Next Issue
Previous Issue

Table of Contents

Fibers, Volume 3, Issue 2 (June 2015), Pages 90-196

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-6
Export citation of selected articles as:

Research

Open AccessArticle Design and Construction of Large Amyloid Fibers
Fibers 2015, 3(2), 90-102; doi:10.3390/fib3020090
Received: 3 January 2015 / Accepted: 1 April 2015 / Published: 16 April 2015
Cited by 1 | PDF Full-text (631 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mixtures of “template” and “adder” proteins self-assemble into large amyloid fibers of varying morphology and modulus. Fibers range from low modulus, rectangular cross-sectioned tapes to high modulus, circular cross-sectioned cylinders. Varying the proteins in the mixture can elicit “in-between” morphologies, such as elliptical
[...] Read more.
Mixtures of “template” and “adder” proteins self-assemble into large amyloid fibers of varying morphology and modulus. Fibers range from low modulus, rectangular cross-sectioned tapes to high modulus, circular cross-sectioned cylinders. Varying the proteins in the mixture can elicit “in-between” morphologies, such as elliptical cross-sectioned fibers and twisted tapes, both of which have moduli in-between rectangular tapes and cylindrical fibers. Experiments on mixtures of proteins of known amino acid sequence show that control of the large amyloid fiber morphology is dependent on the amount of glutamine repeats or “Q-blocks” relative to hydrophobic side chained amino acids such as alanine, isoleucine, leucine, and valine in the adder protein. Adder proteins with only hydrophobic groups form low modulus rectangular cross-sections and increasing the Q-block content allows excess hydrogen bonding on amide groups that results in twist and higher modulus. The experimental results show that large amyloid fibers of specific shape and modulus can be designed and controlled at the molecular level. Full article
Open AccessArticle In Situ Hybridization of Pulp Fibers Using Mg-Al Layered Double Hydroxides
Fibers 2015, 3(2), 103-133; doi:10.3390/fib3020103
Received: 27 February 2015 / Accepted: 13 April 2015 / Published: 29 April 2015
PDF Full-text (51012 KB) | HTML Full-text | XML Full-text
Abstract
Inorganic Mg2+ and Al3+ containing layered double hydroxide (LDH) particles were synthesised in situ from aqueous solution onto chemical pulp fibers of pine (Pinus sylvestris). High super saturated (hss) solution with sodium carbonate produced LDH particles with an average diameter of 100–200 nm.
[...] Read more.
Inorganic Mg2+ and Al3+ containing layered double hydroxide (LDH) particles were synthesised in situ from aqueous solution onto chemical pulp fibers of pine (Pinus sylvestris). High super saturated (hss) solution with sodium carbonate produced LDH particles with an average diameter of 100–200 nm. Nano-size (70 nm) LDH particles were found from fibers external surface and, to a lesser degree, from the S2 cell wall after synthesis via low super saturated (lss) route. The synthesis via slow urea hydrolysis (Uhyd) yielded micron and clay sized LDH (2–5 μm) and enabled efficient fiber densification via mineralization of S2 fiber wall layer as indicated by TEM and compliance analysis. The Uhyd method decreased fiber compliance up to 50%. Reduction in the polymerisation degree of cellulose was observed with capillary viscometry. Thermogravimetric analysis showed that the hybridization with LDH reduced the exothermic heat, indicating, that this material can be incorporated in flame retardant applications. Fiber charge was assessed by Fibers 2015, 3 104 adsorption expermients with methylene blue (MB) and metanil yellow (MY). Synthesis via lss route retained most of the fibres original charge and provided the highest capacity (10 μmol/g) for anionic MY, indicating cationic character of hybrid fibers. Our results suggested that mineralized fibers can be potentially used in advanced applications such as biocomposites and adsorbent materials. Full article
(This article belongs to the Special Issue Cellulose Fibers)
Open AccessArticle Improvement by Nanofibers of Load Transfer in Carbon Fiber Reinforced Composites
Fibers 2015, 3(2), 134-150; doi:10.3390/fib3020134
Received: 11 February 2015 / Accepted: 14 April 2015 / Published: 29 April 2015
Cited by 3 | PDF Full-text (965 KB) | HTML Full-text | XML Full-text
Abstract
This paper focuses on the load transfer improvement caused by nanofibers (NF) in carbon fiber reinforced composites. Load transfer is defined as the ability to transfer the mechanical loading between two adjacent fibers through the surrounding matrix. NF action is explored with a
[...] Read more.
This paper focuses on the load transfer improvement caused by nanofibers (NF) in carbon fiber reinforced composites. Load transfer is defined as the ability to transfer the mechanical loading between two adjacent fibers through the surrounding matrix. NF action is explored with a finite element model representing two carbon fibers separated by a layer of a NF reinforced matrix. It appears that the role of the NF network is to strengthen the matrix by increasing matrix shear rigidity, and thus to improve the load transfer between the carbon fibers. NF network morphology, defined by NF orientation, NF spatial distribution or NF diameter, governs the NF network efficiency. Full article
(This article belongs to the Special Issue Carbon Fibers)
Open AccessArticle Electrospun Scaffolds from Low Molecular Weight Poly(ester amide)s Based on Glycolic Acid, Adipic Acid and Odd or Even Diamines
Fibers 2015, 3(2), 151-172; doi:10.3390/fib3020151
Received: 13 March 2015 / Accepted: 4 May 2015 / Published: 12 May 2015
PDF Full-text (1239 KB) | HTML Full-text | XML Full-text
Abstract
Electrospinning of regular poly(ester amide)s (PEAs) constituted by glycolic acid, adipic acid and diamines with five and six carbon atoms has been carried out. Selected PEAs were constituted by natural origin products and could be easily prepared by a polycondensation method that avoids
[...] Read more.
Electrospinning of regular poly(ester amide)s (PEAs) constituted by glycolic acid, adipic acid and diamines with five and six carbon atoms has been carried out. Selected PEAs were constituted by natural origin products and could be easily prepared by a polycondensation method that avoids tedious protection and deprotection steps usually required for obtaining polymers with a regular sequence. Nevertheless, the synthesis had some limitations that mainly concerned the final low/moderate molecular weight that could be attained. Therefore, it was considered interesting to evaluate if electrospun scaffolds could still be prepared taking also advantage of the capability of PEAs to establish intermolecular hydrogen bonds. Results indicated that the crucial factor was the control of polymer concentration in the electrospun solution, being necessary that this concentration was higher than 40% (w/v). The PEA with the lowest molecular weight (Mw close to 8000 g/mol) was the most appropriate to obtain electrospun samples with a circular cross-section since higher molecular sized polymers show solvent retention problems derived from the high viscosity of the electrospun solution that rendered ribbon-like morphologies after the impact of fibers into the collector. The studied PEAs were semicrystalline and biodegradable, as demonstrated by calorimetric and degradation studies. Furthermore, the new scaffolds were able to encapsulate drugs with anti-inflammatory and bacteriostatic activities like ketoprofen. The corresponding release and bactericide activity was evaluated in different media and against different bacteria. Finally, biocompatibility was demonstrated using both fibroblast and epithelial cell lines. Full article
(This article belongs to the Special Issue Fibers for Biomedical Applications)
Figures

