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Abstract: In the pulp and paper industry, pulp testing is typically a labor-intensive process performed
on hand-made laboratory sheets. Online quality control by automated image analysis and machine
learning (ML) could provide a consistent, fast and cost-efficient alternative. In this study, four
different supervised ML techniques—Lasso regression, support vector machine (SVM), feed-forward
neural networks (FFNN), and recurrent neural networks (RNN)—were applied to fiber data obtained
from fiber suspension micrographs analyzed by two separate image analysis software. With the
built-in software of a commercial fiber analyzer optimized for speed, the maximum accuracy of
81% was achieved using the FFNN algorithm with Yeo–Johnson preprocessing. With an in-house
algorithm adapted for ML by an extended set of particle attributes, a maximum accuracy of 96% was
achieved with Lasso regression. A parameter capturing the average intensity of the particle in the
micrograph, only available from the latter software, has a particularly strong predictive capability.
The high accuracy and sensitivity of the ML results indicate that such a strategy could be very useful
for quality control of fiber dispersions.

Keywords: image analysis; machine learning; particle classification; online quality control

1. Introduction

The development of machine learning (ML) has accelerated, and its industrial applica-
bility for, e.g., the pulp and paper industry, has increased dramatically during the last few
years. These advancements, in combination with the possibility to automatically measure
geometrical data from micrographs for large sets of particles, enable improved quality
control, reduced global footprint and lowered manufacturing costs of materials comprising
cellulose fibers [1,2].

Traditionally, pulp quality in the pulp and paper industry is assessed by manual prepa-
ration and testing of hand sheets. Although these laboratory methods are valuable, they
are time consuming and cost ineffective. Furthermore, due to the time lag of such testing,
it does not provide real-time quality control of production. This means that substandard
production is observed and adjusted with substantial delay. Although laboratory testing
of pulp will also be necessary in the future, there is a need for complementary, automated
quality control systems which provide real-time pulp quality feedback. Online imaging
systems for fiber distribution analysis, eventually combined with ML software, can be used
to meet those requirements [1,3,4].
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Pulp particle classes such as shives, fibers, vessel cells, and fine particles are established
concepts in pulping and papermaking when discussing pulp quality. Indeed, size-based
partitioning of pulp particles into classes is implemented in commercial optical fiber analyz-
ers today. In this work, we set out to refine and automate pulp particle classification using
ML techniques and thereby enhance the alignment between pulp particle classification of
engineer users and analyzers while also supporting classification of a greater number of
particle classes.

Image analysis is a technique used to extract valuable information from digital images.
The process typically unfolds in several stages. It begins with the capture of high-quality
digital images using a high-resolution camera, with subsequent image enhancement. The
next step involves identifying and segmenting the subject of interest, such as fibers within
digital images of pulp. The process concludes with the measurement of salient parameters
of the specimen and interpretation of the resultant data [5].

As input to image analysis, digital images of cellulose fibers can be obtained by a
variety of microscopy methods. These methods include scanning electron microscopy
(SEM) and transmission electron microscopy (TEM) as well as microscopy based on optical
light, X-rays, ultraviolet light (UV-vis), near-infrared light (NIR) and changes in polarized
light (CPL) [3]. New advances in, e.g., computed tomography (CT) [5] have also enabled
high-resolution three-dimensional images of fiber structures. The mechanical properties of
the pulp are strongly affected by the complex microstructures of the fibers, which can be
revealed with microscopy methods [6,7].

In this study, micrographs were obtained by optical light microscopy using fiber
analysis equipment (L&W Fiber Tester plus, ABB). This equipment includes built-in image
analysis software with five output parameters: fiber length, fiber width, fiber shape,
area-based fibrillation and perimeter-based fibrillation [3]. These particle parameters
provide pulp characterization in excellent detail to the human user. However, to exploit
potentially untapped particle-level information that may be meaningful to ML algorithms,
a complementary, in-house image analysis program was implemented with additional
output parameters, e.g., light attenuation of the particles. ML algorithms were applied both
with and without using the extra image parameters, thereby assessing whether the extra
parameters could facilitate classification of different pulp particles.

ML, a subfield of artificial intelligence, is an important tool for automated analysis
of big datasets. It can be seen as a collection of methods used to create algorithms which
enable the computer to learn patterns from the input data [8]. The use of ML in the industry
plays a major role in the advancement of the fourth industrial revolution ‘Industry 4.0’,
which adopts such methods to increase efficiency in manufacturing and processing [9]. Ad-
vancements in ML have enabled a range of computational image analysis methods, which
often surpass the human eye in a variety of fields [10]. With an automated characterization
method, more precise and efficient quality control can be obtained. Combining ML with im-
age analysis enables the use of online and offline measurements for improved, automated
categorization of pulp and paper [1,3,11]. The potential cost reduction by implementing
ML based on existing and future technologies in the paper and forest product industry is
estimated to be 9.5% [12].

ML is often separated into supervised and unsupervised learning, where the former
is currently more common [8]. The aim of supervised ML is to have the computer learn
patterns from a labeled training set and use this to predict patterns for unlabeled data,
whereas unsupervised learning considers unlabeled data. Therefore, supervised ML meth-
ods such as logistic regression, decision trees and linear model trees are often used to
classify objects. Artificial neural networks (ANNs) are a type of deep learning methods
which can be supervised or unsupervised. They mimic the biological nervous systems of
the human brain, enabling models to process a large number of parameters and learn from
experience [13]. Herein, we use different supervised MLs, including supervised ANNs, for
pulp particle classification.
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Even though ML combined with automated image analysis has the potential to reduce
both cost and energy usage in the pulp and paper industry, this combination has not,
to the best of our knowledge, been previously used to systematically classify cellulose
fibers and debris in pulp, even though ML has recently been used for many other pulp
and paper processing applications. Devi et al. described ways to utilize ML techniques
for improving paper quality by optimizing process parameters [14], Nisi et al. applied
multi-objective optimization techniques on pulp and paper processes [15], Jauhar et al.
used neural network methods to improve the efficiency of Indian pulp and paper indus-
tries [16], and Narciso et al. wrote an review paper on ways to use ML tools to reduce
energy consumption in industries [17]. Othen et al. described how to use ML techniques for
predicting cardboard properties [18] and Parente et al. showed the ways in which Monte
Carlo techniques can be used to pre-process data intended for ML-based “fault detection
and diagnosis” models for pulping industries [19]. Talebjedi et al. used deep learning ML
techniques to analyze the effect of different process parameters in TMP pulp mills [20] and
to develop optimization strategies for energy saving in such facilities [21]. However, none
of the aforementioned papers apply ML techniques directly on fiber data.

