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Abstract: Dopamine (DA) plays a crucial role in the functioning of the human central nervous system,
participating in both physiological and psychological processes. It is an important research topic
in biomedical science. However, we need to constantly monitor the concentration of dopamine
in the body, and the sensors required for this usually require good sensitivity in order to achieve
fast and accurate measurements. In this research project, a CeO2 and CuCrO2 composite nanofiber
was prepared for the electrochemical detection of dopamine. Coaxial electrospinning techniques
were used to prepare CeO2–CuCrO2 composite nanofibers. The characterization techniques of X-ray
diffractometer (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) were used to analyze
the composite’s crystal structure, vibrational bonds, and elemental composition, while SEM and
TEM were used to analyze the composite’s surface structure, morphology, and microstructure. The
prepared nanofiber outer layer was found to have an average thickness of 70.96 nm, average fiber
diameter of 192.49 nm, and an average grain size of about ~12.5 nm. The BET analysis was applied
to obtain the specific surface area (25.03 m2/gm). The proposed nanofiber-decorated disposable
screen-printed carbon electrode acted as a better electrochemical sensor for the detection of dopamine.
Moreover, the electrocatalyst had a better limit of detection, 36 nM with a linear range of 10 to
100 µM, and its sensitivity was 6.731 µA µM−1 cm−2. In addition, the proposed electrocatalyst
was successfully applied to real-time potential applications, namely, to the analysis of human urine
samples in order to obtain better recovery results.

Keywords: CeO2; CuCrO2 nanofibers; coaxial electrospinning; dopamine sensor; morphology control

1. Introduction

One significant neurotransmitter is dopamine (DA), which regulates or coordinates
cognition and emotions in the human body. Moreover, DA is the most important cate-
cholamine that is present in the mammalian central nervous system. It regulates various
physiological and cognitive functions, including emotion, movement, learning, and mem-
ory. The average levels of DA in human serum and blood are assessed to be in the range of
10−6 to 10−9 mol/L. When the DA concentrations are varied, which means that abnormal
concentrations of DA are present, the imbalance is associated with serious diseases, such as
Alzheimer’s and Parkinson’s [1–3]. In addition, the excessive consumption of caffeinated
beverages or drug abuse can also lead to dopamine excess [4]. Therefore, studying the
levels and distribution of dopamine in the human body is of great significance in the field
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of biomedicine. Electrochemical and wearable sensors have attracted significant attention
due to their advantages of real-time detection. Currently, wearables are not available for
functions beyond generally tracking the indicators of bodily motion, respiration rate, and
electrocardiogram-based metrics, and are unable to provide information at smaller-scale
levels. To overcome this limitation and advance the rapid development of wearable electro-
chemical sensors, science is developing a new avenue via which to sense analytes. Among
the various types of biofluids, it is very difficult to obtain the non-invasive monitoring of
biological samples [5–10].

Delafossite-based materials [3] are gradually receiving attention in the field of
biomedicine. In terms of dopamine sensors, copper-based materials are a promising choice
because of their excellent conductivity [11,12], biocompatibility [13–15], and excellent
chemical stability [16,17]. Among the delafossite materials, CuCrO2 has attracted much
attention in the field of semiconductors and solar cells due to its unique properties [17,18].
In addition, modifying the surface of delafossite materials can also improve their selectivity
and sensitivity [19–21], thereby improving their chemical properties.

Rare-earth metal oxides have been extensively used in various applications due to
their high activity, excellent redox ability, low toxicity, and high mechanical and thermal
stability [21,22]. Moreover, CeO2 exhibits an outstanding oxygen storage capacity [23], re-
duction ability [24], and chemical- and photostability among the other rare-earth metals [25].
The valence state of Ce can switch between Ce(III) and Ce(IV), which contributes to the
generation of electron–hole pairs [17,26,27]. Furthermore, CeO2 can absorb photons in
the UV and visible light ranges to generate electron–hole pairs [28–30], which enhances
its applications.

