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Abstract: The 3D printing process is different from traditional construction methods of formwork
casting due to the use of additive manufacturing. This study develops a suitable 3D-printed carbon
fiber-reinforced cement mortar (CFRCM) considering the extrudability, fluidity, setting time, and
buildability of the CFRCM. The difference in compressive strength and flexural strength between
3D-printed specimens and conventional cast specimens was investigated by varying the amount of
carbon fiber added (carbon fiber to cement ratio, 2.5 vol.‰, 5 vol.‰, 7.5 vol.‰, and 10 vol.‰) and
the curing times (7th day and 28th day). The results of the experiments indicate that the addition of
6 wt.% cement accelerators to the cementitious mortar allows for a controlled initial setting time of
approximately half an hour. The fluidity of the CFRCM was controlled by adjusting the dosage of the
superplasticizer. When the slump was in the range of 150 mm to 190 mm, the carbon fiber to cement
ratio 2.5 vol.‰ could be incorporated into the cementitious mortar, enabling the printing of hollow
cylinders with a height of up to 750 mm. Comparing the 3D-printed specimens with the traditionally
cast specimens, it was found that the addition of a carbon fiber to cement ratio of 7.5 vol.‰, and
10 vol.‰ resulted in the optimal compressive strength and flexural strength, respectively.

Keywords: 3D printing; carbon fiber-reinforced cement mortar; fluidity; buildability; compressive
strength; flexural strength

1. Introduction

The utilization of cementitious mortar in 3D printing has gained significant attention
within the building and construction industry. This additive manufacturing technique
enables the construction of three-dimensional objects through a meticulous layer-by-layer
deposition process. Notably, 3D printing of cementitious mortar has proven instrumental
in enhancing construction efficiency and reducing labor requirements when compared to
traditional methods [1,2]. This technology is rapidly advancing and offering numerous
advantages, for example, Menna et al. utilized the digital fabrication of concrete (DFC) to en-
able freedom of form to produce various concrete products with primarily architectural and
aesthetic functions. It customizes the final shape while optimizing the structural/functional
properties, material use, total cost, and architectural effect [3]. However, how to design
successful 3D printing materials, processes, and structures is an important issue. The multi-
level material design (MMD) for 3D printing was proposed by Lu et al., which indicated
the mixture design, printing process, and composite structure [4].

Two primary 3D printing technologies have emerged as common practices: contour
crafting [5–7] and robotic arm systems [8]. Large-scale automated extrusion 3D printing
processes have been applied in construction and architecture, such as the individual com-
ponents of a bridge [9,10]. Furthermore, ultra-high-performance concrete is systematically
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layered by an extrusion print head, affixed to a six-axis robotic arm. In one example of
architectural use, a structural element was manufactured, culminating in complex 3D
geometries [11]. To realize the successful 3D printing of cementitious mortar, a robust
numerical model was developed to scrutinize the mechanical behavior of 3D-printed con-
crete after material deposition. Material testing demonstrated a linear increase in both
Young’s modulus and cohesion correlating with the concrete’s age. This model was cor-
roborated by printing experiments and was found to reliably forecast failure deformation
patterns [12–14].

Reinforced concrete stands as the most widely employed housing structure due to its
ability to enhance the ductility and load-bearing capacity of concrete through the incorpo-
ration of reinforcing steel. However, when it comes to the 3D printing concrete process,
placing steel reinforcement poses a significant challenge. There are two methods to meet
this challenge; the first focuses on incorporating continuous metal cables that are placed on
the 3D-printed materials as reinforcement and tested for flexural resistance [15–18]. An-
other method focuses on incorporating fibers into 3D-printed materials, aiming to enhance
the strength and toughness of 3D-printed structures [19–22]. Materials such as steel fibers
have demonstrated the capability to improve the mechanical properties of concrete [23–25].
Alternatively, alkali-resistant and lightweight materials such as polypropylene fibers have
been utilized [26,27]. Carbon fiber, known for its high specific strength, has also been
employed to reinforce cement mortar, increasing tensile strength and impact resistance [28].
Additionally, polyvinyl alcohol (PVA) fibers and glass fibers have also been successfully
utilized in this context [29,30].