In this study, four different ML methods were assessed by comparing their ability to
classify fibers and other pulp components. Pulp suspension micrographs were obtained
using an optical fiber analyzer, and the micrographs were analyzed using the built-in
software and an in-house image analysis software, which includes additional parameters
such as the light attenuation of particles to uncover whether the extra parameters could
further improve the accuracy of the classification. ML methods can be used improve the
results obtained by optical fiber analysers, but do not eliminate the necessity of using
such hardware.

2. Experimental Section

Thermomechanical pulp samples were extracted in Holmen Braviken pulp mill (Hol-
men, Stockholm, Sweden), where the raw material was a mix of 70% roundwood chips and
30% sawmill chips, both from Norway spruce (Picea abies). A chip refiner of type RGP68DD
from Valmet was used and run at a specific energy of 1060 kWh/t (dry pulp). Pulp samples
were extracted from the latency chest after the refiner, at a consistency of 4%, dewatered
on a Büchner funnel with a 100-mesh wire, and the filtrate was recirculated once before
freezing. The pulp samples were removed from the freezer one day before testing to defrost
at room temperature, followed by hot disintegration according to ISO 5263-3:2023 [22].

The pulp samples were analyzed in a L&W Fiber Tester plus from ABB [23]. Fiber
Tester follows relevant TAPPI/ISO standards, such as ISO-16065-2:2014 [24]. In accordance
with recommendations, 100 mL beakers of 0.100% consistency pulp suspension were used.
The pulp was further diluted to 20 ppm in the analyzer. Inside the machine, the suspension
was pumped through a narrow rectangular cross-section where grayscale images were
captured using a digital camera with a stroboscope flash. The images were analyzed using
built-in and in-house software (Section 3.1).

The built-in image analysis was set to capture all objects longer than 100 µm and
thinner than 75 µm, and the instrument had a pixel resolution that enables detection
of objects down to 6.6 µm. The setting with a minimum fiber length of 0.1 mm was in
agreement with, e.g., TAPPI-standard 271 [25]. Each identified object was exported as a
separate image, and the five measured parameters (contour length, width, shape factor,
perimeter-based fibrillation, and area-based fibrillation) of each particle were saved in
one data file. Particle contour length Lc and width W were calculated from the measured
particle area A and perimeter P. Fibers with approximately band-shaped geometry were
assumed, so that

A = PW, (1)

P = 2(W + Lc). (2)
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Shape factor S, which measures the straightness of the particle, was calculated as

S =
Lp

Lc
, (3)

where Lp is the Euclidean distance between the two most distant points (endpoints) of the
particle. Perimeter-based fibrillation PF and area-based fibrillation AF both correlated to
the number of fibrils on the particle calculated from the light gray halo surrounding each
fiber [26].

The Technical Association of the Pulp and Paper Industry (TAPPI) and the Interna-
tional Organization for Standardization (ISO) have defined standards for measuring many
fiber properties. For instance, the measurement of average fiber length can be performed
manually using TAPPI standards 232 (Fiber length of pulp by projection) [27] and 233
(Fiber length of pulp by classification) [28] or automatically using TAPPI 271 (Fiber length
of pulp and paper by automated optical analyzer using polarized light) [25], ISO 16065-1
(Pulps—Determination of fiber length by automated optical analysis—Part 1: Polarized
light method) [29] and ISO 16065-2 (Pulps – Determination of fiber length by automated
optical analysis—Part 2: Unpolarized light method) [24]. It can be noted that many of the
traditional standards for measuring fiber length, such as TAPPI 232 [27] and 233 [28], focus
on calculating the (weighted) average fiber length rather than the lengths of the individual
fibers, which is performed in this paper. Since our fiber tester is a device for automated
optical analysis of individual fibers using non-polarized light, it follows ISO 16065-2. Both
the built-in image analysis program and the new image analysis software fulfill the criteria
of this standard, and since machine learning algorithms utilize ISO-certified data, the
results are produced in accordance with current standards. Additional ISO standards for
machine learning techniques will, however, probably be introduced in the future.

3. Models and Methods

In this section, the image analysis algorithm and ML techniques are described.

3.1. Image Analysis Techniques

The built-in image analysis software of the ABB Fiber Tester plus extracts fiber pa-
rameters like contour length, width, et cetera, from pulp micrographs by means of blob
analysis functions implemented in hardware modules. After adjusting for the background
using empty calibration images, pixels with greyscale values exceeding some threshold are
selected and manipulated in various ways, yielding contours from which parameters are
calculated geometrically [3].

As a complement to the built-in software of the fiber analyzer, a novel in-house image
analysis algorithm is developed to extract more information from the images of the fiber
tester. The new algorithm detects particles in a similar way as the built-in software, but
extracts several layers of information by iteratively applying low-threshold and high-
threshold masks. Parameters are then extracted by fitting polynomials to the selected pixels.
This process is slower than hardware-level analysis of the fiber tester, but detects a greater
number of low-intensity particles.

3.1.1. Image Segmentation

The in-house software, as we see, only calculates rough estimates of fiber dimensions,
curl and fibrillation, but provides 7 independent parameters, whereas the built-in software
provides 5 parameters with much higher fidelity to the physical shape. We proceed to
consider the image segmentation and particle characterization of the in-house software as
defined below.

We let Jij,k ∈ R≥0, i = 1, 2, . . . , nrow, j = 1, 2, . . . , ncol, k = 1, 2, . . . , nim represent the
intensity of pixel (i, j) in digital micrograph k. The micrographs depict backlit particles
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that appear dark against a light gray background of spatially varying intensity. Since the
lightning conditions are unchanging, the background image is defined as

Jij,0 = median
k

(Jij,k), (4)

where median(·) denotes the median, while we define the maximum intensity difference
between background and the darker particles as

∆J = max
i,j,k

(Jij,0 − Jij,k). (5)

We assume that the solid density at each pixel is proportional to the attenuated light,
so that solid density maps are defined as

wij,k = median
3×3

Jij,0 − Jij,k

∆J
, (6)

where median3×3 denotes a 3× 3 window median filter for indexes i and j of each image for
noise reduction. These density maps wij,k are the basis for particle detection and analysis.

