Next Issue
Volume 5, March
Previous Issue
Volume 4, September
 
 

Fibers, Volume 4, Issue 4 (December 2016) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12080 KiB  
Article
Performance of Strengthened Non-Uniformly Corroded Reinforced SCC-RAP Members
by Ahmed Abdel-Mohti and Hui Shen
Fibers 2016, 4(4), 30; https://doi.org/10.3390/fib4040030 - 01 Dec 2016
Viewed by 5381
Abstract
This research examines the performance of strengthened non-uniformly corroded reinforced self-consolidating concrete (SCC) members. This paper focuses on three aspects of concrete including corrosion, concrete cover loss, and repair technique. Up to a 50% corrosion level is considered in this study. Corrosion was [...] Read more.
This research examines the performance of strengthened non-uniformly corroded reinforced self-consolidating concrete (SCC) members. This paper focuses on three aspects of concrete including corrosion, concrete cover loss, and repair technique. Up to a 50% corrosion level is considered in this study. Corrosion was experimentally induced and was simulated in other cases. Twenty-six reinforced concrete (RC) members with various corrosion levels or simulated corrosion levels were constructed and investigated. The beams with corrosion problems including those that had experimentally induced corrosion or simulated corrosion, with or without concrete cover, were repaired using carbon fiber reinforced polymer (CFRP) sheets and U-wraps. Two line loads were applied to all of the non-repaired and repaired beams constructed in this study until failure. It was found that it is conservative to model the actual corrosion by simulating the equivalent area of steel reinforcing for up to a 20% level of corrosion. For corrosion levels over 20%, the simulated corrosion over predicts the load capacity of the actual corrosion cases. When the concrete cover was lost and for a corrosion level larger than 10%, the repaired beam did not reach similar performance to that of a repaired beam with a concrete cover that was still intact. It appears that using two layers of CFRP sheet did not improve the load capacity further, but rather improved the ductility of the deteriorated RC member. Full article
Show Figures

Figure 1

9312 KiB  
Article
Uncertainty Analysis of the Temperature–Resistance Relationship of Temperature Sensing Fabric
by Muhammad Dawood Husain, Ozgur Atalay, Asli Atalay and Richard Kennon
Fibers 2016, 4(4), 29; https://doi.org/10.3390/fib4040029 - 24 Nov 2016
Cited by 4 | Viewed by 7565
Abstract
This paper reports the uncertainty analysis of the temperature–resistance (TR) data of the newly developed temperature sensing fabric (TSF), which is a double-layer knitted structure fabricated on an electronic flat-bed knitting machine, made of polyester as a basal yarn, and embedded with fine [...] Read more.
This paper reports the uncertainty analysis of the temperature–resistance (TR) data of the newly developed temperature sensing fabric (TSF), which is a double-layer knitted structure fabricated on an electronic flat-bed knitting machine, made of polyester as a basal yarn, and embedded with fine metallic wire as sensing element. The measurement principle of the TSF is identical to temperature resistance detector (RTD); that is, change in resistance due to change in temperature. The regression uncertainty (uncertainty within repeats) and repeatability uncertainty (uncertainty among repeats) were estimated by analysing more than 300 TR experimental repeats of 50 TSF samples. The experiments were performed under dynamic heating and cooling environments on a purpose-built test rig within the temperature range of 20–50 °C. The continuous experimental data was recorded through LabVIEW-based graphical user interface. The result showed that temperature and resistance values were not only repeatable but reproducible, with only minor variations. The regression uncertainty was found to be less than ±0.3 °C; the TSF sample made of Ni and W wires showed regression uncertainty of <±0.13 °C in comparison to Cu-based TSF samples (>±0.18 °C). The cooling TR data showed considerably reduced values (±0.07 °C) of uncertainty in comparison with the heating TR data (±0.24 °C). The repeatability uncertainty was found to be less than ±0.5 °C. By increasing the number of samples and repeats, the uncertainties may be reduced further. The TSF could be used for continuous measurement of the temperature profile on the surface of the human body. Full article
Show Figures

Graphical abstract

9909 KiB  
Article
CVD-Grown CNTs on Basalt Fiber Surfaces for Multifunctional Composite Interphases
by Theresa Förster, Bin Hao, Edith Mäder, Frank Simon, Enrico Wölfel and Peng-Cheng Ma
Fibers 2016, 4(4), 28; https://doi.org/10.3390/fib4040028 - 23 Nov 2016
Cited by 17 | Viewed by 9042
Abstract
Chemical vapor deposition (CVD) is used as a method for the synthesis of carbon nanotubes (CNT) on substrates, most commonly pre-treated by a metal-catalyst. In this work, the capability of basalt fiber surfaces was investigated in order to stimulate catalyst-free growth of carbon [...] Read more.
Chemical vapor deposition (CVD) is used as a method for the synthesis of carbon nanotubes (CNT) on substrates, most commonly pre-treated by a metal-catalyst. In this work, the capability of basalt fiber surfaces was investigated in order to stimulate catalyst-free growth of carbon nanotubes. We have carried out CVD experiments on unsized, sized, and NaOH-treated basalt fibers modified by growth temperature and a process gas mixture. Subsequently, we investigated the fiber surfaces by SEM, AFM, XPS and carried out single fiber tensile tests. Growth temperatures of 700 °C as well as 800 °C may induce CNT growth, but depending on the basalt fiber surface, the growth process was differently affected. The XPS results suggest surficial iron is not crucial for the CNT growth. We demonstrate that the formation of a corrosion shell is able to support CNT networks. However, our investigations do not expose distinctively the mechanisms by which unsized basalt fibers sometimes induce vertically aligned CNT carpets, isotropically arranged CNTs or no CNT growth. Considering data from the literature and our AFM results, it is assumed that the nano-roughness of surfaces could be a critical parameter for CNT growth. These findings will motivate the design of future experiments to discover the role of surface roughness as well as surface defects on the formation of hierarchical interphases. Full article
(This article belongs to the Special Issue Glass Fibers)
Show Figures

Figure 1

2270 KiB  
Article
Infrared Imaging of Cotton Fiber Bundles Using a Focal Plane Array Detector and a Single Reflectance Accessory
by Michael Santiago Cintrón, Joseph G. Montalvo, Terri Von Hoven, James E. Rodgers, Doug J. Hinchliffe, Crista Madison, Gregory N. Thyssen and Linghe Zeng
Fibers 2016, 4(4), 27; https://doi.org/10.3390/fib4040027 - 10 Nov 2016
Cited by 9 | Viewed by 7927
Abstract
Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report on the use of an [...] Read more.
Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report on the use of an infrared instrument equipped with a reflection accessory and an array detector system for the examination of cotton fiber bundles. Cotton vibrational spectra and chemical images were acquired by grouping pixels in the detector array. This technique reduced spectral noise and was employed to visualize cell wall development in cotton fibers bundles. Fourier transform infrared spectra reveal band changes in the C–O bending region that matched previous studies. Imaging studies were quick, relied on small amounts of sample and provided a distribution of the cotton fiber cell wall composition. Thus, imaging of cotton bundles with an infrared detector array has potential for use in cotton fiber examinations. Full article
Show Figures

Graphical abstract

2347 KiB  
Article
Heat Transfer in Directional Water Transport Fabrics
by Chao Zeng, Hongxia Wang, Hua Zhou and Tong Lin
Fibers 2016, 4(4), 26; https://doi.org/10.3390/fib4040026 - 14 Oct 2016
Cited by 4 | Viewed by 7713
Abstract
Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In [...] Read more.
Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications. Full article
(This article belongs to the Special Issue Smart Textiles)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop