand APS-PU with
the coupling agent APS and a polyurethane (PU) film former. They are referred to as APS-PP and
APS-PU fibers, respectively. As matrix PP, HD 120MO PP homopolymer (Borealis, MFR 8 g/10 min),
a typical injection molding grade, and HH 450 PP homopolymer (Borealis MFR 37 g/10 min) a typical
grade for fiber spinning applications were used, and are referred to as hiMW and lowMW PP. The two
matrices were functionalized by either 0.5 or 2.1 wt % MaPP Exxelor PO 1020 (ExxonMobil Corp.,
Irving, TX, USA).

Fibers and matrix were compounded on a twin screw extruder and injection molded into
standardized dog bone shaped specimens. The average fiber length was approx. 500 µm in all samples.

Tensile tests were conducted on the Universal Testing Machine Zwick 1456 (Zwick-Roell, Ulm,
Germany), according to ISO 527-2/1A/50. Unnotched Izod impact tests were conducted with HIT 50P,
Zwick/Roell, Germany according to ISO 179/1eU at room temperature and 50% relative humidity.
Each value obtained represents the average of ten specimens.

The single-fiber model composites for quasi-static pull-out, hysteresis and cyclic loading
investigations are all prepared in the same manner by using the IPF-made fiber embedding device [50]
An 80 mg drop of matrix is melted. The pneumatically held fiber is positioned above the matrix with
the aid of two long-distance microscope optics, monitoring the xy-positioning resp. the z-coordinate of
the fiber above the matrix. The fiber is embedded with a micro drive (embedding length: 20–1000 µm
with 0.1 µm accuracy—however, due to the formation of a meniscus, the embedding length may vary
and is therefore optically determined after each pull out test). The complete temperature pattern is
controlled by a PC (room temperature (RT) to 400 ◦C with 1 K accuracy). The chamber may be flushed
with Argon.
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3. Results

Figure 3 shows polarization micrographs of the single fiber in a neat HH450 PP film. Fibers were
heated (10 K/min) to 210 ◦C for 0.50 min, then cooled at 200 K/min to the isothermal temperature
Tiso = 135 ◦C, at which the crystallization behavior was observed.
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Figure 3. Polarization micrographs of single glass fibers in PP, Tiso = 135 ◦C, scalebar 100 µm. Top image:
APS-PU sized fiber, bottom image: APS-PP sized fiber in HH450 PP matrix. The APS-PP sized fiber
induces a TC layer.

Between crossed polarizers, the spherulites in the bulk PP film are clearly visible. Around the
APS-PP sized fiber, a TC film of about 3 µm thickness is formed. This confirms an earlier differential
scanning calorimetry study of the two sized fibers in PP, which showed that the APS-PU sized fiber
induces no TC layer, whereas the APS-PP sized fiber induces a distinct TC layer [20].

The size of the spherulites for the two neat polymers is comparable. Adding 2% MaPP increases
the nucleation density and therefore reduces the spherulite size, the crystallization is speeded up:
the half time t50% is reduced by 15%.

A series of GF/PP composites were compounded and injection molded with varying MaPP
content, with fiber sizing known to induce or suppress a TC layer and differing PP molecular weight.
Table 1 shows the mechanical properties of injection molded GF/PP specimens. In GF/PP composites,
usually a small percentage of MaPP is added to improve adhesion as the maleic moieties form covalent
bonds with the APS or weaker bonds with the OH on the glass surface. A side effect of MaPP is the
nucleation of spherulites in the bulk. This side effect reduces the thickness of the TC layer. Therefore,
the mechanical properties are determined at two concentrations of MaPP, a technically relevant 2%
and a low 0.5%. For both PP grades, there is a slight improvement of tensile strength due to the
TC in the 2% MaPP samples. In the case of 0.5% MaPP specimens, the effect of the TC layer is far
more pronounced (albeit at a lower mechanical level). The toughness is doubled in the case of the TC
interphase in high MW PP. The Young’s modulus is increased strongly upon addition of GF, but does
not depend on the TC interphase.

Table 1. Mechanical parameters of injection-molded specimens of GF reinforced PP.

PP HD 120 hiMW PP HH450 loMW

E (GPa) σm (MPa) acU (J/m2) E (GPa) σm (MPa) acU (J/m2)

0.5% MaPP
APS-PP TC 6100 79 38 4900 68 21

APS-PU Non-TC 5700 37 16 5400 38 17
no fiber 1250 27 142 1300 27 121

2% MaPP
APS-PP TC 6500 93 55 5800 87 55

APS-PU non-TC 6200 83 44 6100 83 44
no fiber 1500 107 1300 87

Table 2 shows the results of micromechanical tests on single-fiber model composites. For both
matrix PP grades, the local shear strength τd, the critical energy release rate of the interface, Gic and



Fibers 2018, 6, 16 7 of 12

the frictional shear stress after debonding, τf, are greater for the TC composites. In this interphase
sensitive method, the effect is clearly seen even in composites with 2% MaPP. AFM images of the
pulled out fibers show clear differences in the fiber fracture surface, cf. Figure 4. For a TC interphase,
the fracture surface is rough, with 500 nm structures dominating the surface morphology. In absence
of a TC layer, no such structures are seen. These structures are interpreted as either the outer surface
of the TC layer (Section 3 in Figure 1) or the sized fiber surface. A model for the fracture is proposed
(right hand sind in Figure 4) where in the case of a TC interphase, the failure occurs outside the TC
layer whereas without TC layer it occurs at the fiber surface.

