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Abstract: Broadband, high-power mid-infrared (mid-IR) sources are critical for many applications.
Compared to alternatives such as fluorides and chalcogenides, tellurite fibers are more robust and can
handle much higher power. Tellurite fibers also have high nonlinearity and a material zero dispersion
close to 2 µm, making them ideal for nonlinear processes pumped by Tm-doped silica fiber lasers.
In this work, we have demonstrated solid tellurite fibers fabricated by a stack-and-draw process and
investigated their potential for broadband mid-IR supercontinuum generation. We have identified
that fibers with low dispersion are beneficial and that low residual hydroxyl (OH) is critical for
broadband mid-IR supercontinuum generation in tellurite fibers pumped at ~2 µm.

Keywords: fiber design and fabrication; supercontinuum generation; nonlinear optical materials;
nonlinear optics; tellurite

1. Introduction

Mid-IR (MIR) sources are critical for a wide range of applications from identification of molecular
species to countermeasures against missile attacks [1]. Broad bandwidth and high-power are required
for improved capabilities in many of these applications. IR countermeasures are a significant and
growing area of research. Currently, narrow-linewidth lasers are used to disrupt tracking signals.
Wave-skipping techniques continue to improve to avoid countermeasures, rendering them less
effective. There is, consequently, a strong interest for broadband, bright sources capable of covering
the wavelength range from 2 µm to 5 µm. Supercontinuum source is a promising technology for
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these applications. In addition to high MIR transmission, the optical fibers also need to have high
nonlinearity and desired dispersion in this case.

Thulium (Tm)-doped mode locked fibers at ~2 µm are an ideal pump source for nonlinear
conversion to broadband MIR. Tm-doped fibers are conveniently located close to the MIR wavelengths
and can be produced robustly with mature silica fiber technology. Recently, kW-level continuous
waveform (CW) Tm-doped fiber lasers (Nufern, East Granby, CT, USA) have been demonstrated due to
the efficient two-for-one process, which enables the use of high-power diodes at ~795 nm as pumps [2].
Tm-doped fiber lasers can therefore provide a path for potential average power scaling to hundreds of
watts for MIR sources.

MIR fibers fabricated from heavy metal fluorides and chalcogenides typically have poor physical
strength and can degrade over time. These significant reliability issues have been a major barrier in
using these fibers for practical applications [3]. Also, heavy metal fluorides exhibit low nonlinearity [4].
Chalcogenides have much higher nonlinearity than tellurite, but their material zero-dispersion
wavelength (ZDW) is substantially far away from 2 µm, making them unsuitable to be pumped
by a Tm-doped fiber laser, unless suspended-core design with strong waveguide dispersion is
used [5]. There have been some recent developments in using highly germanium-doped silica fibers
for supercontinuum generations [6,7]. The strong phonon absorption of silica, however, limits their
applications to below 3 µm.

Tellurite glasses are heavy metal oxides, which are strong and chemically resistant. They have
the capability to handle much greater powers, making them suitable for high-power operation.
Tellurite glass also has over an order of magnitude higher nonlinearity than heavy metal fluorides; as
well as a material ZDW close to 2 µm. Tellurite fibers are therefore promising candidates for high-power
supercontinuum generation pumped by Tm-doped fiber lasers [8]. Tellurite offers good transmission
from the visible to ~5 µm and provides good glass stability for fiber drawing. Recent reports have
shown tellurite fiber strength extending to 60 kpsi [9] and significant progress in reducing hydroxyl
ions within the glass [10] and fiber [11–14]. The OH content is down to 0.5 ppm in [13,14].

In this work, we have demonstrated a novel stack-and-draw process for the fabrication of solid
tellurite optical fibers without an outer tube. This process enables simple and flexible fabrication of
fiber from only rods. Previously, micro-structured tellurite optical fibers were made using mechanical
means, such as extrusion or preform drilling [15–21] and all-solid tellurite optical fibers were made by
the rod-in-tube method or build-in-casting [8,9,13,14,22–25]. The new fabrication process reported in
this work demonstrates a simple and flexible process with a reduced risk of contamination.