Based on the literature studies, this article reports upon the preparation of CeO2–CuCrO2
composite nanofibers using coaxial electrospinning technology, fibers in which CeO2 serves
as the outer layer and CuCrO2 serves as the inner layer. The morphology of the nanofibers
is controlled by adjusting the voltage and the concentration of the precursor solution. The
composite nanofibers can be used as an electrocatalyst for dopamine sensing. The prepared
CeO2–CuCrO2 nanofibers are analyzed via various characterization techniques.

2. Experimental
2.1. Materials

Polyvinylpyrrolidone (PVP, ACROS, purity: 85–95%), cerium nitrate hexahydrate (Alfa
Aesar, Ward Hill, MA, United States, purity: 99.5%), Cu(NO3)2·3H2O (Showa, Amsterdam,
The Netherlands, purity: 99.0%), Cr(NO3)3·9H2O (ACROS, Geel, Belgium, purity: 98.5%),
and dimethylformamide (DMF, Showa, purity: 99.8%) were used.

2.2. Preparation of CeO2–CuCrO2 Composite Nanofibers

The coaxial needles setup is different from that of the general electro-spinning setup.
The two precursor solutions need to be separately loaded into different syringes before
being connected to the coaxial needle. The working distance (distance between the needle
and collection platform), temperature and humidity need to be adjusted appropriately
before the experimental process. The CeO2 and CuCrO2 solution flow rates are 0.04 mL h−1

and 0.02 mL h−1, respectively. The chamber temperature is kept below 40 ◦C and the
humidity is below 25%. As shown in Figures 1 and 2, the applied voltage is controlled by a
power supply; subsequently, the high voltage is applied to the droplet, and static electricity
accumulates on the droplet. When the voltage exceeds the threshold, the liquid ruptures
and sprays droplets from a flow-out point, and the droplets are pulled and elongated
into fibers by the electrostatic repulsive force. Finally, the initial spun fibers are obtained
on the collection net. Then, the prepared nanofiber is annealed using an air atmosphere
with a vacuum of 1.1 torr. The annealing process is a two-step process using different
temperatures (500 and 600 ◦C), with a ramping rate of 1 ◦C per minute. The first annealing
process is applied to remove the PVP compounds. The second step of the annealing process
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is applied in order to obtain the pure phase of CeO2–CuCrO2 [29]. Moreover, the CeO2 and
CuCrO2 solution preparation methods are mentioned in the Supplementary Information.
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Figure 2. Schematic diagram of experimental setup.

3. Results and Analysis
3.1. XRD Analysis

The crystallinity of the CeO2–CuCrO2 composite nanofibers was analyzed via XRD
techniques, as shown in Figure 3. The different concentrations of the CeO2–CuCrO2 com-
posite nanofiber diffraction patterns are presented in Figure 3 for comparative studies only.
The figure shows that the diffraction patterns of (111), (200), (220), (311), and (222) related
to CeO2 were presented at 28.5◦, 33.0◦, 47.5◦, 56.3◦, and 59.0◦, respectively. Moreover,
the peaks related to CuCrO2 also obtained at 31.4◦, 36.4◦, and 40.9◦ corresponded to the
(006), (012), and (104) planes, respectively. The peaks related to CeO2 increased when
the concentration of CeO2 increased. Moreover, the crystalline peak intensity increased,
while a concentration of 0.2:0.1 M (Ce:CuCr) with a higher full-width half maximum was
obtained. In addition, the crystallite size of the prepared nanofibers was evaluated using
the Debye–Scherrer equation (D = kλ/βcosθ) and their micro-strain was determined using
the Williamson–Hall method. These basic parameter values are reported in Table 1 [31,32].
For the XRD result, a better crystalline structure and surface morphology (see SEM and
TEM images) was observed at a 0.2:0.1 M concentration of CeO2 and CuCrO2, respectively.
Hence, we have used these materials for further characterizations and applications.
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Table 1. The prepared samples’ average crystallite size, micro-strain, and FWHM.