The 3D printing process necessitates favorable properties for cementitious mortar.
Perrot et al. integrated predictive analytics and numerical tools that can be used to model
and understand the important mechanisms of extrusion-based 3D-printed cement mortars
at different stages. These include mixing, material transfer, layer deposition, the mechanical
behavior of freshly printed structures, and their early curing [31]. Among them, 3D printing
cementitious mortar relies on four crucial components: extrudability, fluidity, open time
(setting time), and buildability. To ensure extrudability, the material must be effortlessly
transported to the nozzle for continuous extrusion and be devoid of clogging [32]. Chemical
additives are frequently employed to enhance the rheological parameters of cementitious
mortars and to attain the desired consistency and prolong fluidity. For instance, the use
of a superplasticizer (SP), a polymeric dispersant, can improve the flow characteristics of
concrete by reducing the attraction between cement particles, thereby minimizing yield
stress and viscosity [33,34]. Viscosity modifier admixtures (VMAs) can enhance the stability
and cohesion, and can impact the layer deformation of concrete [35]. Cement accelerators
play a role in influencing the print path length, construction time, and environmental
conditions. They facilitate early cementitious mortar strength development, consequently
reducing the print interval for each layer in the printing process [36].

Regarding fluidity and dynamic yield stress, the plastic viscosity of cementitious
mortar can be determined using a rheometer [37–39]. A flow test was used to assess the
fluidity of cementitious mortar, and the test measured the 3D printing range of materials
with slump values ranging from 4 mm to 8 mm and flow values from 170 mm to 226 mm.
Although this measurement of slump and flow for fluidity tests is non-standardized, it
provides an approach to enhance research reliability [40–42].

The strength evolution of the cementitious mortar occurs over time. The setting time of
the material needs to be adjusted based on the size of the printed structure. The setting time
can be determined through various standards. One approach involves allowing the material
to rest for 30 min, followed by extrudability testing every 10 min until rupture occurs, with
the recorded time considering the setting time [43]. The mixture’s initial and final setting
time is measured using a viscometer and a needle penetrometer to meet the requirements of
3D printing [44,45]. The material must transition from low yield strength and low viscosity,
suitable for pumpability, to high yield strength within a short period [46–48]. Achieving
good buildability entails having high yield strength to minimize deformation and collapse
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caused by the layer-by-layer stacking load during printing. The material’s ability to resist its
weight and the weight-induced deformation when printing successive layers, particularly
in cementitious mortar, is crucial [49–51]. In addition, measuring layer height or the number
of printable layers was used to predict the buildability of printing [52].

By printing specimens and testing them in different printing directions, the pressure
exerted by the printing extrusion process compacts the material in the longitudinal di-
rection [53,54]. One of the studies investigated the anisotropic behavior of 3D-printed
ultra-high-performance fiber-reinforced concrete (UHPFRC). The compressive strength
was found to be highest in the vertical plane, while the UHPFRC specimens exhibit the
highest flexural strength in the horizontal plane. When the fiber volume fraction was 2%,
the printed samples showed a 39% increase in fracture modulus compared to the cast
specimens [55]. Furthermore, the addition of carbon fiber, glass fiber, and basalt fiber
to cementitious mortar allows for the study of fiber arrangement and the control of the
strength of the printed structure. The results show that the specimen with 1 vol.% carbon
fiber content can obtain high compressive strength and flexural strength [56].

Existing research on the utilization of carbon fiber in 3D-printed cementitious mortar
is limited, necessitating further comprehensive investigations. Nevertheless, carbon fiber
exhibits notable attributes such as high specific strength, lightweight composition, and
resistance to corrosion and fatigue. It finds widespread application in various fields,
including sports equipment, offshore wind blades, and civil engineering. Researchers
have demonstrated that incorporating carbon fibers into cementitious mortar results in
exceptional mechanical properties, making it suitable for the repair of reinforced concrete
structures [57].

