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Abstract: M-type optical fibers in which a core is surrounded by a thin ring layer with a higher
refractive index have attracted increasing attention in recent years. One of their advantageous
features is the ability to operate a non-fundamental LP02 mode possessing unusual dispersion
properties, namely, a zero-dispersion wavelength (ZDW) shifted to the short wavelength region
relative to the material ZDW. The LP02 mode can be selectively excited since it is predominantly
localized near the core, while the fundamental LP01 and other higher modes are localized near the
ring (for proper fiber parameters). In this paper, we present a comprehensive theoretical analysis of
effective dispersion tailoring for the HE12 mode of highly nonlinear chalcogenide glass fibers (for
which the LP mode approximation fails due to large refractive index contrasts). We demonstrate fiber
designs for which ZDWs can be shifted to the spectral region < 2 µm, which is of great interest for the
development of mid-IR supercontinuum sources and frequency-tunable pulse sources with standard
near-IR pumping. We obtained the characteristic equation and solved it numerically to find mode
fields and dispersion characteristics. We show the possibility of achieving dispersion characteristics
of the HE12 mode with one, two, three, and four ZDWs in the wavelength range of 1.5–5.5 µm. We
used a modified genetic algorithm (MGA) to design fibers with desired dispersion parameters. In
particular, by applying an MGA, we optimized four fiber parameters and constructed a fiber for
which HE12 mode dispersion is anomalous in the 1.735–5.155 µm range.

Keywords: M-type fiber; chalcogenide glass fiber; dispersion tailoring; modified genetic algorithm

1. Introduction

Optical fibers are widely used for various applications [1–3]. Laser sources and
nonlinear optical devices based on optical fibers make it possible to efficiently convert
pump energy due to the waveguide geometry, to efficiently remove heat, and to ensure a
high laser beam quality [1].

At present, technologies for the production of silica fibers are well developed [1,3].
Despite the numerous advantages of these fibers, their applicability is often limited to the
near-IR range since the transparency border for silica glasses is ~2.3 µm. For expanding
the operation range well beyond 2 µm, other materials for fiber fabrication are required.
Suitable materials are chalcogenide soft glasses with a nonlinear refractive index (n2)
2–3 orders of magnitude higher than n2 of silica glass [4–7]. Chalcogenide glasses are
composed of chalcogens (S, Se, and Te) and other chemical elements such as As, Ga,
Sb, Ge, and/or others [5]. Many chalcogenide glassy systems are characterized by high
chemical stability, resistance to atmospheric moisture, relatively low optical losses in the
near and mid-IR ranges, and a transparency band up to ~10 µm (and even significantly
longer for some compositions) [4,5]. One of the features of chalcogenide glasses is that
their zero dispersion wavelength (ZDW) is located in the mid-IR range. For example,
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the ZDW is ~4.9 µm for As2S3 glass and ~7.2 µm for As2Se3 glass [4]. At wavelengths
shorter than the ZDW, the glass dispersion is normal, while at longer wavelengths, it is
anomalous. To implement many nonlinear optical transformations (generation of frequency-
tunable Raman solitons, supercontinuum generation in certain regimes, higher-order soliton
compression, etc. [1]), anomalous fiber dispersion at a pump wavelength is required, which
is a challenge when using a standard near-IR pump.

Current technologies allow controlling the dispersion and nonlinear characteristics
of fibers over a wide range by creating special refractive index profiles [1]. There are
various types of optical fibers classified according to refractive index profiles, such as
standard stepped index fibers, gradient fibers [8], W-type and M-type fibers [9], Bragg
fibers [10,11], photonic crystalline fibers [12], hollow (for example, revolver-type) fibers [13],
tapered microfibers [14], and others. Due to the waveguide contribution, a ZDW can be
significantly shifted to the short wavelength region relative to the material ZDW. It is also
possible to attain dispersion characteristics with two or multiple ZDWs in the transparency
region, which is of great interest for the implementation of various nonlinear optical
transformations.