Sample Name Material Crystalline Size
(nm)

Micro-Strain
(103) FWHM

CCC1:2
CuCrO2 28.02 4.40 0.33

CeO2 5.20 21.85 1.85

CCC1.2:2
CuCrO2 7.11 17.80 1.30

CeO2 9.86 11.27 0.97

CCC2:1
CuCrO2 5.63 20.32 1.70

CeO2 10.69 10.48 0.90

3.2. Raman Analysis

The vibrational bonds of the nanofibers were studied using Raman techniques. The
nanofibers’ vibrational bonds are shown in Figure 4. In Figure 4, it is indicated that the
nanofibers had four active vibrational modes of Eu, Ag, Eg, and A1g, which were observed
at 136 cm−1, 230 cm−1, 484 cm−1, and 720 cm−1, respectively. These modes were presented
due to the lattice vibration modes generated by CuCrO2 and CeO2 [33,34]. However, these
peaks are actually red-shifted, based on the previously reported one [35,36], which occurred
to the influence of defect impurities on the vibration frequency, leading to an increase in
the wavelength.
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of 532 nm.

3.3. X-ray Photoelectron Spectroscopy (XPS)

An evaluation of the chemical composition of the annealed CCC2:1 nanofiber was
performed using XPS. The XPS high-resolution spectra for all elements are presented in
Figure 5. The Cu core-level deconvoluted spectra are shown in Figure 5a, indicating that
Cu 2p had a doublet of Cu 2p1/2 and Cu 2p3/2. The Cu+ and Cu2+ oxidation states related
to Cu 2p3/2 were presented at 932 cm−1 and 936 cm−1, respectively. Meanwhile, the Cu+

and Cu2+ oxidation states related to Cu 2p1/2 were presented at 952 cm−1 and 956 cm−1,
respectively. Moreover, the satellite peak also presented at 938 and 948 cm−1 was due to the
incomplete transformation of the Cu valence state [37]. Figure 5b shows the Cr core-level
deconvoluted spectra. The Cr deconvoluted into two main peaks of Cr 2p3/2 and Cr 2p1/2,
respectively. Moreover, these two spin-orbit splits had different Cr3+ and Cr6+ oxidation
states that were presented at 576 cm−1, 579 cm−1, 587 cm−1 and 589 cm−1, respectively [37].
The Ce core-level spectra are shown in Figure 5c. Figure 5c depicts the characteristic peaks
of Ce 3d5/2 that were presented in the range of 882–900 cm−1 and the Ce 3d3/2 presented
in the range of 900–908 cm−1 [38]. Moreover, the characteristic peaks of O1S were also
presented at around 529 cm−1, 531 cm−1, 533 cm−1, 534 cm−1, and 529 cm−1, respectively.
The peak at 529 cm−1 was related to the lattice oxygen in CeO2. The peaks at 531 cm−1 and
533 cm−1 were attributed to hydroxyl and water molecules, which may have been due to
lattice vacancies and oxygen-deficient regions in the CeO2 matrix [37,38].
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3.4. Surface Morphology and Topography Analysis

SEM analysis was used in order to evaluate the structure and surface morphology
of the prepared materials. Figure 6 shows that the prepared materials had a tubular
structure, which means that the particles successfully formed a fiber-like structure with a
porous nature.
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composite nanofibers’ different positions, and (c) 200 nm scale for CeO2–CuCrO2 composite nanofibers.

TEM analysis was used in order to obtain the morphology and topography of the
nanofibers, as shown in Figure 7 with different magnifications. The TEM images clearly
indicated that the fibers had a thick wall with a porous nature. Meanwhile, the tube
wall exhibited small dark particles or spots that formed due to the dispersion of metal
nanoparticles. In order to determine the distribution of elements over the nanofibers,
EDS analysis was performed. The EDS analysis provided confirmation of all the elements
present in the prepared nanofiber. The EDS mapping of the CeO2–CuCrO2 nanofiber is
shown in Figure 7e–j. The copper, chromium, cerium and oxygen elements are evenly
present, as observed from the EDS mapping. It confirms the composition of prepared
CeO2–CuCrO2 nanofibers by using different color coding.
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Figure 7. (a–e) TEM image of the CeO2–CuCrO2 composite nanofibers prepared with 24 kV, whose
annealing rate is 3 ◦C/min, (f) EDX analysis color mapping for all elements, and color mapping for
(g) copper, (h) chromium, (i) cerium, and (j) oxygen.