This study aims to develop a mixed design for 3D-printed carbon fiber-reinforced
cement mortar (CFRCM). Chopped carbon fibers with a length of 6 mm were employed,
and different volumes of carbon fibers were added to the cementitious mortar. Cement
accelerators are utilized to control the setting time of the cementitious mortar. To mitigate
the risk of noticeable cracking and clogging during the printing process, a super-plasticizer
was appropriately introduced to the cementitious mortar. The material will undergo tests
to assess flow, setting time, and buildability. After confirming the extrudability, buildability,
and flow behavior of 3D printable CFRCM, the CFRCM was successfully printed with
hollow cylinder bodies with a height of 750 mm and 100 layers in 8 min (about 5 s per layer);
this shows that the CFRCM in this study has superior buildability. Finally, this study focuses
on the influence of varying amounts of chopped carbon fiber mixed with cementitious
mortar on the compressive strength and flexural strength of 3D-printed specimens and
compares them with traditionally casted specimens.

2. Experimental Program
2.1. Materials and Mix Design

The mixed design of 3D-printed cement mortar should satisfy extrudability, flowability,
setting time, and buildability specifications. The experimental materials used in this
research are Type I Portland cement and sand with a maximum size that stops at #16 mesh
(1.18 mm). According to ASTM C33/C33M-18 [58], the fineness modulus standard of
the fine aggregate used was to be between 2.3 and 3.1. The fineness modulus (FM) was
determined to be 2.57; Figure 1 illustrates the particle size distribution curves. Carbon
fibers were chopped to a length of 6 mm, with a density of 1.78 g/cm3 and a tensile
strength of 3500 to 6000 MPa. Table 1 presents the material properties of carbon fiber.
These chopped carbon fibers were processed with heat treatment to remove the silane
sizing on the fibers, and previous studies have indicated that the silane present in carbon
fibers could be eliminated by heating them in the temperature range of 530–550 ◦C for
3 h, resulting in negligible residual silane [59]. Figure 2a shows the chopped carbon fiber
after the heat treatment. Then, the chopped carbon fiber was placed in a closed container,
and the high-pressure airflow was passed through the vent hole to make the chopped
carbon fiber generate huge turbulence. Pneumatic dispersion can effectively separate the
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carbon fibers in the container, as shown in Figure 2b. A superplasticizer was used to
facilitate effective cement dispersion, slump retention, and proper air entrainment, thereby
providing desirable fluidity and facilitating concrete pumping. In addition, the setting
time and hardening properties of the cement mortar are modulated by an accelerator to
accelerate the hydration of the cement to achieve the desired buildability during the 3D
printing of the cement mortar. A non-toxic alkali-free cement accelerator that does not
cause additional environmental pollution was chosen for this experiment.
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Table 1. Material properties of carbon fiber.

Material Property Value

Density (g/cm3) 1.78
Tensile strength (MPa) 3500~6000
Elastic modulus (GPa) 230~600

Elongation (%) 1.5~2.0
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The CFRCM for 3D printing was designed as follows. Different amounts of chopped
carbon fiber to cement volume ratios (2.5‰, 5‰, 7.5‰, and 10‰) were added to the cementi-
tious mortar. The water–cement ratio was kept at 0.4, and the cement–sand ratio was 1:1.05.
To maintain the same setting time of the CFRCM in 3D printing, a 6 wt.% cement accelerator
was added. The amount of superplasticizer to cement weight ratio was adjusted to achieve a
fluid consistency during the 3D printing process, ranging from 0.6 wt.% to 2.5 wt.% in the
CFRCM. The composition ratios of the CFRCM are listed in Table 2.
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Table 2. The composition ratios of the CFRCM.

Materials Value

Water 0.4
Cement 1

Sand 1.05
Carbon Fiber (vol.‰) 2.5, 5, 7.5, 10

Superplasticizers (wt.%) 0.6~2.5
Cement accelerators (wt.%) 6

2.2. Experimental Procedures

The performance of cementitious mortar can be evaluated based on the following
properties. First, the extrudability of cementitious mortar was tested by continuously
extruding four slender cementitious mortars using a peristaltic pump. The purpose was
to determine the optimal aggregate weight ratio. Next, the buildability of the CFRCM
was assessed by printing a continuous hollow cylinder with a diameter of 100 mm and
a height of 200 mm using a 3D printing machine system. The fluidity and setting time
of the cementitious mortar were measured during the printing process. Finally, both the
3D-printed specimens and the traditionally cast specimens were subjected to compressive
and flexural strength testing.