For image segmentation, we let ρ̂ ∈ (0, 1) be a threshold density for particle detection.
To identify a particle, at least one of its pixel densities must exceed ρ̂. Moreover, we let
ρ̌ ∈ (0, ρ̂) be a lower threshold density for particle detection. In this work, we use ρ̂ = 0.100
and ρ̌ = 0.025. We consider only the kth density map ρij = ρij,k. We let Î(1)ij = ρij > ρ̂ be

a Boolean map of candidate particle positions, and we let Ǐij = ρij > ρ̌ indicate the set of
pixels that may contain solids. To identify particle 1, first, we find one pixel (i, j) such that
Î(1)ij is true. Then, we let D1 be the set of all pixels (α, β) found by a flood-fill operation on

Ǐ initiated at (i, j). This set of pixels D1 is particle 1. We let Î(2)ij = Î(1)ij ∧ (i, j) /∈ D1, and
then proceed to identify set D2 of Particle 2, and so on (Figure 1). This is repeated across all
images to identify all np particles Dξ , ξ = 1, 2, . . . , np, in the image stack.

Î(1)

Î(1)

Î(2)

D1

D2

Ǐ

Ǐ

Ǐ

Figure 1. Particle detection algorithm using high-threshold mask Î(1) and low-threshold mask Ǐ,
where Ǐ is used for floodfill particle domain detection. Each iteration (row) results in an identified
particle domain Dξ , ξ = 1, 2, . . . , np. The particle domains, with associated density weights ρij,
represent particles.

3.1.2. Particle Characterization

Particle ξ is described by the pixels in its domain Dξ and the density of those pixels.
For this particle, we introduce position vectors xα = [iα, jα]⊤ and densities wα = wiα jα , for
some ordering {(iα, jα)}N

α=1 of the pixels in Dξ .
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The density sum of ξ is

m =
N

∑
α=1

ρα. (7)

The average density of the particle is defined using the p norm,

ρ̄ =

(
1
N

N

∑
α=1

ρ
p
α

) 1
p

. (8)

Herein, we take p = 4 so that ρ̄ approximates the maximum density. This yields a
natural definition of particle area in units of px2,

A =
m
ρ̄

. (9)

We let Ψ(ρ) be the empirical cumulative distribution function of densities in Dξ . The
threshold density of particle ξ, implied by our choice of particle area, is

ρ = Ψ−1
(

1 − A
N

)
. (10)

Consequently, the number of pixels in Dξ such that ρα > ρ is A. Conversely, Equation (10)
can be written as A(ρ) = [1 − Ψ(ρ)]N. We define fibrillation index F as the negative of the
derivative of the particle area with respect to the threshold, scaled by ρ̄/A,

F = dΨ(ρ)
Nρ̄

A
, (11)

where a preceding ‘d’ denotes the derivative of a function. By this definition, F quantifies
the unsharpness of the particle–background interface.

To characterize the shape of the particle, we introduce an nq-degree polynomial,

q(x; a) = a0 + a1x + a2x2 + · · ·+ anq qnq , (12)

with a = [a0, a1, a2, . . . , nq]⊤ being the vector of polynomial coefficients. We also introduce
rotated coordinates

zα =

[
zα1
zα2

]
=

[
cos θ − sin θ
sin θ cos θ

]
xα, (13)

with θ as the rotation angle. We let

v(a, θ) =
1
m

N

∑
α=1

ρα[q(zα1)− zα2]
2 (14)

be the weighted variance of the residuals of the polynomial. The backbone of the particle is
now defined as

(a0, θ0) = arg min
a,θ

v(a, θ). (15)

That is, the particle is rotated to produce the best possible weighted fit to a polynomial.
With applied rotation θ0, the interval spanned by the particle is [ž1, ẑ1] with

ž1 = min
α s.t. ρα≥ρ

zα1, ẑ1 = max
α s.t. ρα≥ρ

zα1. (16)

The projected length of the particle is the Euclidean distance between its endpoints,

Lp =
√
(ẑ1 − ž1)2 + [q(ẑ1; a0)− q(ž1; a0)]2, (17)
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while the contour length is the arclength of the polynomial between its endpoints,

Lc =
∫ ẑ1

ž1

√
1 + [dq(z1; a0)]

2dz1. (18)

The natural definition of particle width is then

W =
A
Lc

. (19)

The geometry of the elongated particle is now defined, although we need to select
order nq of the fitting polynomial. This is based on an estimate r̃ of aspect ratio r = Lc/W
for nq = 6. A final fit is then carried out with

nq = ⌈log2(r̃)⌉. (20)

This may seem to be an arbitrary choice, but it is inspired by Sturges’ formula for
choosing the number of bins in a histogram; with Sturges’ formula, the degrees of freedom
of the histogram is 1 + ⌈log2(ns)⌉ with ns being the sample size. In our case, we envision
r as the size, and nq + 1 as the degrees of freedom of the polynomial, which leads to
Equation (20).

Page’s and Jordan’s curl index is [30]

C =
Lc

Lp
− 1. (21)

To quantify the goodness of fit, we introduce the normalized variance,

V =
v(a, θ)

W2 . (22)

This normalized variance takes large values if the particle has a re-entrant shape or if
the particle is missing a single, well-defined backbone, as is the case for crossing fibers.

The curvature of the graph of q is defined as

κ(z1) = d2q(z1)[1 + dq(z1)]
−3/2, (23)

with ‘d2’ as the second derivative, and the normalized maximum absolute curvature of the
particle is

K = W max
z1∈[ž1,ẑ1]

|κ(z1)|. (24)

In the in-house characterization method, each particle is characterized by its contour
length Lc, width W, curl index C, fibrillation index F, average density ρ̄, maximum absolute
normalized curvature K, and normalized variance V. For reasons that become clear later
(Section 3.2.1), we also include the redundant property Lp, which gives a total of 8 parame-
ters. Our physical interpretation of ρ̄ is that it represents the mean light attenuation of the
particle. Notably, Lc does not represent the centered backbone of the fiber, but the length of
a fit polynomial, also W, is influenced by image density variations within the fiber, and is
therefore not as exact as the caliper-like measures of commercial fiber analyzers. Moreover,
the fibrillation measure quantifies the diffuseness of the particle–background interface and
does not consider the actual geometry of fibrils. However, we stipulate that high accuracy
may not be as important as high dimensionality for ML classification.

