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Abstract: The numerical modeling of transverse laminar flow past a new type of hollow-fiber
membranes with external profiling has been performed. A model system of parallel fibers with
symmetrical parallel protrusion obstacles or grooves is considered. The absorption of point particles
(solute or gas molecules) from a laminar transverse flow of a viscous incompressible liquid (gas) is
calculated for a row of fibers, and the dependences of the efficiency of retention of particles by fibers
on the Peclet (Pe), Reynolds (Re), and Schmidt (Sc) numbers and on the distance between neighbor
fibers in a row are determined. The flow velocity and concentration fields are calculated by numerical
solution of the Navier-Stokes equations and the convective diffusion equation in a wide range of
Peclet numbers Pe = 0.1 — 10° for Sc = 1, 10, 1000 and Re < 100.

Keywords: hollow-fiber membrane; profiled fiber; row of fibers; convection-diffusion; retention
efficiency; Peclet number (Pe)

1. Introduction

One of the promising directions for intensifying the processes of membrane separation,
catalysis, and filtration is to increase the surface area of the streamlined selective membrane
layer or the surface of the filter collector (fibers or granules) [1-7]. Hollow-fiber [2] and
flat [3] profiled membranes with protrusions and grooves both on the outer and inner
surfaces are used in various applications. Hollow-fiber membranes with external and
internal profiling were considered in [2-6]. For inertial flows the greatest effect from
profiling is achieved with an increase in the Reynolds number, when the surface protrusions
serve as the so-called turbulence promoters (spacers) that reduce the effect of concentration
(temperature) polarization due to the destruction of the boundary layers. This effect has
long been used in convective heat and mass transfer [7].

In high-efficient aerosol filtration, a related direction of investigation is under develop-
ment, which is associated with the coating of filter fibers with highly porous permeable
layers (for example, from radial nanowhiskers) [8]. Coaxial porous layers or “furs” act
as extra filters and provide a noticeable increase in the efficiency of capture of suspended
particles on the modified fibers with little additional flow resistance. The theory of de-
position of aerosol nano and sub-micron particles on fibers with such porous shells was
developed in [9,10].

In this communication, the problem of the absorption of point-like particles (solute
or gas molecules or suspended tiny macro-particles) in a model system of profiled fibers
in a transverse laminar flow at Reynolds numbers Re < 100 is solved. This range of the
Re values corresponds to typical operating conditions of a membrane contactor employed
for the separation of gases and liquids. However, in a number of processes, for example,
in membrane distillation or heat exchangers, the Reynolds numbers can be several times
higher. We assume that the particle size is much smaller than the fiber radius and that
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particles are completely absorbed (retained) upon contact with the surface. We assume that
the particles do not interact with each other in the flow.

The solute transport towards the streamlined fiber is strongly influenced by the velocity
distribution in the vicinity of the fiber. For very slow “creeping” flows at low Reynolds
numbers of Re < 1 the flow field within fibrous media depends on the single parameter—the
fiber packing density «, whereas at higher velocities at Re > 1 it is governed by the two
parameters, x and Re. In studying hydrodynamic and transport processes in real porous
media, the models with prescribed well-defined structure and with known flow fields are
used in order to eliminate the influence of the structural uncertainty. The ordered systems
of parallel cylinders with circular cross-sections, arranged normally to the laminar flow,
with square or hexagonal packing, or a single row of parallel fibers are usually used as
models [11]. These models account for the constrained flow between the fibers, and are
applicable for studies of membrane contactors, fibrous filters, and other fibrous media. The
so-called cell models with axially symmetric flow past a fiber in a cell are commonly used
at low Reynolds numbers [12-15]. These models are highly popular since they provide
simple exact analytical expressions for the flow velocities and for the fiber drag force. The
Kuwabara cell model was found experimentally and theoretically to describe the flow
within a lattice of fibers with hexagonal packing [11]. This model helped to clarify the mass
transfer of Brownian and Langevin (inertial) particles in symmetric flows past fibers [11].
One should remember that the Kuwabara cell solution is derived in the low packing density
limit from a more general analytical solution for the transverse Stokes flow past a hexagonal
lattice of parallel fibers, which was first derived by Golovin and Lopatin in [16].

