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Abstract: Inorganic nano-scale heterostructures have many advantages over hybrid  

organic-inorganic dye-sensitized solar cells (DSSC or Grätzel cells), including their 

resistance to photo-bleaching, thermal stability, large specific surface areas, and general 

robustness. This study presents a first-of-its-kind low-cost all-inorganic lead selenide-anatase 

titania (PbSe/TiO2) nanotube heterostructure material for photovoltaic applications. Herein, 

PbSe nanostructures have been co-electrospun within a hollow TiO2 nanotube with high 

connectivity for highly efficient charge carrier flow and electron-hole pair separation. This 

material has been characterized by transmission electron microscopy (TEM), electron 

diffraction, energy dispersive X-ray spectroscopy (EDX) to show the morphology and material 

composition of the synthesized nanocomposite. Photovoltaic characterization has shown this 

newly synthesized proof-of-concept material can easily produce a photocurrent under solar 

illumination, and, with further refinement, could reveal a new direction in photovoltaic materials.  
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1. Introduction 

The worlds carbon-dense fuel shortage, the need for a low-cost renewable energy source, the need for 

extended space travel life support systems, and the need for faster, more efficient, long-term rocket 

propulsion systems have motivated scientists and engineers to innovate alternative, more efficient clean 

energy sources [1,2]. One source of energy having no acquisition costs, is plentiful, and remains mainly 

untapped is the electromagnetic (EM) radiation emitted from the sun in the form of the elementary 

particles, photons. The spectral irradiance at sea level and at the top of the atmosphere can be as high as 

1.4 W/m2/nm and 2 W/m2/nm in the visible spectrum, respectively [3]. These photons can be absorbed 

and converted into an electric current for use in electronic devices through the process of the photoelectric 

effect, by certain—photovoltaic—materials. Other leading forms of energy include carbon-dense fuels, 

wind, geothermal, hydroelectric, biological, and nuclear energy. Being efficient and green energy 

sources, geothermal, wind, and hydroelectric acquisition techniques, however, are immobile and require 

very specific conditions in order to generate any energy. Carbon-dense, biological, and nuclear energy 

sources have expensive transportation costs and waste removal costs associated with them. 

Photovoltaics, however, are advantageous over many other forms of both green and traditional energy 

sources due to their universal energy source (EM radiation), no associated transportation costs, and being 

mobile for both terrestrial and aerospace applications. These properties make photovoltaics ideal for both 

human and robotic extraterrestrial travel and colonization, as well as terrestrial travel and day-to-day 

modern life [4–7]. The fallbacks of photovoltaics continue to be their low quantum efficiencies, due to 

electron-hole recombination and weak charge-carrier extraction. Photovoltaics attractiveness has led to 

a gross of research efforts to increase their efficiency and use for both aerospace and terrestrial 

applications [8–11]. Among these developments lie innovative concepts of photovoltaic materials, 

including such designs as organic-inorganic hybrid dye-sensitized solar cells (DSSCs), also called 

Grätzel cells [12,13], conjugated polymeric materials [14,15], bulk heterojunctions materials [16,17], 

and quantum dot (QD) composite materials [18,19]. Only a few of these methods, however, have proven 

cost effective, efficient, and scalable. Some of the most promising of these unique materials are inorganic 

photovoltaic nanocrystalline devices, using QDs as a semiconducting material [20]. Their attractiveness 

stems from their highly efficient multi-exciton generation (MEG) [21] and their robust nature. Being 

entirely inorganic, they are resistant to photo-bleaching, thermal degradation, and are generally  

robust—unlike the hybrid DSSCs. Here, a novel and scalable synthesis for a PbSe/TiO2 photovoltaic 

material via use of a solvothermal route for the stacked PbSe nanostructures, which are then  

co-electrospun within a TiO2 nanotube is presented. 