3.2. Machine Learning

In the following sections, the collection and preprocessing of data as well as four
different ML algorithms are introduced: Lasso regression, support vector machine, feed-
forward neural network and recurrent neural network. ML is evaluated through sensitivity
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(true positive rate, TPR) and specificity (true negative rate, TNR) which were calculated for
each category, while accuracy (ACC) was calculated for each model.

TPR =
nTP

nP
, (25)

TNR =
nTN

nN
, (26)

ACC =
nTP + nTN

N
, (27)

where nTP, nP, nTN, nN are the numbers of true positives, positives, true negatives, and
negatives, respectively, and N is the sample size [31].

3.2.1. Data Processing

A graphical user interface was developed for manual classification of pulp objects.
Based on images and parameters obtained from image analysis, specimens were classified
by the user as either fiber, fines, fiber wall ribbon, fiber stump, shive, or other. Additionally, an
object could be marked as clipped if it included an edge pixel of the raw micrographs, or
cropped if it touched the edge of the single-object image from fiber analysis. Figure 2 shows
example images for each class together with their location in scatter plots of the in-house
image analysis dataset.

Shive Other

Fiber wall ribbon Fiber stump

Fiber Fines

0 2000 4000 6000 0 2000 4000 6000

0

50
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150
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50

100

150
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50

100
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M
e

a
n

 w
id

th
 (

µ
m

)

0.2
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Mean light
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Figure 2. Average width versus contour length for pulp particles, where each object is colored
according to its mean light attenuation. Example images not to scale.

Dataset 1, obtained from L&W Fiber Tester plus, originally had 3332 objects, none of
which were clipped or wider than 75 µm. After filtering out the cropped objects, it had
2354 observations, each one with 5 predictors.
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Dataset 2 from the in-house image analysis software included 53,916 observations and
was obtained from the same raw micrographs as Dataset 1. These datapoints were stratified
using the Hartigan–Wong k-means algorithm [32]. Random samples of equal size were
taken from each of the 12 strata and filtered from clipped objects. Moreover, 37 additional
shives were weighted into the sample from the stratum with the widest particles, since this
class was too small for ML. The result was 1391 observations, each one with 8 predictors.

Both datasets were preprocessed with the Yeo–Johnson transformation,

x(λ) =



[
(x + 1)λ − 1

]
/λ (x ≥ 0, λ ̸= 0),

ln(x + 1) (x ≥ 0, λ = 0),
−
[
(1 − x)2−λ − 1

]
/(2 − λ) (x < 0, λ ̸= 2),

− ln(1 − x) (x < 0, λ = 2),

(28)

where parameter λ is identified through maximum likelihood estimation for each parameter
of Datasets 1 and 2, respectively [33]. This transformation improves the symmetry and
reduces the skewness of the distributions. Therefore, the performance of ML methods that
benefit from near normality is enhanced.

Aside from Yeo–Johnson, two of the predictors in Dataset 2 were transformed into
binary variables, reflecting certain classification criteria. Contour length was transformed
so that

L′
c =

{
0 (Lc ≤ 200 µm),
1 (Lc > 200 µm),

(29)

where the threshold of 200 µm is the industry standard for the maximum length of fines [3].
After this transformation, Lp can no longer be calculated from the other parameters of
Dataset 2, making it an independent variable. Another recurrent classification criterion is
the distinction between light and dark objects. Mean light attenuation was transformed
into binary variable ρ̄′, where a light and a dark bin were delimited by Ward’s hierarchical
agglomerative clustering method. Murtagh’s Ward1 algorithm was applied to ρ̄ [34],
and the resulting tree was cut into two branches, corresponding to the bins of ρ̄′. These
transformations were expected to reduce collinearity between Lc and Lp, to eliminate
outliers, and to reduce noise.

The ML algorithms were run on data both with and without Yeo–Johnson trans-
formation preprocessing, and additionally on Dataset 2 without Yeo–Johnson, but with
binary transformations. The proportion of training data was 0.8. Predictors and data are
summarized in Table 1.

Table 1. Summary of predictors and datasets.

Predictor Symbol Dataset

Contour length Lc 1, 2
Mean width W 1, 2
Shape factor S 1

Area-based fibrillation AF 1
Perimeter-based fibrillation PF 1

Projected length Lp 2
Mean light attenuation ρ̄ 2

Fibrillation index F 2
Page’s and Jordan’s curl index C 2

Normalized variance V 2
Normalized max. curvature K 2
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3.2.2. Lasso Regression

The least absolute shrinkage and selection operator (Lasso) regression , or ℓ1 regular-
ization, minimizes the residual sum of squares (RSS) subject to the Manhattan length of
slope vector β = [β1, . . . , βp] being lesser than some tuning parameter t [35]. In a standard
linear model with predictors xi = [xi1, . . . , xip]

⊤ and responses yi, the Lasso estimators are

(β̂0, β̂) = arg min

 N

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2
 s.t.

p

∑
j=1

|β j| ≤ t. (30)

By Manhattan distance, or the ℓ1 norm, the unit circle is a lozenge, the unit sphere is
an octahedron, and so on. Since the corners of an ℓ1 ball with radius t are situated on the
coordinate axes and are more likely than its sides to intersect the RSS function, the models
yield sparse solutions. This preference for zero slopes near the axes prevents overfitting
and makes Lasso models stable, general, easy to interpret, and quick to compute [36,37]. If
categorical response Y ∈ {1, . . . , nK} is modeled by multinomial distribution,

P(Y = k|x) = eβ0k+x⊤βk

∑nK
i=1 eβ0i+x⊤βi

, (31)

subject to the same constraint as in (30), where βi, i = 1, . . . , nK are column vectors of
coefficients, the maximum likelihood Lasso estimators can be approximated by coordinate
descent. In this study, this was achieved using the glmnet package for R programming
language [38,39].

3.2.3. Support Vector Machine

Support vector machine (SVM) is a non-parametric clustering algorithm that can be
used for supervised ML for classification problems (SVC) and regression problems (SVR).
The SVC algorithm is a classifier that finds an arbitrary hyperplane in N-dimensional space
that partitions the data points into classes. The space between a hyperplane and the data
points on each side of the hyperplane is called a margin and the data points closest to the
margin span are so-called support vectors. The aim is to maximize the margin by finding
the optimal hyperplane [40,41].