Here, we consider theoretically solid M-type chalcogenide fibers for which an axially
symmetric core of radius a with a refractive index n1 is surrounded by a thin ring layer
having an outer radius b with a refractive index n2 > n1, and then the second cladding
follows with a refractive index n3 < n1,2 (Figure 1). Thus, unlike step-index fibers, M-type
fiber has an additional ring layer around the core with thickness d = (b− a), whose refractive
index is greater than the refractive index of the core.
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Figure 1. Refractive index profile of M-type fiber.

M-type fibers with a narrow ring (small d) and a large refractive index contrast (n2 − n1)
can be used to selectively excite higher-order modes, such as LP02, localized near the
core [15]. In this case, the fundamental LP01 mode is localized near the ring and has a small
overlap integral with the core. The LP02 mode can have the following specific properties:
(1) anomalous dispersion in the range of shorter wavelengths than for the fundamental LP01
mode of step-index and M-type fibers made of the same glasses and than for the glasses
themselves; (2) the possibility of matching with the LP01 mode of standard fibers [16,17].

It was previously shown through numerical simulation by the finite-element method
(FEM) that for chalcogenide Ge-As-Se/As-Se M-type fibers of appropriate design, the ZDW
can be slightly shorter than 3 µm, while the material ZDW is beyond 7 µm [17]. However,
for highly nonlinear chalcogenide fibers, the ZDW shift to the 1.5–2 µm range would
be of great interest because such fibers could play a significant role in the development
of mid-IR supercontinuum sources and frequency-tunable pulse sources with standard
near-IR pumps such as Tm-doped or even Er-doped ultrashort fiber lasers.

Here, we propose and demonstrate a smart design of As-Se-Te/As-S M-type fibers
with the first ZDW shifted to near-IR wavelengths (1.5–2 µm). From the Maxwell equations,
a characteristic equation was derived and numerically solved for an axially symmetric fiber
for the HE1m modes (since the LP approximation is violated at the considered contrasts of
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refractive indices >10%). This approach is faster than finite element modeling, especially
when it is necessary to perform optimization on a large number of parameters (up to four
in our case). A comprehensive theoretical analysis of the dispersion properties of the HE12
mode was carried out, and a fiber profile was designed using a specially implemented mod-
ified genetic algorithm (MGA). In particular, anomalous dispersion in the 1.735–5.155 µm
range was numerically demonstrated.

2. Materials and Methods
2.1. Fiber Model

Here, we simulated axially symmetrical M-type fibers with a core/ring layer made of
As40Se60−x1Tex1/As40Se60−x2Tex2 glasses and cladding made of As40S60 glass (Figure 2a).
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Refractive indices n of As40Se60−x1Tex1 glasses can be varied in a wide range by
varying tellurium content x1 (examples are shown in Figure 2b) [18]:

n(As40Se60−x1Tex1) = n(As40Se60) + 0.013·x1 (1)

The refractive index dependences of As40Se60 and As40S60 glasses on wavelength are
taken from [19] (“AMTIR-2” and “AMTIR-6”, respectively). Note that the technologies
for the synthesis of As40Se60−xTex and As40S60 glasses are mature [20]. These glasses have
suitable physicochemical properties and are compatible with the manufacture of optical
fibers, which was demonstrated experimentally [20], but their ZDWs are located in the
mid-IR (Figure 2c). However, thanks to the strong waveguide contribution, the first ZDW of
the fibers made of these glasses can be shifted to significantly shorter near-IR wavelengths,
which is a subject of our study. We investigate numerical dispersion tailoring by varying
four fiber parameters: a, b, x1, and x2.

2.2. Characteristic Equation

We derive a characteristic equation for HE1n mode from the Maxwell equations with
allowance for the boundary conditions using the well-known approach [1,21]. For a
cylindrical symmetry of an M-type fiber, it is convenient to write the wave equation for the
electric and magnetic fields in the cylindrical coordinates (r, ϕ, z) and, after that, apply the
well-described method of separation of variables [1,21]. The electric and magnetic z-field
components are as follows [1,21]:

Ez(r, ϕ, z, ω) = (A(ω)Jl(kr) + B(ω)Nl(kr))eilϕeiβz (2)