Electrospinning is a straightforward way to produce nanofibers that can be easily controlled and 

modified for a number of applications. This is a popular fiber fabrication technique that has gained much 

interest due to the great control over the fibers produced [22–24]. This technique can be used to produce 

continuous polymeric and inorganic fibers from nanometer to micrometer scale widths. In this process, 

a solution or melt being extruded out of a syringe is charged by a high voltage electric field, causing the 

formation of a Taylor cone—due to Coulombic repulsion and the liquid surface tension being 

overcome—from which a continuous stream of charged polymeric and inorganic fiber is ejected [25]. 

Due to the electrically-driven jet instability, solidification and elongation occur, leading to the formation 

of micro- or nanofibers on a grounded collector. The morphology of these fibers can further be controlled 
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via adjusting the electrospinning parameters, such as solution concentration, solvent, flowrate, applied 

voltage, syringe-collector distance and collector type [26–29]. Modification and manipulation of these 

parameters allows control over the nanotube inner and outer diameter, wall thickness, and alignment [29,30]. 

The accumulation of fibers will occur after electrospinning for an extended time, leading to robust, easily 

fabricated, reproducible, and extremely high-surface area nanoporous fiber membranes. Electrospun 

nanotubes and nanofibers have applications in such fields as nanoelectronics [23], sensors [31–33], 

biomedical engineering [26], self-cleaning materials [22], among others. 

The outer material of the co-electrospun nanocomposite is TiO2, which has been widely used in 

photovoltaic materials [13,34–36]. Wide band-gap (3.0–3.2 eV) anatase TiO2 has exhibited strong 

charge-carrier separation [13], semiconducting properties [37], a low reflectance [38], and absorbance 

in the ultraviolet region ranging into the visible region [13]. TiO2 acts as an ejected electron accepter 

and, in the presented morphology, its uniaxial tube-like structure makes it an ideal candidate for  

charge-carrier flow. 

The material lining the interior of the nanocomposite is narrow-band-gap IV–VI semiconducting 

PbSe nanostructures, which have shown particularly interesting photovoltaic properties due to their 

highly efficient MEG processes [39–44]. Nanometer-scale confinement effects—delivering enhanced 

properties over the bulk phase—have been seen in a number of nanomaterials [45,46]; MEG is attributed 

to this MEG that is not seen in bulk PbSe. Schaller et al. [21] have reported an extraction of up to seven 

excitons/photon absorbed, which corresponds to a 700% external quantum efficiency. This advanced 

extraction looks to greatly improve the photo-conversion and efficiency in quantum solar cells. PbSe has 

access to a much wider range of the electromagnetic spectrum than most organic dyes and other 

semiconducting nanostructures, due to its easily tunable bandgap [47]. PbSe, with a bulk bandgap (Eg) 

of about 0.27 eV, has been found to absorb photons and exhibit MEG strongly in the infrared region, 

and well into the visible region. The cutoff for MEG depends on many factors, including: the crystallinity 

of the nanocrystals, the size of the nanocrystals, electron-hole Coulomb interactions, the exciton-Bohr 

radius of the particular nanocrystal, charge-carrier separation, electron-hole recombination (Auger 

recombination, which begins to compete with MEG at about 3Eg, λ = 1531 nm), electron-phonon 

relaxation rates, and alignment of the nanocrystals’ structure.  

These PbSe/TiO2 nanocomposites have many advantages over hybrid organic-inorganic DSSCs 

(Grätzel cells) including their resistance to photo-bleaching, their thermal stability, and their general 

robustness—being entirely inorganic. As stated, the synthesized PbSe/TiO2 nanocomposite has the potential 

to exhibit an increased efficiency over DSSC’s, due to its MEG. This phenomenon allows access to a 

much wider range of the electromagnetic spectrum than organic dyes, due to their easily tunable bandgap 