Linearly separable data can be classified using linear SVC directly on the data. For
non-linearly separable data, however, the feature space needs to be transformed into higher
dimensions using a kernel function, which allows for linear separation of the transformed
data. The standard kernel is linear, and a commonly used kernel function is the Gaussian
radial basis function (RBF). Aside from margin and kernels, other hyperparameters include
regularization Γ and the curvature of decision boundary γ. Adjusting Γ alters the number
of misclassified data points by the hyperplane and can prevent overfitting. For large
values of Γ, the data points are classified more accurately by allowing for a small-margin
hyperplane, but this may lead to overfitting, while small values of Γ could misclassify
some data points to allow for large-margin hyperplanes. The γ hyperparameter determines
the influence of each data point on the hyperplane. High values of γ consider only the
hyperplane’s nearby data points, while small values of γ also consider data points farther
away. The higher the value of γ, the more complex the hyperplane, which may lead
to overfitting [40–43]. The SVM works effectively with data points with high margin
separation and high-dimensional spaces and can be effective for large datasets and datasets
with overlapping target classes [40,41].

In this work, an SVM implementation from the Scikit-learn open source library [44]
was used with the linear or the RBF kernel, Γ ∈ {0.1, 1, 10, 100}, and γ ∈ {0.01, 0.1, 1}. Each
combination (Γ, γ) was tested with each dataset to identify the optimal combination of
highest total accuracy. Using these optimal parameters, sensitivity and specificity were
calculated for each class.
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3.2.4. Feed-Forward Neural Network

Feed-forward neural network (FFNN) models are comparatively simple and were
among the earliest artificial neural networks developed for classification problems [45].
FFNN models process data with forward propagation, but update their model weights to
minimize prediction errors using back propagation [46]. The neural network consists of
neurons arranged in linear layers, where the first (the input layer) takes the parameters of
the input data and the last (the output layer) outputs the classes. Between these two layers
there is a hidden layer with an arbitrary number of neurons which identify and split the
parameters in the input data to make a correct prediction for the output [45,47].

For the FFNN model, the influence of individual hyperparameters was investigated
by varying each one in isolation. The model’s performance exhibits dependence on the
quantity and nature of layers, the batch size that represents the number of independently
processed samples, and the number of iterations over the same dataset, known as epochs.
Additionally, the quantity of nodes within the hidden layers, the choice of activation
function, and the optimizer selection contribute to the effectiveness of the model. In this
study, we employed the Rectified Linear Unit (ReLU) as the activation function, which is a
popular choice for computing values in the hidden layers of neural networks [13].

Three hyperparameters were varied in the model: batch size, epochs and number of
nodes. The results from this variation were calculated by cross-entropy loss function, which
displayed loss values for each epoch. This function is based on the probability distribution
measurements obtained from the training results compared with the known classes. It
can be described as the gap between the predicted categories and correct labels [45]. Opti-
mization was achieved with stochastic gradient descent (SGD), which is the most common
optimizer for updating parameters to minimize loss [48]. An FFNN implementation using
PyTorch and Scikit Learn open source libraries [44,49] was used in this study.

3.2.5. Recurrent Neural Network

Recurrent neural networks (RNN) distinguish themselves from the conventionally
used FFNNs by implementing a loop mechanism over each hidden layer. This facilitates
the incorporation of previously acquired knowledge into every successive input [50].

The established problem of vanishing gradients refers to the known difficulty of RNNs
to learn long-term dependencies, because the gradient of the result from the optimization
algorithm tends to vanish or even explode [51,52]. Long short-term memory (LSTM) was
designed solely to resolve this issue by introducing a recurrent unit, the so-called LSTM
unit, into the RNN model. The LSTM unit possesses the dual capability to evaluate the
significance of memories in relation to the output and to carry information over extended
periods [53].

To address the issue of vanishing gradients, an alternative strategy was employed,
which involved the introduction of a different recurrent unit referred to as the gated
recurrent unit (GRU) [52]. GRU works similarly to LSTM; both models contain a gated
recurring unit that regulates the exchange of information within the model. In contrast
to LSTM, GRU delivers learned information without having a separate memory cell and
without the ability to filter relevant memories from non-relevant ones [53].

Echoing the method outlined in Section 3.2.4, individual hyperparameters were sys-
tematically altered in the RNN model, with others held constant. These parameters en-
compassed epochs, batch size, activation functions, and node quantity per hidden layer.
Sigmoid activation functions and hyperbolic tangent activation functions (Tanh), which
are commonly used in neural networks, were, together with the previously mentioned
ReLU, examined for each layer. In the final output layer, we utilized a softmax activation
function, commonly employed for multinomial classification tasks [13]. The performance of
the model was evaluated by calculating cross-entropy loss function, which was optimized
using SGD. The RNN model was built with open-source software library Keras [54].
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4. Results
4.1. Data Processing

Particle class distributions for Dataset 2, smoothed with Gaussian kernel density
functions using Silverman’s rule of thumb [55], are illustrated in Figure 3. Each class
distribution in the contour length is essentially inside one of the bins of binary variable L′

c
with its threshold at 200 µm. The two ρ̄′ bins obtained using Ward’s method correspond to
light attenuation ranges of 0.055 to 0.403, and 0.409 to 0.852, respectively, which is consistent
with a partitioning local minimum of mean light attenuation distribution (Figure 3).

Fibrillation index Normalized max curvature (%) Curl index Width-normalized variance (%)

Contour length (µm) Projected length (µm) Mean width (µm) Mean light attenuation

0.3 1.0 3.0 0.1 1.0 10.0 100.0 0.001 0.010 0.100 1.000 0.1 1.0 10.0 100.0

300 1000 3000 300 1000 3000 10 30 100 0.1 0.3 0.5

Fiber

Fines

Fiber wall ribbon

Fiber stump

Shive

Other

Figure 3. The distribution of objects in each category for Dataset 2, smoothed with Gaussian kernel
density functions to eliminate noise.