Hz(r, ϕ, z, ω) = (C(ω)Jl(kr) + D(ω)Nl(kr))eilϕeiβz (3)

where ω is the circular frequency, β is the propagation constant, l = 0, 1, 2,. . . is the integer,

k =
√

n2k2
0 − β2, k0 = ω/c, c is the speed of light in vacuum, and Jl and Nl are the Bessel

and the Neumann functions, respectively. A(ω), B(ω), C(ω), and D(ω) are determined from
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the boundary conditions. It is also necessary to take into account the natural conditions of
the field finiteness at r = 0 and the field decrease at infinity. The expressions for Ez and Hz
with allowance for the natural conditions at r = 0 and r = ∞ (after renaming A, B, C, and D
to Xj) become

Ez = X1 Jl(kr)eilϕeiβz, k = k0

√
n2

1 − n2
e f f , r ≤ a (4)

Hz = X2 Jl(kr)eilϕeiβz, r ≤ a (5)

Ez = (X3 Jl(pr) + X4Nl(pr))eilϕeiβz, p = k0

√
n2

2 − n2
e f f , a ≤ r ≤ b (6)

Hz = (X5 Jl(pr) + X6Nl(pr))eilϕeiβz, a ≤ r ≤ b (7)

Ez = X7Kl(qr)eilϕeiβz, q = k0

√
n2

e f f − n2
3, r ≥ b (8)

Hz = X8Kl(qr)eilϕeiβz, r ≥ b. (9)

Here and further, neff = β/k0 is the effective refractive index. The radial and ϕ-
components of the fields are found from the Maxwell equations [21]:

Eϕ =
1

i
(

β2 − k2
0n2
)( ilEz

r
− k0

β

dHz

dr

)
(10)

Hϕ =
k0n2

i
(

β2 − k2
0n2
)(dEz

dr
− iβlHz

k0n2r

)
(11)

Er = −
1

k0n2

(
lHz

r
− k0nHϕ

)
(12)

Hr =
1

k0n2

(
lEz

r
− k0nEϕ

)
(13)

Using the boundary conditions (continuity of Ez, Hz, Eϕ, and Hϕ for r = a and r = b)
and rewriting the equations in matrix form, we obtain

8

∑
j=1

αijXj = 0, i = 1 . . . 8 (14)

The condition for the existence of a nontrivial solution is the equality to zero of the
determinant of the system:

detα̂ = 0 (15)

By solving numerically the obtained characteristic Equation (15), we find the effective
refractive index neff depending on the parameters of the fiber and the wavelength.

Next, we calculate the group velocity dispersion as follows [1]:

β2 =
d2β

dω2 (16)

By substituting the found eigenvalue neff into the coefficients of the system (14), we
find the relation Xj, j = 1,. . .,8. Thus, we determine the structure of the field of the selected
mode by substituting the found constants into (4)–(13).

We calculate the Poynting vector as

Pz =
c

8π
Re
[([→

E ×
→
H∗
])

z

]
(17)
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and after that, we calculate the effective mode field area Aeff:

Ae f f =

(s +∞
−∞ Pzdxdy

)2

s +∞
−∞ P2

z dxdy
. (18)

To verify the developed mathematical model, we compared several results of cal-
culations with results of finite element modeling using the COMSOL Multiphysics 5.3a
software. As an example, Pz distributions for the HE11 and HE12 modes are shown in
Figure 3. So, Figure 3 demonstrates almost ideal coincidence of the results of calculations
obtained employing two different approaches. It should be emphasized that Figure 3 also
shows that the fundamental mode HE11 is localized near the ring, while the HE12 mode is
localized near the core.
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2.3. Modified Genetic Algorithm

The model developed in Section 2.2 allows us to calculate dispersion as a function
of wavelength β2(λ) for any set of fiber parameters (a, d, x1, and x2). This opens up an
opportunity for dispersion optimization by selecting parameters that allow obtaining the
required dependence for a particular problem. Let us introduce the error function F(β2(a, d,
x1, x2), β2

target), which quantitatively characterizes the difference between the calculated
function β2 and the target function β2

target. The smaller the value of the error function, the
closer the found solution β2 is to the target β2

target. In general, the error function can be
written as follows:

F
(

β2, β
target
2

)
=

[
Nλ

∑
i=1

µi

(
β
(i)
2 − β

target (i)
2

)2
]
+ G

(
β2, β

target
2

)
, (19)



Fibers 2023, 11, 89 6 of 16

where Nλ is the number of wavelength points (β2
(i) = β2(λi)), µi is the weight coefficients,

and G(β2, β2
target) is a special component of the error function (the specific form of G(β2,

β2
target) is selected, taking into account the problem to be solved).