2.2.1. Extrudability

For this study, a peristaltic pump (WS-300, Tohama Co., Ltd., New Taipei City, Taiwan)
was used to squeeze out the cementitious mortar to perform the extrudability test. The set
speed was 40 rpm and the nozzle diameter was 12.7 mm. The extrudability was defined
as the ability of the cementitious mortar to pass through the soft pipes and nozzles of a
peristaltic pump, based on the method proposed by Le et al. [32]. Continuously extruded
cement mortar in the form of four parallel lines (300 mm each) was used as the extrudability
test metrics in this study, as shown in Figure 3. The test results were categorized as “Pass”
or “Fail” based on whether the cementitious mortar was successfully deposited over its
entire length without clogging or cracking.
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2.2.2. Fluidity

The fluidity test ensures the smooth transfer of the CFRCM from the storage hopper
to the nozzle. The fluidity of the CFRCM over time was evaluated according to ASTM
C230/C230M-20 [60]. The flow table test involved dropping the cementitious mortar
25 times within 15 s, with each drop height being 12.7 mm. The diameter of the cementitious
mortar after 25 dropping occasions was measured four times at 45◦ intervals and the
average value was calculated.
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2.2.3. Initial Setting Time

The initial setting time of the cement material was determined through Frick’s needle
test to understand the buildability of the cement after printing. The cement accelerator
was incorporated into the cement mortar following the mixing method specified in ASTM
C187-16 [61], and the setting time was determined using Fricker’s needle method described
in ASTM C191-21 [62]. The initial setting time was measured as the time from the initial
contact between the cement and mixing water until the measured penetration reached
25 mm.

2.2.4. Buildability

A contour crafting 3D printer (UMAS Technology Co., Ltd., Taichung, Taiwan) was
used to print the CFRCM specimens. The contour crafting 3D printer had dimensions of
2 m × 2 m × 2 m, as shown in Figure 4. The diameter of the nozzle was 15 mm, and the
printing speed was set at 45 mm/s ± 5 mm/s.
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Figure 4. The contour craft 3D printer.

The study focused on scrutinizing the extrudability and constructability of cementi-
tious mortar enriched with chopped carbon fiber, while also understanding its flow behav-
ior. Researchers often use continuous printing of hollow cylinders to test constructability,
which is a well-received technique [63–65]. In this study, the specific procedure to evaluate
constructability involved 3D-printing a hollow cylinder composed in an uninterrupted,
continuous fashion using a predefined number of layers. The degree of deformation in
the printed element was then evaluated, and the limiting height of the hollow cylinder
was tested. The process concluded with the measurement and recording of the number of
layers that had collapsed.

2.2.5. Compression Test

After mixing, 3D-printed specimens and molded specimens were prepared. The
compression test method was based on ASTM C109/C109M-20 [66]. The size of the
compression specimen was 50 mm × 50 mm × 50 mm. Figure 5a,b show the experimental
procedure for the 3D printed specimen and cast specimen compression tests, respectively.
The specimens were cured in a water tank and tested at 7th and 28th days of age to
determine the change in strength over time. Each test group had three specimens.
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2.2.6. Flexural Test

The flexural test method was based on ASTM C293/C293M-16 [67]. The size of the
bending specimen was 40 mm × 40 mm × 160 mm. Each test group had three specimens.
Figure 6a,b show the experimental procedure for the 3D-printed and cast specimen flexural
tests, respectively. The specimens were maintained in a water tank and tested at 7th and
28th days of age to test the change in strength over time. Since the 3D-printed flexural
specimens were printed layer by layer, the printed sizes were different, the cross-sectional
area of each bending specimen was measured, and the moment of inertia of the cross-section
was calculated. The flexural strength (σF) in MPa was calculated using Equation (1):

σF =
M × y

I
(1)

where σF represents the flexural strength, M is the maximum flexural moment, y is the dis-
tance between the neutral axis and the bottom edge, and I is the moment of inertia (mm4).
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The formula for the maximum flexural moment was calculated using Equation (2):

M =
P × L

4
(2)

where P is the maximum applied load recorded by the test machine in Newton (N),
L denotes the span length in millimeters (mm).
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3. Results and Discussion
3.1. Extrudability