We observe that the properties of certain types of objects are more clearly distinguish-
able than others. For instance, fiber stumps and fines are both short, i.e., have relatively
small contour lengths, but fiber stumps have much higher light attenuation, which makes
the two object classes roughly distinguishable from binary variables alone. In contrast, the
distinction between, e.g., fibers and shives requires consideration of interaction effects.

4.2. Machine Learning

The accuracy of the different ML methods is summarized in Figure 4, while sensitivity
and specificity are compiled in Tables 2 and 3, respectively. Predictions of Dataset 1 have
an accuracy of 71% to 81%, and the corresponding percentages for Dataset 2 are 89% to
96%. Another noteworthy difference shown in Table 2 is that the predictions of Dataset 2
have around three times higher sensitivity to shives than those of Dataset 1, even though
this class is similarly sized in both sets.

The predictions for Dataset 1 significantly improved after the Yeo–Johnson transforma-
tion, which indicates a high skewness in the original data. In general, neural networks seem
to perform better than linear models on the L&W Fiber Tester plus built-in data analysis.
FFNN achieved highest accuracy with 81%.

Despite its smaller size and lesser number of exact measurements of particle dimen-
sions, Dataset 2 enables considerably more accurate classification. For non-transformed
data, particularly including predictor ρ̄, linear models perform better than neural networks.
After Yeo–Johnson transformation, there is a slight increase in the accuracy of three models,
but a decrease in accuracy of SVM. After binary transformations, however, all models
produce more accurate predictions. The addition of ρ̄′ has an unambiguous and similarly
sized positive effect on accuracy across all models. Top accuracy is achieved by Lasso
regression with 96%.
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Dataset 2, no transformation Dataset 2, Yeo-Johnson transformation Dataset 2, binary transformation

Dataset 1, no transformation Dataset 1, Yeo-Johnson transformation

70% 80% 90% 100% 70% 80% 90% 100% 70% 80% 90% 100%

RNN

FFNN

SVM

Lasso

RNN

FFNN

SVM

Lasso

Accuracy

Without mean light attenuation

With mean light attenuation

Figure 4. The accuracy of each ML model for Datasets 1 and 2 before and after their respective
transformations.

Table 2. Statistics by class: Sensitivity. Sorted by descending accuracy.

Sensitivity

Model Data Transf. L. att. Accuracy Fiber Fines Ribbon Stump Shive Other

Lasso

2 Binary ρ̄′ 0.964 0.944 0.989 0.991 0.970 0.909 0.200
2 Yeo–J. ρ̄ 0.936 0.917 0.978 0.972 0.879 0.909 0.000
2 Binary 0.932 0.944 0.989 0.972 0.758 0.909 0.200
2 None ρ̄ 0.925 0.917 0.967 0.953 0.879 0.818 0.200
2 Yeo–J. 0.907 0.917 0.978 0.925 0.758 0.909 0.200
2 None 0.904 0.917 0.978 0.915 0.758 0.818 0.400
1 Yeo–J. 0.765 0.879 0.882 0.738 0.602 0.273 0.222
1 None 0.708 0.759 0.842 0.690 0.519 0.455 0.111

SVM

2 Binary ρ̄′ 0.954 0.917 0.989 0.981 0.970 0.818 0.200
2 None ρ̄ 0.943 0.917 1.000 0.981 0.848 0.818 0.200
2 Binary 0.929 0.944 0.989 0.972 0.788 0.818 0.000
2 None 0.925 0.917 0.989 0.962 0.788 0.818 0.200
2 Yeo–J. ρ̄ 0.925 0.944 0.989 0.934 0.879 0.818 0.000
2 Yeo–J. 0.911 0.972 0.978 0.943 0.727 0.818 0.000
1 Yeo–J. 0.793 0.862 0.882 0.750 0.759 0.091 0.000
1 None 0.723 0.862 0.857 0.679 0.519 0.364 0.111

FFNN

2 Binary ρ̄′ 0.950 0.889 0.989 0.991 0.970 0.818 0.000
2 Yeo–J. ρ̄ 0.936 0.917 0.989 0.953 0.939 0.818 0.000
2 Binary 0.925 0.889 1.000 0.981 0.758 0.818 0.000
2 Yeo–J. 0.911 0.917 0.978 0.953 0.758 0.818 0.000
2 None ρ̄ 0.907 0.889 0.967 0.934 0.848 0.818 0.000
2 None 0.903 0.917 0.966 0.953 0.727 0.818 0.000
1 Yeo–J. 0.814 0.879 0.897 0.798 0.750 0.364 0.000
1 None 0.795 0.862 0.882 0.762 0.722 0.364 0.111

RNN

2 Binary ρ̄′ 0.936 0.918 0.977 0.978 0.928 0.764 0.047
2 Yeo–J. 0.922 0.928 0.974 0.936 0.736 0.764 0.067
2 Binary 0.915 0.931 0.956 0.966 0.775 0.730 0.027
2 Yeo–J. ρ̄ 0.911 0.934 0.966 0.941 0.892 0.709 0.020
2 None 0.900 0.930 0.928 0.930 0.741 0.603 0.033
2 None ρ̄ 0.893 0.903 0.949 0.924 0.744 0.600 0.027
1 Yeo–J. 0.786 0.828 0.816 0.744 0.784 0.239 0.174
1 None 0.748 0.855 0.831 0.762 0.678 0.076 0.096
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Table 3. Statistics by class: Specificity. Sorted by descending accuracy.

Specificity

Model Data Transf. L. att. Accuracy Fiber Fines Ribbon Stump Shive Other

Lasso

2 Binary ρ̄′ 0.964 1.000 0.995 0.983 0.984 0.993 1.000
2 Yeo–J. ρ̄ 0.936 0.996 0.974 0.983 0.980 0.985 1.000
2 Binary 0.932 0.996 0.963 0.983 0.984 0.993 0.993
2 None ρ̄ 0.925 0.996 0.974 0.983 0.972 0.989 0.993
2 Yeo–J. 0.907 0.992 0.953 0.977 0.976 0.985 0.996
2 None 0.904 0.992 0.948 0.977 0.972 0.989 0.996
1 Yeo–J. 0.765 0.966 0.889 0.946 0.893 0.994 0.991
1 None 0.708 0.986 0.841 0.936 0.847 0.994 0.989