(controlled by the diameter of the nanostructures). The presented nanocomposite has a high charge 

carrier separation (electron ejecting) due to the quantum size effects and strong confinement, as well as 

the slightly higher conductance band of PbSe compared to TiO2. The presented work also exhibits a high 

surface-area to volume ratio for maximum loading of PbSe on the TiO2’s inner surface. This, along with 

efficient absorbance through the ultraviolet, visible, and infrared electromagnetic spectrum make this 

technique a scalable synthesis technique for a novel PbSe/TiO2 photovoltaic material. 
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2. Results and Discussion  

2.1. Characterization of Morphology and Material Composition 

The TEM micrographs (Figures 1a and 2a,b) show the individual TiO2 and PbSe/TiO2 nanotube 

morphology and overall nanocomposite arrangement. The uniformity and arrangement of the 

synthesized TiO2 nanotubes can be seen in Figure 1a. This shows that the nanotubes are of a very uniform 

outer diameter of 170.1 ± 1.7 nm, with a very uniform wall thickness of 32.8 ± 3.1 nm. These averages 

and standard deviations are taken from ten different electrospun samples, each with ten different fiber 

diameters and wall thicknesses measured. This relatively small wall thickness maximizes the surface 

area of which PbSe nanostructures can be loaded onto the inner wall of the TiO2 nanotubes and lowers 

the thickness of the TiO2, which helps to reduce electron-hole recombination as the hot electrons will be 

transported through the TiO2 to the electrodes. Figure 1b shows an electron diffraction pattern indicating 

that the TiO2 is in the anatase crystal phase. This polymorphic crystalline phase of TiO2 is a well-known 

type used in photocatalytic and photovoltaic applications due to its excellent charge-carrier extraction. 

Figure 1c shows the stand-alone PbSe nanostructures. These structures consist of angstrom-scale 0D lead 

selenide crystals, synthesized via a solvothermal route, which have stacked into 1D nanorods via aligned 

dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attractions.  

 

Figure 1. (a) TEM micrograph showing the high uniformity and reproducibility of the 

electrospun hollow TiO2 nanotube diameter and wall thickness, each with very small 

standard deviations; (b) Electron diffraction pattern indicating the presence of anatase TiO2; 

(c) TEM micrograph of the standalone PbSe nanostructures. 

Figure 2 shows the TiO2 nanotubes with and without the PbSe nanostructures deposited on the inner 

walls. It can be seen that the overall morphology of the nanocomposite is not changed upon 

implementation of the PbSe nanostructures. The wall thicknesses and fiber diameters remain within 
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standard error regardless of the introduction of the nanostructures being co-electrospun within.  

The energy dispersive X-ray spectroscopy (EDX) analysis shown in Figure 2c (TiO2 loaded with PbSe) 

shows both major and minor peaks of: Titanium (Kα = 4.5 keV, Lα = 0.4 keV), Oxygen (Kα = 0.5 keV), 

Lead (Lα = 10.5 keV, Mα = 2.3 keV), and Selenium (Kα = 11.2 keV, Lα = 1.3 keV), showing the 

presence of both TiO2 and PbSe. The EDX analysis shown in Figure 2d (neat TiO2) shows both major 

and minor peaks of: Titanium, Oxygen, showing only the presence of TiO2. The relative ratios of these 

peaks all agrees with the presence of TiO2 and PbSe. The copper and carbon peaks are due to the TEM grid. 

 

Figure 2. TEM micrographs of the TiO2 nanotubes (a) with and (b) without the PbSe 

nanostructures, illustrating that the PbSe nanostructures can be implemented into the TiO2 

nanotubes without changing the overall nanocomposite morphology. EDX analysis of the 

TiO2 nanotubes (c) with and (d) without the PbSe nanostructures, showing (in (c)) an equal 

ratio of Pb and Se and the presence of the PbSe nanostructures. 