Manual testing using a peristaltic pump was conducted to assess the extrudability of
sand particles. Considering a nozzle diameter of 12.7 mm, sand particles with a maximum
diameter of less than 2 mm were utilized. The sand composition for this study consisted of
four sizes: #16 (1.18 mm), #30 (0.60 mm), #50 (0.30 mm), and #100 (0.15 mm). The weight
ratios of the sand particles were maintained as follows: #16:#30:#50:#100 = 1.6:1.7:1.5:1. The
fixed water–cement ratio was set at 0.4, while the weight ratio of sand particles passing
through the maximum sieve (#16) was adjusted to 1.6, 1.2, 1.0, and 0. The particle size of
the sand significantly impacts the overall fluidity of the cementitious mortar. The following
nomenclature is used to describe the extrudability analysis, where “S” represents the weight
ratio of sand particles on #16.

Figure 7 presents the results obtained for the four weight ratios of sand particles
passing through sieve #16. In the sieve #16 ratio of 1.6, the cementitious mortar experienced
a blockage in the peristaltic pump due to poor fluidity with high sand content, as depicted
in Figure 7a. On the other hand, in the sieve #16 ratio of 1.2, the cementitious mortar could
be consistently extruded from the nozzle, forming continuous strips of 300 mm in length,
without any blockage or cracking, as shown in Figure 7b. However, at the #16 sieve ratio of
1.0 and 0, the cementitious mortar exhibited increased viscosity, resulting in a blockage at
the rear of the system, as illustrated in Figure 7c and 7d, respectively. Therefore, the weight
ratio of #16:#30:#50:#100 = 1.2:1.7:1.5:1 was used for the sand aggregates in this study.
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3.2. Assessment of Fluidity

The fluidity test was designed to ensure that the cementitious mortar could be
smoothly conveyed from the hopper to the nozzle. Each test group had four specimens.
With the temperature change, the fluidity of the CFRCM was greatly affected. The lower
the temperature (20 ± 5 ◦C), the slower the setting time of the cementitious mortar, and the
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more cement accelerator was required. Therefore, the buildability of cementitious mortar
was tested with the addition of up to 6 wt.% of the cement accelerator. The test results
showed that by adding 6 wt.% cement accelerators to the cementitious mortar, the setting
time of the 3D-printed cementitious mortar was shortened. The fluidity needed to be
tested by increasing the fluidity of the CFRCM using a superplasticizer. After controlling
the amount of cement accelerator added, the amount of superplasticizer added was ad-
justed. However, the fluidity of the 3D-printed specimens ranged from 174.59 ± 3.34 mm
to 188.21 ± 2.08 mm, as shown in Table 3. With the temperature increasing, to maintain
the fluidity of the CFRCM, more superplasticizers were required with a fixed amount of
cement accelerator. Table 4 shows the flow range of printable hollow cylinder heights
from 156.45 ± 2.52 mm to 176.63 ± 2.02 mm. The test results show that the flow values of
3D-printed cement mortar in this study are from 155 mm to 190 mm.

Table 3. Flow values for the 3D-printed specimens.

Specimen Flow (mm) Average Flow with Error (mm)

SP1.0-A6B 180.25 182.90 186.15 186.85 184.04 ± 2.65
SP1.2-A6CF2.5 190.55 189.50 187.75 185.05 188.21 ± 2.08
SP1.5-A6CF5 185.50 186.75 183.55 181.30 184.28 ± 2.06

SP1.5-A6CF7.5 182.60 185.50 184.50 181.30 183.48 ± 1.63
SP1.9-A6CF10 170.90 179.70 175.25 172.50 174.59 ± 3.34

Table 4. Flow values for the buildability hollow cylinder heights.

Specimen Flow (mm) Average Flow with Error (mm)

SP1.6-A6B 175.5 174.25 179.65 177.1 176.63 ± 2.02
SP1.7-A6CF2.5 172.1 167.6 170.5 171.05 170.31 ± 1.67
SP1.9-A6CF5 169.2 168.55 169.5 166.75 168.50 ± 1.07

SP1.9-A6CF7.5 155.85 156.95 161.35 159.35 158.38 ± 2.13
SP2.3-A6CF10 160.6 155.95 153.8 155.45 156.45 ± 2.52

3.3. Initial Setting Time

The impact of the cement accelerator on the fluidity of the cementitious mortar over
a given duration was scrutinized. To expedite the setting time of the CFRCM for the
construction of hollow cylindrical specimens, the accelerator-to-cement ratio was escalated
to 6 wt.%. This resulted in a drastic reduction in the initial setting time to a mere 30 min.