Optimization with respect to four parameters by exhaustive search is inefficient and,
hence, impractical. Therefore, a method is needed that would provide the optimal solution
with minimal computational costs. One of the known methods is a genetic algorithm that
simulates the process of natural selection in wildlife [22]. The essence of the method is the
formation and transformation of a population (a set of individuals) where each individual is
a potential solution to the problem. For each individual, the error function is calculated [22].

By crossing individuals and their random mutations, a new generation is formed at
each iteration of the algorithm, after which the worst individuals (with the largest values of
the error function) are discarded. The algorithm stops when it converges to a solution or
when a given maximum number of iterations is reached. The convergence criterion, as well
as the limit of the number of iterations, are set based on the required accuracy of finding
the optimal solution.

In this work, we implemented an MGA similar to that described in [23], which includes
the following steps:

1. The formation of an initial population of N individuals, where each individual is a
set of randomly generated parameters in the search range: Ij = (aj, dj, x1j, x2j) and
j = 1. . .N;

2. The calculation of the error function Fj = F(Ij) for each individual and sorting the
population in ascending order of Fj values (from the best solutions to the worst ones);

3. Algorithm iteration:

(1) Random division of the best 2k individuals into k pairs and crossing in each
pair with the formation of 2k new individuals that are added to the population;

(2) Random selection of s individuals and applying the mutation operator to them,
changing their parameters randomly. This is performed to provide the widest
coverage of the parameter space and to prevent premature stagnation of the
algorithm in the local optimum, bypassing the global one;

(3) Sorting the updated population of N + 2k individuals and removing the 2k
worst ones (with the largest value of the error function F).

4. Repeating steps (1)–(3) until the maximum number of iterations nmax is reached or
the convergence criterion is met.

Crossing of individuals I1 and I2 with the formation of new individuals I1′ and I2′ is
performed using the operator X̂:[

I′1
I′2

]
= X̂

[
I1
I2

]
= X̂

[
a1 d x11 x21
a2 d2 x12 x22

]
=

[
a′1 d′1 x′11 x′21
a′2 d′2 x′12 x′22

]
, (20)

where the operator X̂ is defined as follows:

X̂ =

[ 1+κ
2

1−κ
2

1−κ
2

1+κ
2

]
, κ =

{
(2u)1/(n+1), u ≤ 0.5

(2− 2u)1/(n+1), u > 0.5
(21)

where u ∈ [0, 1] is a random value and is the parameter that specifies the degree of
similarity between children and parents. Smaller values of n lead to a greater probability
that the children will strongly differ from the parents.

During mutation, one of the individuals’ parameters is randomly selected and changed
as follows:

I′j = Ij + σ
(

1− u(1−t/T)h)
, (22)

where t is the number of the current iteration, T is the maximum number of iterations,
and σ = Ij

max − Ij or σ = Ij − Ij
min with equal probability (Ij

max and Ij
min are the largest

and smallest value of the variable parameter in the current population, respectively). This
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type of mutation operator allows us to make the process uneven: at the initial steps of
the algorithm, the degree of mutation is the highest, which is important for the most
complete search in the parameter space and the reduction of the probability of premature
convergence; at the final stage, the mutations are minimal, which makes it possible to
reduce the scatter of individuals upon convergence to the final solution. The parameter h
allows us to set the degree of this unevenness of the mutation process; the larger the h, the
more the nature of the process changes during the operation of the algorithm.

3. Results
3.1. Dependences of Dispersion on Parameters

We studied the properties of the HE12 mode in detail. Before optimizing the dispersion
curves using MGA with respect to four parameters (a, d, x1, and x2) for achieving the
desired dispersion profile, we performed a series of numerical simulations in which some
parameters were fixed. This was required for a better understanding of the tendencies and
for finding patterns in the behavior of dispersion curves when changing each parameter.
This also allowed us to determine the range of parameters for executing MGA.