SVM

2 Binary ρ̄′ 0.954 1.000 0.995 0.977 0.980 0.996 0.993
2 None ρ̄ 0.943 0.992 0.979 0.989 0.980 0.989 1.000
2 Binary 0.929 0.996 0.963 0.983 0.976 0.989 1.000
2 None 0.925 0.992 0.974 0.983 0.968 0.989 1.000
2 Yeo–J. ρ̄ 0.925 0.992 0.969 0.983 0.972 0.993 0.996
2 Yeo–J. 0.911 0.992 0.953 0.971 0.968 0.996 1.000
1 Yeo–J. 0.793 0.959 0.922 0.951 0.901 0.996 0.994
1 None 0.723 0.964 0.852 0.943 0.871 0.996 0.989

FFNN

2 Binary ρ̄′ 0.950 1.000 0.995 0.977 0.984 0.985 0.996
2 Yeo–J. ρ̄ 0.936 0.996 0.974 0.977 0.980 0.993 0.996
2 Binary 0.925 0.996 0.958 0.983 0.984 0.985 0.996
2 Yeo–J. 0.911 0.992 0.953 0.971 0.976 0.993 0.996
2 None ρ̄ 0.907 1.000 0.942 0.971 0.980 0.985 0.996
2 None 0.903 0.992 0.958 0.965 0.972 0.985 1.000
1 Yeo–J. 0.814 0.969 0.930 0.946 0.921 0.994 0.994
1 None 0.795 0.981 0.907 0.946 0.896 0.996 0.994

RNN

2 Binary ρ̄′ 0.936 0.989 0.994 0.985 0.983 0.985 0.991
2 Yeo–J. 0.922 0.991 0.940 0.978 0.971 0.991 0.999
2 Binary 0.915 0.984 0.971 0.981 0.977 0.988 0.988
2 Yeo–J. ρ̄ 0.911 0.988 0.965 0.982 0.970 0.991 0.997
2 None 0.900 0.978 0.951 0.960 0.966 0.989 0.996
2 None ρ̄ 0.893 0.978 0.946 0.958 0.971 0.989 0.997
1 Yeo–J. 0.786 0.975 0.947 0.944 0.856 0.992 0.989
1 None 0.748 0.959 0.921 0.919 0.885 0.998 0.994

4.2.1. Lasso Regression

After scaling and centering the untransformed Dataset 2, neglecting the categories
shive and other, the top three predictors ranked by absolute coefficient value were Lc, ρ̄,
and Lp. After binary encoding, the corresponding predictors were L′

c, ρ̄′, and V. Regular-
ization did not improve accuracy, i.e., plain multinomial regression would have produced
similar results.

4.2.2. Support Vector Machine

The optimal combination of kernel function and hyperparameters, (Γ, γ), varied
depending on the datasets being used (Table 4).
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Table 4. Optimal combination of hyperparameters for SVC.

Dataset Transform. Light att. Kernel Γ γ

1 None linear 10 0.01
1 Yeo–Johnson RBF 10 0.1
2 None ρ̄ linear 100 0.01
2 None linear 0.1 0.01
2 Yeo–Johnson ρ̄ RBF 100 0.01
2 Yeo–Johnson linear 1 0.01
2 Binary ρ̄′ linear 100 0.01
2 Binary linear 10 0.01

4.2.3. Feed-Forward Neural Networks

Results for the FFNN model were obtained from runs with 10,000 epochs. Although
the program became slower with such a large number of epochs, the accuracy became
significantly higher, and this was deemed more important than short runtime. The hidden
layer imported a tensor of size 64 from the first layer and exported a tensor of size 128 to
the last layer. The number of classes was chosen to be six, in accordance with the number
of particle categories.

4.2.4. Recurrent Neural Networks

For the RNN model, the optimal parameters used are presented in Table 5. The model
consists of six different layers; two reshaping layers intended to reshape the data into
proper format for processing, one LSTM layer, two different GRU layers and one output
layer. The latter, which was used for final classification, was configured with 90 epochs
and a batch size of 32, in accordance with Section 3.2.5, since this was predicted to be
most efficient.

The RNN model was the most unstable of the investigated models, and produced
greater accuracy differences between different runs compared to the more stable models.
Therefore, the accuracy, sensitivity and specificity were averaged across 30 runs using the
same model (Tables 2 and 3).

Table 5. Optimal hyperparameters for the RNN model.

Layer Hidden Units Activation Type

LSTM 124 ReLU
GRU1 32 Tanh
GRU2 16 Tanh

4.3. Figures, Tables and Schemes

Sensitivity and specificity for each ML algorithm are presented in Table 2 and Table 3,
respectively. The column names Transformation and Light attenuation are abbreviated.

5. Discussion
5.1. Image Analysis and Data Processing

Initially, Dataset 1 had no objects wider than 75 µm and no objects traversing the
edges of the original pulp suspension micrographs. However, 978 of 3332 objects or 29%
were classified as cropped and filtered out; these were predominantly particles with low
contrast against the background, i.e., fiber wall ribbons and fines. In comparison, none of
the 1391 objects in Dataset 2 were cropped. This is likely to introduce sampling bias toward
dark objects in Dataset 1. Furthermore, the sample size difference causes selection bias; all
available data points were used in Dataset 1, whereas Dataset 2 was the result of stratified
sampling. Considering these biases in conjunction with the natural composition of the
pulp, the predictors in Dataset 1 were expected to be highly skewed, which was confirmed
by a significant increase in accuracy after the Yeo–Johnson transformation.
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Figure 2 implies two sub-populations of shives when considering particle width distri-
bution: one that is normally distributed around a regression line just below W = 75 µm,
and one smaller group of randomly scattered wider particles. The L&W Fiber Tester plus
automatically discards objects with W > 75 µm as shives [3]. This likely reduces the sen-
sitivity of the shive category in Dataset 1, since the widest and most easily characterized
particles were removed.

Due to the relatively small size of Dataset 2, some additional shives were included
to facilitate ML, which somewhat skewed the distributions of W, ρ̄ and F. Since the bulk
of this dataset is the product of equally allocated stratified sampling, it should have few
other sources of skewness, which is supported by the somewhat ambiguous results of the
Yeo–Johnson transformation.