3.5. BET Analysis

The porous nature and surface area of the nanofibers were measured by using BET
analysis. The CeO2–CuCrO2 composite had a better surface area of 25.03 m2/g. Comparing
pure CuCrO2 [19], CeO2 [39], and CeO2–CuCrO2 [17], prepared via the electrospinning and
glycine combustion method, the specific surface area of the composite nanofibers obtained
in this experiment was higher than that of CuCrO2 but much lower than that of the porous
structured powders obtained via the CeO2 and glycine combustion method. However, this
also proves that the combination of CeO2 and CuCrO2 improved the specific surface area
(Table 2).

Table 2. Comparison of specific surface area.

Compound Surface Area Reference

CuCrO2 (Electrospinning) 7.85 m2/g 19
CeO2 (Electrospinning) 195.75 m2/g 39

CeO2–CuCrO2 (Combustion glycine nitrate)
CeO2–CuCrO2 (Electrospinning)

46.13 m2/g
25.03 m2/g

17
This work

4. Electrochemical Applications
4.1. The Electrochemical Ability of CeO2–CuCrO2 Composite Nanofibers to Detect Dopamine

The electrochemical properties of the bare electrode and CeO2–CuCrO2 were tested for
the detection of dopamine by using cyclic voltammetry. The electrochemical process was
analyzed in the presence of a 0.05 M PBS solution with 20 µM of dopamine at a fixed scan
rate of 50 mV/s. Figure 8 shows the electrochemical ability of the CeO2–CuCrO2 composite
to detect dopamine. The bare or undecorated disposable SPCE showed a weak peak current.
However, the nanofiber-decorated disposable SPCE had a higher peak current, which is
presented in Figure 8b. This possibly occurred due to the nanofibers’ structure, morphology,
porosity and conductivity. Moreover, the prepared materials had a higher active surface
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area of 0.106 cm2, which was obtained by using the Randles–Sevick equation with the help
of the ferric cyanide system (refer to the Supplementary Information). The tubular structure
can provide a higher conductive behavior. As a result, the proposed nanofiber electrode is
a potential candidate for DA detection due to its enormous electrochemical ability.
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4.2. Influence of pH

The oxidation of DA is strongly dependent on the electrolyte pH; this is an essential
parameter used to optimize the pH for DA oxidation. The electrochemical ability of DA on
the nanofiber composites was measured via CV in a PBS solution with varying pH levels,
using a DA concentration of 20 µM and a scan rate of 50 mV/s. As shown in Figure 9a, the
peak current of DA varied and increased with respect to the solution’s pH. A higher peak
current was obtained at a neutral pH of 7.0. Meanwhile, the peak current density decreased
when the pH was varied from neutral to acidic and from neutral to basic conditions. This
may be attributed to DA molecules being protonated to H3DA+, which strongly reacts
with the negatively charged ions on the surface of nanofibers such as −OH, −O and −F
via electrostatic interactions [40–42]. Meanwhile, in acidic conditions, the H+ connects
with H3DA+ to react with the nanofiber, thus restricting the interaction of DA and the
nanofibers. More notably, a lower pH condition is not conductive to the DA deprotonation
process. Simultaneously, when the pH was higher, the DA molecules were unstable and
could be oxidized to form quinone, resulting in a lower peak current. Furthermore, the
peak potential was shifted [34].
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4.3. Effect of Different Dopamine Concentrations on CeO2–CuCrO2 Composite Nanofibers Electrode