We have demonstrated all-solid tellurite fibers with this new stack-and-draw process and MIR
supercontinuum generation in these tellurite fibers pumped by Tm fiber lasers. We have also identified
some optimal fiber designs for efficient broadband MIR supercontinuum generation and issues for
improvement, which are critical for high-power MIR supercontinuum generation.

2. Materials and Design Issues

Our tellurite glass was fabricated at Kigre Inc. using 99.999% pure materials and dry atmosphere.
The details of related glass preparation are documented in [26]. Three glass rods with ~1.75 in diameter
were produced (Figure 1). The base glass consists of ~60 wt % TeO2, ~20 wt % ZnO, and ~20 wt % BaO
(see [26] for more details). For the two doped preforms (erbium and lanthanum), ~2 wt % erbium was
added to the base glass for testing erbium-doped tellurite fiber lasers (beyond the scope of this work)
and ~5 wt % lanthanum was added to depress the refractive index so it can be used as the cladding
glass in the fiber. Kigre Inc. (Hilton Head, SC, USA) has made tellurite glass of these large sizes for
many years, a testament to the stability of the base tellurite glass.

The 5 wt % lanthanum-doped tellurite glass was initially intended as the cladding material for
a fiber core made of either the base glass or the 2 wt % erbium-doped glass. It was the ideal choice
because it does not have optical transitions in the visible or IR and exhibits a lower refractive index
than the base glass and the erbium-doped glass. During the caning process, the lanthanum-doped
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glass, however, crystallized. The high lanthanum-doping at 5 wt % has reduced the glass stability
for caning. Consequently, the erbium-doped tellurite was used instead as the cladding glass in this
work. The erbium-doped glass has a smaller dopant concentration of 2 wt % and did not display
crystallization. The erbium-doped glass does not have absorption bands above 1.7 µm; it is therefore
sufficient for our mid-IR supercontinuum generation experiment.
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Figure 1. Tellurite bulk base glass fabricated by Kigre Inc.

The refractive indices of the core (base glass) and cladding glasses (erbium-doped and
lanthanum-doped tellurite glasses) were measured using an ellipsometer at J.A. Woollam (Figure 2).
The measured refractive indices were used to simulate the fiber dispersion, from which the fiber design
was optimized.
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measured by ellipsometry.

2.1. Fiber Dispersion Simulation

The refractive index data obtained from the ellipsometry measurements (see Figure 2) was used for
determining the fiber dispersion design using a homemade fiber mode solver, which is based on solving
vector eigenvalue equations for circular boundaries similar to that described in [27]. Fiber dispersion
can then be easily obtained from the wavelength-dependent propagation constant obtained from the
mode solver. The fiber dispersion at various core diameters is simulated (Figure 3a), using the base
glass as the core and Er-doped tellurite as cladding. This data helped guide us towards the correct
fiber design, namely the correct core size. The ZDW versus core diameter is summarized in Figure 3b.
With the current refractive index contrast between the core and cladding, the minimum achievable
ZDW is 2.21 µm. For supercontinuum generation, it is better to have the pump wavelength located
near the ZDW and in the anomalous dispersion regime. In our case with a Tm-doped fiber laser pump,
this implies a ZDW of ~1.9 µm. This target is not achievable with the current cladding material and a
lower cladding index is required to achieve this objective. A core diameter of 5 µm was chosen because
it provides the best compromise between a low ZDW and flattened dispersion (Figure 3a). Lower ZDW
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can be achieved with a lower cladding index, such as the La-cladding design (Figure 3c,d) and the
air-cladding design (Figure 3e,f).Fibers 2017, 5, 37  4 of 11 
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core radius for the air-clad design (all legend refers to radius).

2.2. Bulk Glass Loss

For measuring the bulk glass loss, a base glass rod and an Er-doped tellurite glass rod were drawn
down from 1.5 mm canes to 125 µm fiber. These two fibers were coated with the standard acrylic
coating, which has a much lower refractive index than that of tellurite glass and is able to provide
optical guidance. Both fibers were very strong.