Binary encoding alters the distribution of Lc, eliminating the perfect multicollinearity
involving C, Lc and Lp, yielding an additional independent predictor. It also reduces bias in
ρ̄, stemming from over-allocation of shives in stratified sampling. Finally, it reduces noise,
which makes data easier to interpret and generates better and more uniform results across
different types of models. A classification strategy with a stronger focus on quantitative
category limits could arguably further facilitate encoding of predictors on binary or ordinal
scales while improving consistency and repeatability. However, such a strategy is only
recommended for pulps for which marginal distributions exhibit local minima.

5.2. Machine Learning

All four ML techniques were robust and were able to predict the desired classifications
at a high accuracy. ML algorithms achieved higher accuracy when light attenuation
predictors, ρ̄′ or ρ̄, were included. With transformed data, i.e., after preprocessing of
Dataset 2, all methods produced better results by including light attenuation predictor ρ̄′.
With non-transformed data, three out of four methods produced better results by including
the corresponding light attenuation predictor ρ̄. Only RNN deviated slightly from the
observed positive trend, which is probably because it is more sensitive to outliers such as
those observed for shives in Figure 2. However, for both RNN and FFNN, the effect of ρ̄
on non-transformed data was so small that it cannot be ruled out as a coincidence. The
influence of light attenuation was only assessed for Dataset 2, since these parameters were
only included in the in-house image analysis program.

For all ML methods, the general trend was that both the accuracy and the sensitiv-
ity increased when the Yeo–Johnson transformation was applied on Dataset 1 (Table 2).
According to Figure 4, the methods that yielded largest improvements in accuracy when
applying Yeo–Johnson transformations on Dataset 1 with light attenuation were SVM and
FFNN methods. However, this trend cannot be seen for Dataset 2, for which SVM yielded
lower accuracy after transformation than before. More exceptions could be observed for
the RNN method and for shive and other categories, which sometimes showed a decrease in
sensitivity. This trend can be correlated to the shapes of marginal distribution functions
for shives and other in Appendix A (Figures A1 to A3). These two categories exhibit more
than one peak, whereas the other categories generally only have one. This indicates that
shive and other were not favored by being treated as one population, whereas the remaining
categories were. The RNN method, which sometimes produced results opposite to the
general trend, could eventually be more sensitive to such tendencies. This unconfirmed
hypothesis is corroborated by the observation that such deviating trend was not observed
when (binary) transformations were applied on Dataset 2.

According to Figure 4, the binary transformation of Dataset 2 yielded highest accura-
cies for all four ML methods (with ρ̄′), reaching an accuracy of 96% with Lasso regression.
For both the binary and the Yeo–Johnson transformation of Dataset 2 (with ρ̄), the greatest
improvement in accuracy was observed for FFNN.

Without transformations, the neural network methods (RNN and FFNN) performed
better than the linear models (SVM and Lasso) on Dataset 1 but worse on Dataset 2. We
believe that this tendency is due to the removal of objects wider than 75 µm from the former
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and the addition of such objects to the latter dataset. After binary transformations of ρ̄ and
Lc, this effect disappears.

The optimal kernels for Dataset 1, with and without the Yeo–Johnson transformation,
were the linear kernel and the Gaussian RBF kernel, respectively. This was a consequence
of the skewness of the data, as observed in Table 4.

When comparing the accuracy without the light attenuation parameter (cyan bars in
Figure 4), it is a reasonable assumption that the difference observed between Datasets 1
and 2 cannot only be explained by the number of independent predictors, nor can this
difference be explained by the amount of data or by the models themselves. It is rather
data quality in conjunction with the number of predictors that contribute to the higher
accuracy obtained with Dataset 2. At the cost of computational efficiency, the in-house
image analysis model generates a larger and less skewed population of images, which
allows for random, stratified sampling. In addition, the light attenuation predictor lends
itself to a binary transformation, which seems to be highly conducive to ML.

5.3. Future Investigations

A suggestion for improving in-house image analysis is to adapt the polynomial func-
tions to detect more objects and minimize the fraction of cropped images. Further inves-
tigation of adaptation could be conducted by selecting a polar coordinate system for the
polynomial function in cases of re-entrant structures, or to split the polynomial into multiple
polynomial segments when the variance becomes greater than some threshold value.

The category ’other’ contains objects that are of importance for the pulp and paper
industry, and can therefore be divided into other industry informative categories such as
fiber flake, ray cell, fibril, and pore. This would likely improve accuracy in ML, since the
skew in the input would be reduced. Such subdivision would, however, require a much
greater set of training data. It could also be useful to split the category shive into smaller
categories in order to increase its sensitivity and thereby reach a level comparable to that of
the other categories.

For all algorithms, the highest sensitivity values were obtained for Dataset 2 with
binary transformations. These results indicate that methods where binary characteristics
are assigned as parameters instead of numerical values, for example, multi-view clustering
or crossed categorization, could improve ML for pulp and paper characterization. The
possibility to use binary transformations, however, hinges on the presence of bimodal
features in the marginal distributions of individual classes.

Furthermore, it could also be useful to apply ML directly to the pictures, since this
would eliminate the requirement of using a separate image analysis program to process and
calculate object parameters. This could be achieved using the four tested ML methods, but
other techniques could also be utilized, such as the k-nearest neighbors (KNN) ML method.

6. Conclusions

All four assessed ML techniques performed very well and reached accuracies in the
range of 94% to 96% when optimal settings and input data from the in-house image analysis
program were used. These results confirm that (on-line) image analysis of fiber suspensions,
combined with modern ML techniques, can become a fast and cost-efficient tool for the
industry to assess improved quality control of fiber materials.

Data obtained with the in-house image analysis software, which included an important
light attenuation parameter, generally offered improved ML accuracy compared to the
dataset with conventional pulp particle characterization intended for engineer users. This
is to a large extent due to the extended parameter set provided by the in-house software,
which should be straightforward to include in commercial fiber analyzers to provide robust,
automated particle classification.
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Preprocessing of the data with either the Yeo–Johnson transformation or binary trans-
formations also improved the accuracy for all ML algorithms and datasets. After transfor-
mation, the FFNN method displayed the highest accuracy, 81%, for the datasets obtained
with the built-in software of the fiber analyzer, whereas Lasso regression showed the best
accuracy, 96%, for the in-house image analysis software.
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Figure A1. Probability density versus particle contour length in Dataset 1.
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Figure A2. Probability density versus mean particle width in Dataset 1.
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Figure A3. Probability density versus perimeter-based fibrillation in Dataset 1. Outliers removed
from the fines and fiber stump panels.
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