3.4. Buildability

This subsection explains how the fluidity of the CFRCM was maintained by adding
superplasticizers to test the buildability of 25-layer CFRCM hollow cylinders with varying
additions of chopped carbon fiber (2.5 vol.‰, 5 vol.‰, 7.5 vol.‰, and 10 vol.‰) at a fixed
cement accelerator dosage of 6 wt.%. The printing speed ranged from 45 ± 5 mm/s per
layer. Table 5 lists the heights of hollow cylinders built using CFRCM with different carbon
fiber additions. Figure 8 showcases the effect of different carbon fiber additions in meeting
buildability requirements through the construction of hollow cylinders. In Figure 8a, the
foundation specimen without fiber (SP1.6-A6B) achieved a buildable height of 670 mm,
while Figure 8b demonstrates a buildable height of 750 mm using 2.5 vol.‰ of CFRCM
(SP1.7-A6CF2.5). Both cases exhibited no noticeable deformation. However, Figure 8c
shows a reduced buildable height of 530 mm when using 5 vol.‰ of CFRCM (SP1.9-
A6CF5), with significant collapse observed. In contrast, Figure 8d,e reveal buildable heights
of 416 mm and 340 mm, respectively, for CFRCM additions of 7.5 vol.‰ (SP1.9-A6CF7.5)
and 1.0 vol.‰ (SP2.3-A6CF10), but both experienced collapses.
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Table 5. Different carbon fiber additions and hollow cylinder heights.

Specimen Carbon Fiber (vol.‰) Superplasticizer (wt.%) Buildable Height (mm) (Layer)

SP1.6-A6B 0 1.6 670 (94)
SP1.7-A6CF2.5 2.5 1.7 750 (107)
SP1.9-A6CF5 5 1.9 530 (74)

SP1.9-A6CF7.5 7.5 1.9 416 (57)
SP2.3-A6CF10 10 2.3 340 (46)
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3.5. Compression Test Result

This section focuses on the compression test results obtained from both the 3D-printed
and cast specimens, with benchmark (without carbon fiber) and with fiber addition ratios of
2.5 vol.‰, 5 vol.‰, 7.5 vol.‰, and 10 vol.‰. The 7th day and 28th day average compressive
strength values for the benchmark and the specimens incorporating various proportions of
CFRCM are presented in Table 6. The specimen nomenclature followed this convention: C
denotes the compression test, B represents the benchmark, CF refers to the carbon fiber at
2.5 vol.‰, 5 vol.‰, 7.5 vol.‰, and 10 vol.‰, and 3DP indicates 3D printing.

Table 6. The average compressive strength with the error of the 3D-printed and cast benchmark and
the CFRCM specimens.

Specimen 7C-3DP
(MPa)

Increase
(%)

7C-Cast
(MPa)

Increase
(%)

28C-3DP
(MPa)

Increase
(%)

28C-Cast
(MPa)

Increase
(%)

B 54.75 ± 1.5 − 49.82 ± 2.4 − 66.61 ± 1.0 − 57.86 ± 2.8 −
CF2.5 56.56 ± 2.7 3 50.84 ± 1.8 2 69.36 ± 4.2 4 62.01 ± 2.0 7
CF5 52.79 ± 3.6 −4 50.75 ± 1.0 2 61.55 ± 2.7 −8 61.12 ± 2.6 6

CF7.5 54.48 ± 2.7 7 52.06 ± 1.0 5 76.46 ± 1.4 15 69.05 ± 0.8 19
CF10 56.34 ± 4.1 3 49.96 ± 0.5 0 71.24 ± 2.8 7 64.34 ± 1.8 11

The results demonstrate that the 7th day compressive strength enhancements observed
in the 3D-printed specimens exhibited improvements of 3%, −4%, 7%, and 3% compared
to the benchmark. Similarly, the 7th day cast specimens displayed strength increments
of 2%, 2%, 5%, and 0% compared to the benchmark. However, the 28th day compressive
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strengths of both 3D-printed and cast specimens represent the benchmark and varying
addition ratios of CFRCM. Comparative analysis revealed that the 3D-printed specimens
exhibited strength improvements of 4%, −8%, 15%, and 7% compared to the benchmark.
Similarly, the cast specimens displayed strength enhancements of 7%, 6%, 19%, and 11%.