2.2. Photovoltaic Characterization 

To demonstrate the photovoltaic nature of the synthesized PbSe/TiO2 nanocomposite, a device was 

fabricated as seen in the inset of Figure 3. This schematic shows the energy band diagram for the 

formation of multiple excitons in PbSe and the electron injection into TiO2. The flow of current through 

the fabricated testing device, an indium tin oxide (ITO)/nanocomposite/aluminum foil sandwich, is also 

shown in the Figure 3 inset. 

The current-voltage curves in Figure 3 show that there is a clear difference between the dark-current 

(un-illuminated) and the photo-current (illuminated with UV-Vis-IR) testing of the nanocomposite. It is 

clear that the sample illuminated under UV, visible, and IR wavelengths generates the highest current 

and shows linear behavior, suggesting enhanced electronic stability. These nanocomposite I–V curves 

are compared to the photo-generated current of the TiO2 electrospun nanotubes with the same 

configuration, only without the PbSe. These samples showed much lower photo-generated currents and 

illumination of any wavelength did not seem to show a significant difference from the dark-current 

curve. This shows that the synthesized nanocomposite is indeed photovoltaic, and a photo-generated 

current can be collected from it easily. This proof-of-concept work has shown that co-electrospinning 

can be used as an effective PbSe/TiO2 nanocomposite photovoltaic material synthesis. These synthesized 

PbSe/TiO2- nanocomposite have shown that photo-generated current extraction is easily obtained 
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through a simple device and under further characterization and optimization this nanocomposite has the 

potential to have an increased quantum efficiency and efficient charge-carrier extraction. The high 

surface area, high interfacial connectivity, and tailorable nature make the developed nanocomposite an 

excellent energy-harvesting candidate for a scalable synthesis for both human and robotic extraterrestrial 

travel and colonization, as well as terrestrial travel and day-to-day modern life. Further experimentation 

will include use of different collectors for better alignment, exploration of other configuration, as well 

as tuning of the PbSe nanostructure diameters to optimize absorption. 

 

Figure 3. Current-Voltage (I–V) curves for dark-current and photo-current testing of the 

electrospun nanocomposite compared to the neat electrospun TiO2 (inset: Schematic showing 

the energy band diagram for the nanocomposite and the flow of current through the 

fabricated testing device. This consists of the test material—either the neat anatase titania or 

the nanocomposite—sandwiched between aluminum foil and an ITO-coated glass slide). 

The current-voltage curves in Figure 3 show that there is a clear difference between the dark-current 

(un-illuminated) and the photo-current (illuminated with UV-Vis-IR) testing of the nanocomposite. It is 

clear that the sample illuminated under UV, visible, and IR wavelengths generates the highest current 

and shows linear behavior, suggesting enhanced electronic stability. These nanocomposite I–V curves 

are compared to the photo-generated current of the TiO2 electrospun nanotubes with the same 

configuration, only without the PbSe. These samples showed much lower photo-generated currents and 

illumination of any wavelength did not seem to show a significant difference from the dark-current 

curve. This shows that the synthesized nanocomposite is indeed photovoltaic, and a photo-generated 

current can be collected from it easily. This proof-of-concept work has shown that co-electrospinning 

can be used as an effective PbSe/TiO2 nanocomposite photovoltaic material synthesis. These synthesized 

PbSe/TiO2- nanocomposite have shown that photo-generated current extraction is easily obtained 

through a simple device and under further characterization and optimization this nanocomposite has the 
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potential to have an increased quantum efficiency and efficient charge-carrier extraction. The high 

surface area, high interfacial connectivity, and tailorable nature make the developed nanocomposite an 

excellent energy-harvesting candidate for a scalable synthesis for both human and robotic extraterrestrial 

travel and colonization, as well as terrestrial travel and day-to-day modern life. Further experimentation 

will include use of different collectors for better alignment, exploration of other configuration, as well 

as tuning of the PbSe nanostructure diameters to optimize absorption. 