The fiber loss was measured on the Horiba iHR320 imaging spectrometer (Horiba Instruments Inc.,
Irvine, CA, USA), which consists of two broadband sources, a monochromator with multiple gratings,
filters, and a range of detectors. It has a white light, tungsten source to cover 0.3 µm–2 µm and a Globar
light source to cover 2 µm–15 µm. The system also has four detectors: a thermoelectrically cooled silicon
detector (Horiba Scientific, Edison, NJ, USA) for 0.2 µm–1 µm; a liquid nitrogen cooled extended Indium
Gallium Arsenide detector (Horiba Scientific, Edison, NJ, USA) for 1 µm–1.9 µm; a liquid nitrogen cooled
solid-state Indium Antimonide (InSb) detector (Horiba Scientific, Edison, NJ, USA) for 1 µm–5.5 µm;
and a liquid nitrogen cooled Mercury Cadmium Telluride detector (Horiba Scientific, Edison, NJ, USA)
for 2 µm–14 µm coverage.
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The base glass and Er-doped tellurite glass fibers were both measured using the Globar lamp and
the InSb liquid nitrogen cooled detector (Horiba Scientific, Edison, NJ, USA). Each fiber’s transmission
was measured from 2 µm to 5 µm. The monochromator was used to scan each individual wavelength
with a step size of 1 nm. Filters were also used to eliminate higher-order grating reflections.

The base glass demonstrates a background loss in the fiber < 1 dB/m. Figure 4 shows that the
loss of the base glass reaches a maximum at the water absorption peak of 18 dB/m. This loss value is
relatively low compared to other tellurium-barium-zinc glass compositions. The Er-doped tellurite
glass shows a higher background loss of ~4 dB/m. The peak loss at the water absorption peak is also
greater, maxing out at approximately 27 dB/m.
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3. Fiber Fabrication

The first micro-structured tellurite optical fiber was made by extrusion, involving highly
specialized equipment [18]. Traditionally, tellurite fibers are made using the rod-in-tube technique, or
the build-in-casting method, where customized tubes must be made for each draw [8,9,13,14,22–25].
The stack-and-draw method of fabricating optical fibers is regularly used for photonic crystal
structures [28]. Once the rods are drawn, it is easy to assemble preforms with varying core-to-clad
ratios. The stack-and-draw approach also minimizes surface contact of glass with external materials,
reducing potential contamination, unlike both the rod-in-tube fabrication process and extrusion.
Stacking also allows for flexibility in preform design, as well as good repeatability compared to other
methods. Normally, within the stack-and-draw method, an outer tube is used to prevent the stack
from becoming unbundled. Due to the significant material and effort involved in creating a large
customized tube for each preform, we have refined the technique and demonstrated for the first time
that an outer tube is not necessary for tellurite fibers, further simplifying the process.

The procedure began with caning all the tellurite glass preforms (see Figure 1) to an outer diameter
of 1.5 mm. The base glass had the lowest draw temperature among the three preforms, and, as the
dopant concentrations increased in the glass, the draw temperature also rose respectively. We drew over
100 rods with 800 mm in length for each glass, which could be used in multiple designs or iterations.

The all tellurite stack was fabricated by adding one base tellurite rod in the center of the stack,
surrounded by several rows of erbium-doped glass rods. The stack was held together at the chucked
end with an extended hexagonal clamp, while the drop end of the preform was held together tightly by
stainless steel wire. During initial drop phase, the wires came down with the glass and the preform stayed
fused for the remainder of the draw. The stack was drawn down to a 1.5 mm rod that was subsequently
stacked in the center of yet another set of erbium-doped cladding glass to achieve the required
core-to-cladding ratio. No outer clad tube was used in either fabrication step. Finally, the completed stack
was drawn down to fiber (125 µm) to achieve a core size of 5 µm. The final fiber cross section did not
round out, but rather maintained the hexagonal shape that it began with, due to the low surface tension
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of tellurite glass (Figure 5). The resulting core size varied from 5 µm to 7 µm. The fiber was coated with
a standard acrylic coating. The fiber can withstand handling and has reasonable tensile strength.
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4. Fiber Characterization