It should be noted the cell models have their limits of applicability. They are not quite
applicable for the case of non-symmetrical inertial transverse flows at non-zero Reynolds
numbers, Re > 1, and for dense systems of fibers, such as hollow-fiber membrane contactors,
which are characterized by a high packing density with & > 0.3 (a/h > 0.5, where a is the
fiber radius, 2k is the distance between the axes of neighboring fibers). It is still little
recognized, judging by the appearing articles, that the cell models give incorrect results for
the efficiency of diffusion deposition of the point particles at low Peclet numbers, as was
first shown in [17]. Additionally, the cell models cannot be used for modeling the process
deposition of inertial particles at high Stokes numbers, since the particle inlet distance is
limited by the cell radius. In all of the mentioned “negative” cases, models of a single row
of parallel fibers or multi-fiber lattices come to help [18-22].

As a simple model, we use a row of parallel fibers. We consider fibers of radius a with
rectangular protrusions of various heights on the surface, as shown in Figure 1. Note that
we do not consider turbulence. The main attention is paid to the study of the contribution
of the profiled surface to mass transport in the laminar regime, which is typical for a
large number of membrane and filtration processes. In the solution, we use the approach
developed for calculating the convective-diffusion transport in a laminar flow past a row
of circular fibers with a smooth surface [17,23-25].
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Figure 1. Cont.



Fibers 2022, 10, 77

30f9

1 Re=50 Lo
Y]
19 0.5
] 0.1
0 | T T T T T T
-2 -1 4] 1 2 3 X
a
n -
7 Re=100 0.9
. 0.1
y 0.5
0 ] T T T T T T
— - -1 1
X 2 0 2 ¥ 3 X

Figure 1. Distribution of the dimensionless concentration of the point particles in the transverse
flow past a row of parallel profiled fibers with protrusions for different Reynolds numbers; the
concentration values are marked on the curves; Sc = 1; a/h = 0.5; flow direction from left to right.

2. Governing Equations and Simulation Methods

The fields of flow of a viscous incompressible liquid (gas) and the field of the particle
concentration past a row of parallel fibers are found by numerical simulation. The com-
putational cell with dimensionless length 2X and height /1/a is shown in Figure 1. Here
2h is the distance between the axes of parallel fibers. Based on the calculated concentra-
tion fields, the multi-parametric dependences of the efficiency of particle deposition on
the fiber are determined. To calculate the flow field of a viscous incompressible liquid
(gas) and the concentration field of the dissolved component, we numerically solve the
Navier-Stokes equations

Au—0.5Re(u-V)u=Vp,°V-u=0, 1)
and the equation of convective diffusion in the stationary approximation
2Pe 'AC — (u-V)C =0, )

where p is pressure, C is the concentration of the dissolved component in the flow,
u = {u,v} is the flow velocity vector, # and v are the x- and y-direction components,
respectively (the axis direction is shown in Figure 1); Re = 2allv~! is the Reynolds number,
Pe = Re Sc = 2aUD ! is the Peclet number, Sc = vD ! is the Schmidt number, v is the
kinematic viscosity, D is the diffusion coefficient of the point particles, A is the Laplace
operator, V is the nabla operator. Here, all quantities are reduced to a dimensionless form
by normalization to the fiber radius 4, the unperturbed inlet velocity U and concentration
Cp. We set the following conditions on a streamlined solid surface: a no-slip condition for
the velocity components, # = 0, and the condition of a constant concentration, C = 0. On
the side faces of the computational cells, we use the symmetry conditions for the velocity
and concentration; the conditions of the homogeneous undisturbed flow, u =1, C =1,
are set at the inlet, and the conditions of zero velocity gradients and zero concentration
gradient are imposed at the outlet.
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Numerical solution of the convective diffusion processes is a nontrivial task. The cur-
rent state of this branch of computational mathematics and physics is described in [26-36].
We used a finite-difference approach for solving the governing equations on a composite
grid, defined in Cartesian and polar co-ordinates. The “polar” grid was placed along the
fiber surface, while the Cartesian grid was placed in the elongated channel-type region of
the simulation cell (inlet and outlet regions, bounded with symmetry lines, Figure 1). The
two overlapping grids were matched with interpolation conditions. We have used the ideas
of the work [26]. The Navier-Stokes equations were solved in the stream function-vorticity
formulation [27]. The convection diffusion and vorticity transport equations were solved
with the help of the “boundary layer type” scheme. It is known that the conventional
schemes with central differences show instability in the convective diffusion regime at
high Peclet numbers. Thus, we used the second-order monotone conservative scheme
proposed by Berkovskii and Polevikov [28], which is defined on a five-point stencil (on
a nine-point stencil, if half-integer indices are taken into account). In this scheme, to sta-
bilize the oscillating solution, the convective terms of the convective diffusion equation
were approximated by asymmetric upstream differences, while a regularization term was
introduced into the diffusion terms in order to increase the order of approximation. This
absolutely stable monotone scheme is an extension of the Allen-Southwell scheme [29].
The resulting five-diagonal system of algebraic equations for this scheme is equivalent to
the block three-diagonal system, which was solved by the matrix sweep method [30]. The
computations were performed on the 2-processor 128 Gb RAM server.