3. Materials and Methods 

3.1. Chemicals 

Tri-n-octylphosphine (TOP), selenium powder, lead acetate trihydrate, oleic acid, n-tetradecylphosphonic 

acid, and diphenyl ether were purchased from Sigma-Aldrich (St. Louis, MO, USA) for the synthesis of 

the PbSe nanostructures. Titanium iso-propoxide (TIP), absolute ethanol, acetic acid (AA), and poly 

(vinyl pyrrolidone) (PVP) were purchased for electrospinning through Sigma-Aldrich. 

3.2. PbSe Nanostructure Preparation 

All syntheses were done under dry nitrogen. The synthesis of the PbSe nanostructures followed an 

existing synthesis route [48] with a few minor modifications. A 1.0 M stock solution of TOPSe was 

prepared by adding 7.86 g of selenium to 100 mL of TOP and mixing for 2 h at 50 °C. Lead oleate was 

formed in situ by mixing 0.76 g of lead acetate trihydrate with 2 mL of oleic acid in 10 mL diphenyl 

ether and heating for 30 min at 150 °C for 30 min under nitrogen flow via a bubbler. The lead oleate 

solution was then cooled to 60 °C and 4 mL of TOPSe is added to this solution. This solution is referred 

to as the lead oleate-TOPSe solution.  

In a separate jar, 0.2 g of n-tetradecylphosphonic acid is added to 15 mL of diphenyl ether and this 

solution is heated to 250 °C with vigorous stirring. The lead oleate-TOPSe solution is added to the 

solution of n-tetradecylphosphonic acid in diphenyl ether. The final solution is heated for 50 s at 250 °C 

and then cooled to room temperature. While the solution cools down, the solution turns cloudy, 

indicating the formation of the PbSe nanostructures. Finally, 31 mL of hexane is added to this solution. 

The PbSe nanostructures can be centrifuged and re-suspended in different solvents such as chloroform, 

water, and THF. They are left in hexane for the purposes of electrospinning. 

3.3. TiO2 Nanotube Preparation  

The TiO2 electrospinning solution is made by mixing the following two solutions in a capped vial: 

(1) 3 mL of ethanol mixed with 3 mL acetic acid and 1.5 g TIP and (2) 7.5 mL ethanol and 0.45 g PVP. 

Once the two solutions are combined, cap and mix rigorously with magnetic stirrer for 1 h. If using again 

after allowing the solution to sit for a period of time, additional mixing or sonication is required. 

3.4. Electrospinning Setup and Conditions 

The electrospinning setup, which can be seen in Figure 4, follows reference [29], with modifications 

to the working conditions. During typical procedures, a voltage of 12 kV was applied between the 9cm 
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gap between the needle tip and the 2″ × 2″ aluminum foil collector. The PbSe solution was pumped at a 

rate of 0.6 mL/h and the TiO2 solution was pumped at a rate of 0.38 mL/h, both through Harvard 

Apparatus syringe infusion pump 22. Once complete, the nanotubes were left on the collector in air 

overnight to allow the TIP to hydrolyze and calcined at 400 °C for 30 min, then increased every thirty 

minutes by 50 °C, up to 550 °C, where it was held for 4.5 h. This morphed the amorphous TiO2 to anatase 

crystallinity. Once calcined, the samples were ready for characterization. 

 

Figure 4. A schematic illustration of the co-axial spinneret, adapted with permission  

from [29]. Copyright 2004 American Chemical Society. 

3.5 Characterization 

Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) of the 

PbSe/TiO2 nanocomposite was done on a JEOL JEM 2100 instrument (JEOL USA, Inc., Peabody, MA, 

USA) operated at 200 keV using copper 100/200 square mesh grids (Electron Microscopy Sciences). 

Electronic characterization, adapted from references [39,49], of the photovoltaic nanocomposite were 

performed on a fabricated device, as shown in Figure 3 inset, and data was collected using a digital 

multimeter and a Vernier LabPro data collection device connected to a PC. 
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