4.1. Fiber Loss

The fiber loss was measured on the Horiba iHR320 imaging spectrometer. The result given
in Figure 6 shows a background loss of ~7 dB/m and also a broad absorption band form roughly
2.7 µm–4 µm. This absorption can be attributed to the OH band and is caused by the incorporation of
external moisture. The preform was dried at 200 ◦C with nitrogen gas flows of 5 L/min (five times
higher than during fiber drawing) in the furnace on the draw tower. The preform underwent three
passes of moving the entire preform through the hot zone. These drying processes did not seem to be
sufficient to remove all surface moisture introduced from the atmosphere in the stack.
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4.2. Fiber Dispersion

Dispersion of a fiber is critical for efficient supercontinuum generation. By using a stack-and-draw
method, fiber design can be controlled with ease. ZDW can be modified significantly by adjusting the
core size of a micro-structured fiber [22].

Low coherence interferometry was used for the dispersion measurements [29]. A supercontinuum
source with a single-mode delivery fiber from 650 nm to 2.3 µm was used to cover a wide wavelength
range. The input beam is split into two arms of the interferometer. The path length of the reference
arm can be adjusted to coincide with the designated fiber length. The tellurite fiber was placed
at the measurement arm. Beams from the two arms were combined and then passed through a
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monochromator for wavelength selection. The coherent interference was measured with a liquid
nitrogen cooled (InSb) detector. The reference arm path length was initially roughly chosen for the
fiber length and was then finely adjusted to determine the exact location for coherent interference by
a motorized linear translational stage. This was performed for a range of wavelengths to gather the
delay-versus-wavelength data for the tellurite fiber. Due to the erbium-doped nature of the cladding,
data collection near 1 µm and between 1.4 µm and 1.6 µm was not possible due to erbium absorption.
A polynomial fit was first performed on the delay-versus-wavelength data. The dispersion data can
then be obtained from the polynomial fit by taking a simple derivative. The measured dispersion is
close to the simulation (see Figure 7). The measured ZDW is ~2.26 µm.
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5. Supercontinuum Generation

First, the seed oscillator wavelength and the amplifier dispersion of a Thorlabs Tm mode-locked
laser (Thorlabs Inc., Newton, NJ, USA) were adjusted in order to determine the optimal conditions that
maximize the supercontinuum spectrum in a tellurite fiber sample. The next step was to test for the
ideal length of fiber that balanced nonlinear effects and fiber loss. The length decided upon was 60 mm
for the tellurite fiber. The pump laser provided a center wavelength of 1.949 µm, a pulse duration of
52 fs, an average power of 570 mW, a repetition rate of 50 MHz and an estimated peak power of 200 kW.
Approximately 1000 nm of spectral broadening (Figure 8) was measured. Although the laser’s central
wavelength is over 300 nm from the ZDW, we were still able to obtain supercontinuum generation
from 1.6 µm to 2.6 µm.
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A simulation was conducted for this fiber using the code in [30]. An estimated peak power of
20 kW was used due to loss in launch optics and launch efficiency. The nonlinear index (n2) used was
2.5 × 10−19 m2/W [25]. Raman effects were simulated using the data for TeO2-B2O3-ZnO-Na2O in [31],
which provides a good approximation for our core glass. The dispersion used was from simulated
dispersion data (β2 = 0.057575 ps2/m, β3 = 1.607 × 10−4 ps3/m, β4 = −2.41 × 10−7 ps4/m). Due to the
constraint of the current program, we cannot use a wavelength-dependent nonlinear coefficient or loss.
The constant nonlinear coefficient γ of 0.02095 1/m/W and loss of 6 dB/m was used in the simulation.
These constraints can be removed in the future to better estimate the supercontinuum generation.