Table 2. Micromechanical pull out tests results on GF /PP samples with 2.0% MaPP, parameters local
shear strength, τd, the critical energy release rate of the interface, Gic, and the frictional shear stress
after debonding, τf .

Sizing τd Gic τf

HH450 APS-PU 9.0 3.0 4.4
APS-PP 15.7 8.3 6.1

HD120 APS-PU 10.0 3.4 5.4
APS-PP 13.4 7.0 6.4
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Figure 4. AFM height images of the fracture surfaces of single-fiber model composites after pull-out
with HH450, Top: fibers inducing TC interphase, bottom: fibers suppressing a TC interphase. The height
and size of the protrusions is 400 nm × 30 nm for the TC fracture surface and 50 nm × 8 nm for
the non-TC fracture surface. A model for the fracture (right) is proposed where in the case of a
TC interphase, the failure occurs outside the TC layer whereas without TC layer it occurs at the
fiber surface.
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In addition, micromechanical dynamical [51] and micromechanical hysteresis measurements [49]
were performed on single-fiber model composites at two different embedded lengths, (200 µm, 600 µm).

Figure 5 shows the results of the hysteresis measurements for the four fiber matrix combinations
high vs. low MW and TC vs. non-TC interphase for 600 µm embedded length. All samples remain
intact with only some degradation. As the embedded length and fiber diameter vary, the value of
the force as well as the stiffness (force/displacement) is subjected to error. However, the variation
of stiffness with cycle number provides information on the degradation of the interphase, as well as
the width of the hysteresis curve or the area included in the hysteresis loop, which is equal to the
inelastic energy loss during the cycle (Figure 6). The stiffness of the high MW interphases is reduced
by 20%, whereas the stiffness of the low MW samples is reduced by 40% at 40,000 cycles. This is
independent on the interphase crystallization. The width of the hysteresis loop at zero force is initially
higher for high MW than for lower MW, and for non-TC interphase samples than for the TC ones.
Energy loss processes are higher for high MW and in the non-TC interphase. With cycle number,
the non-TC samples hysteresis decreases whereas the TC interphases have a constant hysteresis width.
Some interphase deterioration processes seem to occur in non-TC samples that are suppressed in
samples with a TC interphase.
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If a smaller embedding length of 200 µm is chosen, the non-TC samples fail, whereas the
transcrystalline samples remain intact up to 400,000 cycles.

The AFM images of either APS-PP or APS-PU fibers before embedding show a relatively smooth,
homogeneous surface (Protrusions height <30 nm, diameter <100 nm, phase difference <15◦). When the
fiber is pulled out of the matrix after cyclic loading, the fracture surfaces are significantly more
inhomogeneous (Figure 7). On the APS-PP surfaces, structures of the order of magnitude of 500 nm
are found that are strongly oriented along the fiber (=load) axis. This longitudinal alignment is also
found in the phase image. In the APS-PU sized fiber, the structures are significantly larger (2 µm),
and the contrast in the phase image is much higher.
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For the APS-PP sized fibers, a TC structure is expected, leading to a fine-grained structure on the
surface. The crystals are strongly deformed under load, but there is no material contrast, so the fracture
surface is within the PP. In the APS-PU, an alignment of the crystallites is also observed, mainly in the
phase image. The phase image also indicates a surface with varying material parameters, i.e., a fracture
surface that is located partially in the PP/PU interphase and partially within the PP matrix: a number
of larger spherulites adhere to the surface. They might be the cause for the higher friction seen in the
micromechanical measurements.

4. Conclusions

A transcrystalline interphase has in the past been observed to improve ]mechanical properties,
but contradictory results have also been observed. In the present study, an enhancing effect of the
transcrystalline layer is shown. However, it may be reduced due to the effect of additives such as MaPP,
which is added as a coupling agent between fiber and PP matrix. As MaPP will also induce nucleation
in the bulk, it reduces the effect of the transcrystalline layer. For standard MaPP concentration (2%),
the effect of the remaining TC layer is weak, tensile strength and toughness are only increased by 5 to
10%. If only 0.5% of MaPP are added, the TC layer is more pronounced, leading to a 70–100% increase
of strength and a 25 or 125% increase in toughness, depending on the MW of the matrix polymer. In
single-fiber model composite interface-specific tests, such as the single-fiber pull out test or single fiber
hysteresis test, the interphase enhancement due to the transcrystallization is evident even at 2% MaPP.
For both matrix PP grades, the local shear strength, τd, the critical energy release rate of the interface,
Gic, and the frictional shear stress after debonding, τf, are greater for the TC composites. AFM images
reveal a failure at the sizing layer for non-TC samples and failure at the outside of the TC layer in TC
model composites.
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