Evaluation of the compressive test results indicated that both the 3D-printed and
cast specimens with a carbon fiber addition of 5 vol.‰ might not adequately support
the strength of the cementitious mortar, resulting in a decrease in compressive strength.
However, specimens with a carbon fiber addition of 7.5 vol.‰ exhibited the highest com-
pressive strength. Notably, the 3D-printed and cast specimens with a carbon fiber addition
of 10 vol.‰ displayed increased porosity, leading to a reduction in compressive strength.

The average compressive strength results for CFRCM, fabricated through both 3D print-
ing and casting techniques, are presented in Figure 9. Various fiber volume additions were
evaluated in this study. Notably, the specimens containing 7.5 vol.‰ of CFRCM demonstrated
the highest compressive strengths, irrespective of the fabrication method employed.
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Figure 9. The average compressive strength of 3D-printed and cast benchmark and CFRCM specimens.

Comparing the two fabrication methods, the 3D-printed specimens exhibited slightly
higher average compressive strengths than the cast specimens. This can be attributed to the
mechanical pressure applied during the extrusion process, which enhanced the material’s
densification. The test results indicated that the 7th day compressive strengths of both
the 3D-printed and cast specimens, incorporating fiber volume additions ranging from
2.5 vol.‰ to 10 vol.‰, were within the range of 49.82 MPa to 58.48 MPa. However, from
the 28th day average compressive strength outcomes for 3D-printed and cast CFRCM with
varying fiber volume additions, a consistent trend could be observed in the 28th day average
compressive strength results: the 3D-printed specimens developed higher compressive
strength than the traditional cast specimens. Based on the test results, both the 3D-printed
and cast specimens exhibited average compressive strengths ranging from 57.86 MPa to
76.46 MPa, representing an increase compared to the 7th day average compressive strength.

3.6. Flexural Test Result

The flexural strengths of both printed and cast specimens were examined at fiber
addition ratios of 2.5 vol.‰, 5 vol.‰, 7.5 vol.‰, and 10 vol.‰. Table 7 presents the
7th day and 28th day average flexural strengths of the 3D-printed and cast specimens
for the benchmark and CFRCM specimens with various addition ratios. The specimen
nomenclature is as follows: F denotes the flexural test, B represents the benchmark, CF



Fibers 2023, 11, 109 12 of 17

indicates the carbon fiber (2.5 vol.‰, 5 vol.‰, 7.5 vol.‰, 10 vol.‰), and 3DP refers to
3D printing.

Table 7. The average flexural strength with the error of different carbon fiber ratios of CFRCM tested
at 7th day and 28th day.

Specimen 7F-3DP
(MPa)

Increase
(%)

7F-Cast
(MPa)

Increase
(%)

28F-3DP
(MPa)

Increase
(%)

28F-Cast
(MPa)

Increase
(%)

B 7.35 ± 0.5 - 6.37 ± 0.2 - 7.77 ± 0.9 - 7.73 ± 0.5 -
CF2.5 8.45 ± 0.0 15 6.47 ± 0.0 1 9.12 ± 0.2 17 8.17 ± 0.1 6
CF5 8.62 ± 0.2 17 7.26 ± 0.3 14 9.55 ± 0.1 23 8.35 ± 0.5 8

CF7.5 9.60 ± 0.1 31 8.06 ± 0.4 26 9.62 ± 0.4 24 8.51 ± 0.1 10
CF10 10.05 ± 0.5 37 8.30 ± 0.3 30 10.56 ± 0.7 36 8.87 ± 0.6 15

To ensure greater accuracy, the moment of inertia of the fracture surface of the printed
specimen was calculated and incorporated into the flexural strength formula. The 3D-
printed specimens exhibited improvements in flexural strength by 15%, 17%, 31%, and 37%
compared to the benchmark. Similarly, the cast specimens displayed strength enhancements
of 1%, 14%, 26%, and 30% compared to the benchmark. As for the 28th day test results,
the 3D-printed specimens showed improvements in flexural strength by 17%, 23%, 24%,
and 36% compared to the benchmark, while the cast specimens exhibited flexural strength
enhancements of 6%, 10%, 10%, and 15% compared to the benchmark.