The knowledge of the velocity field around a fiber enables one to calculate the distri-
bution of concentration via Equation (2) and to estimate the fiber row resistance to flow.
The dimensionless pressure drop across the single fiber row is related with the fiber drag
force F as Ap = Fa/2h [22]. The dimensionless drag force per unit length of a fiber is found
as the surface integral of the projection of the local total stress on the flow direction

F= [ Tz, 3)
Sg

where T = (—pI 4 o')n is the local total stress, 0’—the viscous stress tensor, [—the unit
tensor, n—the outer normal vector to the surface, dX—the surface element, S,—the fiber
surface area.

The knowledge of the concentration field around a fiber enables one to calculate the
dimensionless fiber retention efficiency n [37]

1 =2pPe! /0 " (3C/aN)|-dG, @)

where N is the normal to the fiber surface, dG is an element of the surface. This quantity
can be expressed via commonly used Sherwood number Sh, 1 = 27t Sh [38]. The value of n
can be found also from the simulated concentration behind the row of fibers at the outlet of
the computational cell at x = X

C(X) =1~ (a/h)n, ©)

Retention efficiency E of a row of fibers is related to the output concentration as

E =1 — C(X). The retention efficiency for a fibrous bed—a system of many rows of fibers,
is found by the formula

E=1—exp(—aMn/h), (6)

where M is the number of rows of fibers. Formula (6) is applicable provided that
C(X)= (1—an~ty)™, M>>1.
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3. Simulation Results and Discussion

The calculations were performed for a row of fibers with different profiling heights
(Figure 1). Figure 1 shows the concentration profiles for a transverse flow around a fiber
in a row at Sc = 1 for different Reynolds numbers (given in the Figure 1), calculated for
an example of a dense row of fibers with a/h = 0.5. Note that small Schmidt numbers
correspond to convective diffusion in a gas, and large ones for a liquid. Let us show what
the increase in the height of protrusions on a fiber of a given radius leads to. It follows
from the calculations that the creation of small protrusions on the fiber leads to a noticeable
increase in its resistance (Figure 2) and only a slight increase in the efficiency of retention of
the particles from the external flow (Figure 3). An increase in the height of the protrusions
(while maintaining the distance between the axes of the fibers 2h) leads to a noticeable
increase in efficiency and a sharp increase in resistance. In the examples shown in Figures 2
and 3, the number of rectangular protrusions was N = 16 with a protrusion thickness of 0.1
(in units of a). The next, Figure 4, shows which part of point particles is absorbed on the
protrusions, and which part is absorbed on the fiber with radius a. It follows from these
figures that, as the protrusion height increases, the fraction of particles reaching the fiber
decreases. Absorption occurs mainly on the outer radius, on the protrusions. This effect is
stronger for the absorption of molecules from a gas at small Sc values (Figure 4a) than from
a liquid, which is characterized by higher Sc values. Further, a fiber of a given outer radius
was considered not with protrusions, but with symmetrical parallel grooves. Calculations
have shown that the deepening of the grooves does not lead to a noticeable decrease in
the resistance force of the fiber to the flow (Figure 2, curve 6), and does not contribute to a
noticeable increase in the retention efficiency of the substance supplied from the convective
flow. However, these conclusions are valid when the condition of a zero concentration on
the outer surface is imposed.
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Figure 2. Dimensionless drag forces per unit length of profiled fibers with parallel rectangular
protrusion obstacles (curves 2-5) with a protrusion thickness of 0.1 and a protrusion height of 0.1
(2),0.2(3),0.3 (4), 0.4 (5), solid curve 1—smooth fiber; dashed-dotted curve 6—a fiber with parallel
grooves with width and depth equal to 0.1 and 0.4; a/h = 0.5.
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Figure 3. Retention efficiencies for a profiled fiber with protrusion obstacles vs. Reynolds number at
different values of the Schmidt number (given in the Figure); the thickness of the protrusion is 0.1
and the heights of the protrusions are 0.1 (1), 0.2 (2), 0.3 (3), 0.4 (4); a/h = 0.5.
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Figure 4. Retention efficiencies for fibers with profiling (with protrusions of rectangular cross section)
vs. Peclet number Pe = ReSc at Sc =1 (a), 1000 (b): (curves 1-3)—deposition on external protrusions,
(1'-3")—deposition on the part of the fiber surface of radius a. Calculations for different protrusion
heights 0.1 (1, 1), 0.2 (2, 2), 0.3 (3, 3').