3.1.1. Fixed d, x1, and x2; Varied a

As the first illustration, we considered x1 = 10, d = 0.3, 0.6 µm, and x2 = 30, 50. Thus,
there were four possible combinations. We calculated β2 for each combination (d = 0.3 µm
and x2 = 30; d = 0.3 µm and x2 = 50; d = 0.6 µm and x2 = 30; and d = 0.6 µm and x2 = 50) by
varying a in the range from 2 to 3 µm. The results are presented in Figure 4. Hereinafter,
the black dotted lines correspond to ZDWs. It is seen that for the chosen parameters,
anomalous dispersion can start from 2 to 2.7 µm. This result was obtained thanks to the
significant waveguide contribution. The smaller a is, the shorter the first ZDW. Therefore,
to achieve the minimum ZDW, it is necessary to reduce the size of the core. However, this
narrows the range of anomalous dispersion (the second ZDW appears for small a). It is
also seen that the thicker the ring layer, the longer the first ZDW.
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3.1.2. Fixed a, x1, and x2; Varied d

Next, we set x1 = 10, a = 2, 2.5 µm, and x2 = 30, 50. Figure 5 demonstrates β2 as a
function of wavelength for four combinations of parameters. We found an interesting
feature, namely, that the dispersion dependences can be more complex than in Figure 4.
For the considered parameters, they can have from one to four ZDWs in the 1.5–5.5 µm
range (see Figure 5, the lowest subplot). However, the dispersive curves with four ZDWs
exist in a narrow range of d. Such exotic dispersion was known for fundamental modes of
fibers and waveguides of special design [24,25], but it was not reported for M-type fibers.
For some problems of nonlinear optical conversion, β2 with four ZDWs may be required.
So, the HE12 mode of M-type fibers can also be optimized for this purpose.
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3.1.3. Fixed a, d, and x1; Varied x2

Further, we fixed a, d, and x1 and varied the refractive index difference between the core
and the ring layer. The dispersion β2 calculated as a function of λ is presented in Figure 6.
The dispersion characteristics have one or two ZDWs in the considered spectral range.
We note an interesting feature for this series of numerical simulations: the dependence
of the ZDW on (x2 − x1) is nonmonotonic; there is the value of (x2 − x1) corresponding
to the minimum of the first ZDW. It is seen in Figure 6 that the first ZDW can be shifted
to wavelengths shorter than 2 µm. The second ZDW shifts to longer wavelengths with
increasing (x2 − x1).
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3.1.4. Fixed a, d, and (x2 − x1); Varied x1

We also simulated M-type fibers with fixed a, b, and (x2 − x1) assuming varied x1. The
corresponding dispersion is shown in Figure 7. We can conclude from this figure that the
first ZDW is almost independent of x1, but the smaller x1 is, the shorter the second ZDW.
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3.2. Dispersion Profiles Tailored with Modified Genetic Algorithm

After studying the general patterns of dispersion behavior when changing one of the
parameters of the problem with the remaining parameters fixed, we wondered about the
possibility of reverse-designing fibers with desired characteristics. In Sections 3.2.1 and 3.2.2,
we will present two different examples of finding M-type fiber parameters using MGA.

3.2.1. Minimizing the First ZDW with MGA

The first problem solved with the help of MGA was minimizing the first ZDW for the
HE12 mode. As can be seen in Figure 5 (right column), there are fiber parameters providing
a ZDW~1.6 µm. However, for some tasks, it might be useful to have a fiber with anomalous
dispersion at wavelengths near 1.55 µm corresponding to standard erbium-doped fiber
lasers. Therefore, further optimization is required. As shown in Section 3.1, the short-
wavelength ZDW shift can be achieved by decreasing the core radius a. However, the core
size can only be reduced to a certain value limited by a cutoff wavelength λcutoff for HE12
mode. As a result, it is necessary to set a condition on λcutoff and search for the minimum
of the ZDW, taking this condition into account. Further optimization was carried out for
λcutoff > 3 µm.