The flexural test results indicated that both the 3D-printed and cast specimens with a
10 vol.‰ of CFRCM displayed higher average flexural strength than the benchmark (36%
and 15%, respectively). Moreover, the flexural strength of the CFRCM increased with the
amount of added fiber. The flexural strength of the 3D-printed CFRCM exhibited a greater
increase compared to the benchmark.

Figure 10 illustrates the 7th day and 28th day average flexural strength results for
3D-printed and cast CFRCM with varying fiber volume additions. Both 3D-printed and
cast specimens with a 10 vol.‰ CFRCM exhibited the highest flexural strength. The flexural
strength increased with the amount of added carbon fiber. According to the test results,
the 7th day flexural strength of the 3D-printed specimens was slightly higher than that
of the cast specimens. The average flexural strength of both the 3D-printed and cast
specimens ranged from 6.37 MPa to 10.05 MPa. Similar to the 7th day results, the average
flexural strengths of the 28th day specimens increased as the amount of carbon fiber added
increased. The 28th day flexural strengths of both the 3D-printed and cast specimens ranged
from 7.73 MPa to 10.56 MPa.

Optical microscope images of the 3D-printed flexural specimens in a damage mode
are depicted in Figure 11a–c. Upon examination under the magnification of the optical
microscope, it could be observed that numerous chopped carbon fibers continue to stretch.
The confined diameter of the nozzle forced the chopped carbon fibers to align parallel
with the printing direction during the 3D printing process of the CFRCM. This alignment
provided a mechanism for the carbon fibers to restrain crack propagation, thereby enhanc-
ing the flexural strength of the resulting product. Furthermore, the mechanical pressure
exerted during the 3D printing process imparts slightly superior flexural strength to the
printed specimens, as compared to their cast counterparts. This observation underscores
the advantage of 3D printing techniques in producing more resilient CFRCM structures.
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4. Conclusions

The extrudability, buildability, fluidity, and mechanical properties of CFRCM fabri-
cated using 3D printing were investigated and tested in this study. The research focused
on examining the effects of different carbon fiber additions, comparing the mechanical
properties between 3D printing and casting techniques. Based on the above test results, the
following conclusions are drawn:

1. The CFRCM was successfully printed under a printable flow area ranging from
155 mm to 190 mm. Furthermore, the test results demonstrated that the initial setting
time was 30 min by adding 6 wt.% cement accelerators, and it enabled the construction
of a 25-layer hollow cylinder.

2. After confirming the extrudability, buildability, and flow behavior of 3D-printed
CFRCM, the addition ratio of 2.5 vol.‰ carbon fiber of CFRCM helped to successfully
print hollow cylinder bodies with a height of 750 mm (approximately 100 layers).

3. The compressive testing results revealed that both 3D-printed and cast specimens
exhibited the highest compressive strength of CFRCM when using 7.5 vol.‰ chopped
carbon fiber, resulting in strength improvements of 15% and 19%, respectively. The
compressive strengths of the 3D-printed and cast specimens ranged from 57.86 MPa
to 76.46 MPa.

4. The flexural test results demonstrated that the highest flexural strength of CFRCM was
achieved in both 3D-printed and cast specimens when using 10 vol.‰ chopped carbon
fiber, leading to strength enhancements of 26% and 15%, respectively. The flexural
strengths of the 3D-printed and cast specimens ranged from 7.73 MPa to 10.56 MPa.

5. During CFRCM 3D printing, the small nozzle diameter aligns chopped carbon fibers
parallel to the print direction, mitigating crack propagation and boosting flexural
strength. Consequently, the 3D-printed specimens demonstrate superior strength to
cast ones.

6. According to the test results, 3D-printed CFRCM improves mechanical strength and
toughness.
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