The electrochemical properties of CCC2:1 in aqueous solutions with different concen-
trations of DA were studied at a scan rate of 50 mV/s. An increase in the concentrations
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(10–60 µM) of DA resulted in a steady increase in the peak current, as shown in Figure 10a.
The rapid changes in the peak potential after adding DA indicated its excellent catalytic
behavior facilitating the detection of DA [41,42], with the materials enhancing the oxidation
and electron transfer rates. The linear regression plot of Ipa in Figure 10b fits very well with
the correlation coefficient (R2) value of 0.996, indicating that the designed electrochemical
sensor has sufficient electrochemical redox properties for DA detection.
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4.4. Influence of Scan Rates on CeO2–CuCrO2 Composite Nanofibers

Changes in the current of CCC1:2 were observed in a 30 µM DA aqueous solution as
the scan rate was increased from 20 mV/s to 200 mV/s. As shown in Figure 11a, there was
almost no change in the peak potential, while the current increased with the increase in
the scan rate. Figure 11b shows the trend between the current and scan rate, with an R2

value of 0.996. This result clearly indicates that the oxidation–reduction process of DA on
the CCC2:1-modified electrode surface adsorbed the DA molecules. Hence, this process is
a surface-controlled process [40,41].
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4.5. DA Detection Using DPV

Differential pulse voltammetry (DPV) is one of the most selective and sensitive tech-
niques widely used for quantitative analysis in electrochemical detection. Figure 12a shows
the DPV curves obtained on the surface of the CCC2:1 electrode with different concentra-
tions of DA. The DA detection range is 0~100 µM, and a linear relationship between the
peak current and DA concentration can be observed, as shown in Figure 12b. The limit of
detection (LoD) for DA detection using CCC2:1 in this experiment is approximately 36 nM,
with a sensitivity of 6.731 µA µM−1 cm−2. Combining these results demonstrates that the
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CeO2–CuCrO2 composite nanofibers can be used as a DA sensor. The LoD was calculated
using the following mathematical expressions [40–42]:

LoD = 3 × standard deviation (SD)/slope
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the concentration of DA added and the peak current.

4.6. Real-Samples Analysis

The real-samples analysis data are reported in Table S2. The results indicating that
the proposed nanofiber-decorated electrodes have a higher sensitivity, and a higher level
of conductivity that is able to facilitate the detection of DA in biological samples for
bio-medical applications. Finally, the proposed materials’ stability, repeatability, and
reproducibility studies are provided in the Supplementary Information (see Figure S2).

5. Conclusions

In conclusion, CeO2–CuCrO2 nanofibers were successfully prepared using the coaxial
electrospinning method at 24 kV. An evaluation of the basic material properties of the
annealed fibers was carried out using XRD, Raman, and XPS, confirming the obtained
product as expected. XRD analysis revealed that CuCrO2 has a greater grain size compared
to CeO2. Cyclic voltammetry showed that the composite nanofiber increased the electrode’s
conductivity, and different currents were obtained by changing the pH value; the highest
current, of approximately 13.41 µA, was obtained at pH 7. Under varying dopamine
concentrations, the current change of this material is proportional to the concentration, and
the stable growth trend observed indicates that its excellent catalytic behavior facilitates the
detection of dopamine. Moreover, when the scan rate is increased, the peak potential and
current growth trend remain stable. The DPV analysis curve shows a linear relationship
between the peak current and dopamine concentration, and the calculated limit of detection
is approximately 36 nM. The above analysis results confirm the potential of CeO2–CuCrO2
composite nanofibers to be used as a biosensor for dopamine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fib11080066/s1, Figure S1. (a) CV curve for ferricyanide system
for bare SPCE and CeCr decorated SPCE with scan rate of 50 mV/s, (b) Related current values bar
diagram, (c) different scan rates (20–260 mV/s), and (d) related current values for square root of
scan rates. Figure S2. CeCr/SPCE (a) stability, (b) repeatability and (c) reproducibility. Table S1. DA
detection in human urine samples.
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