The simulated supercontinuum is shown in Figure 9a and is very close to the measured
supercontinuum for 60 mm and 107 mm long fibers. Since the pump wavelength is in the normal
dispersion regime, most spectral broadening occurs initially from the self-phase modulation (SPM).
The tellurite fiber’s high nonlinearity makes SPM very efficient. The clear cut-off on the short wavelength
side in the measurement shown in Figure 8 is due to erbium absorption in the cladding and increasing
normal dispersion at the shorter wavelengths. Soliton formation and related wavelength shifts can also
be observed in the anomalous regime (>2.3 µm). The simulation was also performed for 100 kW peak
power (Figure 9b), which shows that a significantly broader supercontinuum could be achieved at higher
powers. Multiple soliton formations in the anomalous regime can be observed in this case above 2.3 µm.
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To better understand the wavelength dependence of the pump wavelength, we also tested 65 mm
long fiber with a pump at longer wavelength (Novae, Brevity Lambda+). The central wavelength
was at 2.1 µm with a FWHM (full width at half maximum) pulse width of 93 fs, a repetition rate
of 19.21 MHz, average power of 194 mW, a peak power of 109 kW and PER > 15 dB. The average
power at the output of the tellurite fiber was 73 mW in this case. The normalized supercontinuum
spectrum was compared to that with the 1.949 µm pump in Figure 10 in linear scale. There is significant
increase of spectral content at long wavelengths. The long wavelength power is, however, limited by
the strong OH absorption in both cases. The longer wavelength pump clearly helped. The hydroxyl
absorption loss of ~55 dB/m measured in our fiber is much higher than the record demonstrated
in [13,14]. These results also identify the critical need for lowering OH loss.
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6. Discussion

For comparison, we further studied designs with cladding made of air to lower the ZDW using the
1.949 µm pump. The increased refractive index contrast between core and cladding in this case leads
to a much higher waveguide dispersion, which can be used to compensate for material dispersion.
A much wider shift of the ZDW can be obtained in this case. For a design with the base glass as a core
material and with air as cladding, the fiber dispersion was simulated and shown in Figure 3e for a
range of core diameters. Shown within Figure 3f, a much broader range of ZDWs can be obtained by
slight adjustments in core size. We executed the supercontinuum simulation for the air-clad design
with a core diameter of 4 µm at 20 kW and 100 kW peak powers, keeping all parameters the same,
except the nonlinear coefficient γ of 0.0361 1/m/W and dispersion data (β2 = −7.02 × 10−3 ps2/m,
β3 = 2.95 × 10−4 ps3/m, β4 = −8.147 × 10−5 ps3/m) (Figure 9c,d). This fiber design demonstrated
a ZDW of 1.918 µm just slightly below the pump wavelength at 1.949 µm in the normal dispersion
regime. It is surprising to see the simulated supercontinuum is not as broad as in the current fiber,
especially at a 100 kW peak power. This is due to the significantly higher dispersion of this fiber in
the anomalous dispersion regime (see Figure 3e). The simulation clearly demonstrates that lower
dispersion is also beneficial in addition to the location of ZDW.

7. Conclusions

In conclusion, we have demonstrated a simple and flexible stack-and-draw fabrication process for
an all-solid tellurite fiber. We have conducted both loss and absorption measurement of the fabricated
tellurite fiber, demonstrating sufficiently low losses for supercontinuum generation. We have also
demonstrated supercontinuum from 1.6 µm to 2.8 µm in the fabricated fiber and have shown that
broad supercontinuum from 1.5 µm to 4 µm can be potentially generated at higher pump powers,
providing the loss peak attributed to hydroxyl group is mitigated. We have further demonstrated that
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lower dispersion in the anomalous regime can be beneficial for efficient supercontinuum generation in
cases where peak pump power is limited. This would imply that an all-solid design may be superior
to a micro-structured design in this case. The improved broadening when pumped in the normal
dispersion regime is due to the rapid SPM spectral broadening because of the high nonlinearity in
tellurite fibers. This leads to significant power in the anomalous dispersion regime after only a short
propagation. This work also demonstrates the critical need to lower OH for MIR supercontinuum
generation in tellurite fibers.
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