We fixed a = 1 µm since the core size has a predominant effect on the cutoff wavelength.
For this core radius, λcutoff belongs to the interval from 3 to 4 µm depending on other
parameters. We made optimization for three parameters, as follows: d ∈ (0.1 µm, 0.4 µm),
x1, x2 ∈ {[0, 50]|x2 > x1}. To minimize the computational complexity of the MGA algorithm,
the dispersion was calculated at four points: λ = 1.3 µm, 1.4 µm, 1.5 µm, and 1.6 µm. A
large absolute value of the anomalous dispersion was set as the objective function. The
MGA parameters providing optimal balance between the speed of finding a solution and
minimizing the tendency to premature convergence are as follows:

N = 400 is the number of individuals in the population;
k = 40 is the number of pairs of individuals that give offspring at each iteration (the same
number of individuals was eliminated at each iteration);
n = 5 is the parameter of the crossing operator;
T = 100 and h = 5 are mutation operator parameters.

The process of the MGA execution was visualized for clarity and convergence control.
Each individual is represented by a point in the parameter space (d, x1, and x2); the color of
the point shows the value of the error function for this individual (Figure 8). The algorithm
converged fairly quickly. A little more than 10 iterations were sufficient for this problem.

We found that a ZDW = 1.395 µm is achieved for the following set of parameters:
a = 1 µm; b = 1.201 µm; x1 = 11.48; and x2 = 47.53. The dispersion dependence on wave-
length for these M-type fiber parameters is plotted in Figure 9a. The second ZDW is
2.317 µm. Thus, the width of the anomalous dispersion region is 0.92 µm. The dispersion
is almost flat (near −450 ps2/km) in the 1.55–2.1 µm range. Since the effective mode area is
also very important for the nonlinear optical pulse conversion, we plotted Aeff in Figure 9b.
The Poynting vector, depending on radial coordinate and wavelength, is also demonstrated
in Figure 9c.
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3.2.2. Obtaining Anomalous Dispersion in the 2–5 µm Range with MGA

For developing mid-IR light sources at 2–5 µm, for example, frequency-tunable Raman
soliton sources pumped by a thulium-doped fiber laser at 2 µm, anomalous dispersion
is required at these wavelengths. Therefore, the second task in the dispersion tailoring
with the MGA was to find the M-type fiber parameters providing anomalous dispersion of
the HE12 mode in the entire spectral range of 2–5 µm. The main difference in comparison
with the previous case is that here, all four parameters were optimized (the core radius a
was not fixed). The ranges of parameter variation were selected based on the results of
the simulation presented in Section 3.1. We also set the requirement λcutoff > 5 µm. We
assumed a ∈ (1.5 µm, 2.5 µm); d ∈ (0.1 µm, 0.6 µm); and x1, x2 ∈ {[0, 50]|x2 > x1}.
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The MGA parameters were left unchanged, but a different error function was used.
This is due to the need to optimize dispersion simultaneously in two directions: to shift the
first ZDW to the short-wavelength region λ < 2 µm and to expand the range of anomalous
dispersion to the region λ > 5 µm. In this case, when comparing two solutions meeting the
condition β2 < 0 over the entire interval λ ∈ (2 µm, 5 µm), priority should be given to the
set of parameters providing the smaller ZDW. Thus, the values of β2 near the ZDW should
be taken into account with the highest weight. This is achieved by introducing weight
coefficients µi in the expression (19). They were calculated as follows:

µi =

(
1
2
+

M− i
2(M− 1)

)q
(23)

Here, M is the number of points of the function β2(λ), and the optimal value of the
parameter q is determined empirically based on the results given by the MGA for various
q. The second important condition is the need to cut off sets of parameters for which the
dispersion is anomalous only in part of the 2–5 µm interval. However, it is not advisable
to discard them during the MGA operation since such individuals that are not suitable
as a solution to the problem can generate suitable ones due to crossing and mutations.
Therefore, for each value β2 > 0 in the wavelength range of 2–5 µm, a special large addition
G(β2, β2

target) in the expression (19) was taken into account.
Visualization of the MGA operation is shown in Figure 10. In the initial population,