Open AccessArticle Synthesis of Co-Electrospun Lead Selenide Nanostructures within Anatase Titania Nanotubes for Advanced Photovoltaics
Fibers 2015, 3(2), 173-183; doi:10.3390/fib3020173
Received: 1 April 2015 / Accepted: 20 May 2015 / Published: 1 June 2015
Cited by 2 | PDF Full-text (346 KB) | HTML Full-text | XML Full-text
Abstract
Inorganic nano-scale heterostructures have many advantages over hybrid organic-inorganic dye-sensitized solar cells (DSSC or Grätzel cells), including their resistance to photo-bleaching, thermal stability, large specific surface areas, and general robustness. This study presents a first-of-its-kind low-cost all-inorganic lead selenide-anatase titania (PbSe/TiO2)
[...] Read more.
Inorganic nano-scale heterostructures have many advantages over hybrid organic-inorganic dye-sensitized solar cells (DSSC or Grätzel cells), including their resistance to photo-bleaching, thermal stability, large specific surface areas, and general robustness. This study presents a first-of-its-kind low-cost all-inorganic lead selenide-anatase titania (PbSe/TiO2) nanotube heterostructure material for photovoltaic applications. Herein, PbSe nanostructures have been co-electrospun within a hollow TiO2 nanotube with high connectivity for highly efficient charge carrier flow and electron-hole pair separation. This material has been characterized by transmission electron microscopy (TEM), electron diffraction, energy dispersive X-ray spectroscopy (EDX) to show the morphology and material composition of the synthesized nanocomposite. Photovoltaic characterization has shown this newly synthesized proof-of-concept material can easily produce a photocurrent under solar illumination, and, with further refinement, could reveal a new direction in photovoltaic materials. Full article
Figures

Open AccessArticle Carbon Fibers from UV-Assisted Stabilization of Lignin-Based Precursors
Fibers 2015, 3(2), 184-196; doi:10.3390/fib3020184
Received: 28 May 2015 / Revised: 8 June 2015 / Accepted: 16 June 2015 / Published: 18 June 2015
Cited by 9 | PDF Full-text (627 KB) | HTML Full-text | XML Full-text
Abstract
Production of high strength carbon fibers from bio-derived precursors is of topical interest. Recently, we reported on dry-spinning of a partially acetylated softwood kraft lignin to produce carbon fibers with superior properties, but the thermo-oxidative stabilization step required a long time due to
[...] Read more.
Production of high strength carbon fibers from bio-derived precursors is of topical interest. Recently, we reported on dry-spinning of a partially acetylated softwood kraft lignin to produce carbon fibers with superior properties, but the thermo-oxidative stabilization step required a long time due to a slow heating rate needed to prevent the fibers from being heated too rapidly and sticking to each other. Here we report a rapid strategy of dual UV-thermoxidative stabilization (crosslinking) of dry-spun lignin fibers that significantly reduces the stabilization time. The fibers undergo reaction close to the surface such that they can be subsequently thermally stabilized at a rapid heating rate without fibers fusing together, which reduces the total stabilization time significantly from 40 to 4 h. Consequently, the glass transition temperature of UV irradiated fibers was about 15 °C higher than that of fibers without UV treatment. Stabilized fibers were successfully carbonized at 1000 °C and resulting carbon fibers displayed a tensile strength of 900 ± 100 MPa, which is amongst the highest reported for carbon fibers derived from softwood lignin-based precursors. These results establish that UV irradiation is a rapid step that can effectively shorten the total stabilization time for production of lignin-derived carbon fibers. Full article
(This article belongs to the Special Issue Carbon Fibers)
Back to Top