most individuals do not satisfy the anomalous dispersion condition over the entire required
interval, and they are indicated by the red dots. The blue dots are solutions that satisfy the
condition, for which the error function is much smaller. At the fifth iteration, all individuals
in the population have anomalous dispersion over the entire interval, and further selection
takes place among potentially successful solutions. Ultimately, the algorithm converges
to the following set of parameters: a = 1.8484 µm, b = 2.204 µm, x1 = 29.46, and x2 = 49.46.
The corresponding dispersion dependence on wavelength is demonstrated in Figure 11a.
For the found solution, the first ZDW is 1.735 µm, and the second ZDW is 5.155 µm.
The effective mode area and Poynting vector for these fiber parameters are also plotted in
Figure 11b,c, respectively. Note that Aeff changes very slowly at the wavelength of 2.5–5 µm,
which is an advantage for nonlinear pulse conversion. Note that found x2 = 49.46 is close
to the upper limit of the considered range. The glass with a similar tellurium concentration
was demonstrated in [18]. However, if, for fiber manufacturing, specific technological
conditions do not allow the creation of glass with the desired physical and chemical
properties at such a concentration, the optimization problem should be solved anew, taking
into account technical capabilities.
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4. Discussion and Conclusions

In this work, we proposed and theoretically investigated M-type fibers with
As40Se60−x1Tex1/As40Se60−x2Tex2/As40S60 glass core/ring layer/cladding. These glasses
have suitable physicochemical properties and are compatible with the manufacture of
optical fibers [20]. By varying the tellurium content in the glass composition, it is possible
to strongly affect the refractive index difference between the core of radius a and the ring
layer of thickness d [18]. We considered the HE12 mode localized near the core rather
than the fundamental mode HE11 localized near the ring layer. We demonstrated that, by
controlling four fiber parameters (a, d, x1, and x2), the ZDW of HE12 mode can be effectively
shifted to the near-IR (while for As-Se-Te glasses, material ZDW > 7 µm). Note that it was
previously demonstrated through numerical simulation by the finite-element method that
for M-type Ge-As-Se/As-Se chalcogenide fibers, the ZDW can be only slightly shorter than
3 µm [17]. Here, we proposed smart designs and optimization of M-type As-Se-Te/As-S
chalcogenide fibers, providing the first ZDW shorter than 2 µm and even shorter than
1.55 µm. This will make it possible to develop broadband light converters in the anomalous
dispersion regimes using standard fiber laser pump sources at 2 µm and even at 1.55 µm.

We derived the characteristic equation for HE1n modes of M-type fiber from the
Maxwell equations. We developed a numerical code for its solution and for the calcula-
tion of the group velocity dispersion, the Poynting vector, and the effective mode area.
The developed model was verified by comparing the results with the data obtained by
finite element modeling. We studied in detail the properties of the HE12 mode. We per-
formed a series of numerical simulations by varying some parameters to understand the
tendencies and to find patterns in the dispersion behavior. We showed that thanks to
the strong waveguide contribution, it is possible to obtain from one to four ZDWs in the
1.5–5.5 µm range.

We proposed dispersion tailoring using MGA and demonstrated its applicability for
two certain problems. In the first one, we optimized three fiber parameters (d, x1, and
x2) and shifted the first ZDW of the HE12 mode to a wavelength shorter than 1.55 µm.
We found the parameters providing a ZDW = 1.395 µm and the 0.92 µm width of the
anomalous dispersion range. In the second problem solved with MGA, we optimized
four fiber parameters (a, d, x1, and x2) and tried to design M-type fiber with anomalous
dispersion in the spectral range wider than 2–5 µm. We found parameters providing the
first ZDW of 1.735 µm and the second ZDW of 5.155 µm (3.4 µm width of the anomalous
dispersion range).

Note that MGA can be successfully applied for designing various dispersion char-
acteristics of chalcogenide M-type fibers, including quite exotic ones with several ZDWs.
Moreover, the developed model can be used to construct M-type fibers with desired prop-
erties made of different glasses (not only chalcogenide ones). The proposed approach
can also be generalized for the inverse design of other types of fibers and can have some
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advantages over finite-element modeling, especially when considering a lot of variable
parameters. It should also be noted that we used a specific MGA implementation suitable
for our problem. However, there are other promising specific implementations for solving
different optimization problems. For example, in the near future, genetic algorithms could
be calculated with an optical computer based on the Ising model, which will significantly
reduce computation time [26].
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