Grooves or dimples should enhance trans-membrane diffusion transport by reducing
the membrane thickness. As an example, the problem of the convective-diffusion supply
of a substance to a profiled fiber was solved, with account for the diffusion flux inside the
impermeable membrane. Figure 5 compares the calculated dependences for the retention
efficiency on the Reynolds number for a grooved fiber and a smooth fiber with the same
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outer radius. Here, the ratio of the outer to the inner radii of the hollow-fiber membrane is
2, the ratio of the diffusion coefficients of molecules (point particles) in the membrane and
in the outer region is Dy;/D = 0.0001, and the dimensionless distance between the axes
of adjacent fibers is 4. We normalize the radial coordinate to the outer radius and set the
condition of a zero concentration on the inner radius of the hollow-fiber membrane. On the
outer streamlined surface, we match the concentrations within the impermeable membrane
and in the external flow region:

KC = Cy, @)

where K is the dimensionless partition coefficient. From the results obtained (with account
for the trans-membrane transport), it follows that profiling increases absorption from the
external cross flow. The obvious conclusion also follows that the external flow has little
effect on the concentration distribution inside the membrane if its own resistance is high.

0
10

10 7% T T T =
Re 50 100

Figure 5. Retention efficiencies of profiled hollow fibers with parallel grooves (solid lines) and smooth
circular hollow fibers with the same outer radius (dotted lines) on the Reynolds number: pairs of
curves 1—K = 0 (solid and dotted curves merge), 2—K = 0.1, 3—K =1,4—K =10;Sc = 1.

4. Conclusions

The intensification of mass transfer from a convective flow to hollow-fiber profiled
membranes is theoretically substantiated. The absorption of molecules (suspended point-
like particles) by profiled fibers in a transverse laminar flow of a viscous incompressible
liquid (gas) is calculated in the stationary approximation. Modified fibers with alternating
symmetrical protrusion obstacles or grooves parallel to the fiber axis are considered. Gas
or solute molecules are represented as point particles suspended in the convective flow. It
is also assumed that upon contact with the surface, the molecules are completely absorbed.
The fields of flow and concentration of the particles are determined by the joint numerical
solution of the Navier-Stokes and convective diffusion equations. The computations were
performed in a wide range of Peclet numbers Pe = 0.1-10° for Schmidt numbers Sc = 1, 10,
1000, and Reynolds numbers Re < 50. The effect of the protrusion/groove on the flow and
convective diffusion has been investigated. The efficiency of supplying a substance from
an external flow to the absorbing fibers is determined, and it is shown that the profiling
of the fibers improves the fiber retention (absorption, collection) efficiency. The effect of
external protrusions for a fiber of a given radius is greater than that from the grooves
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(dimples). The depth of the groove has little impact, while the altering the width of the
groove has a bigger impact. However, grooves or dimples made on the surface of the fiber
might enhance trans-membrane diffusion transport, since the membrane thickness becomes
locally smaller, while the rest of the material serves as a stiffener. Overall, the design of
novel sorption (filtration) materials composed from profiled fibers is a promising direction
of investigations. The results obtained may be of interest in solving practical problems
of liquid (gas) filtration, sorption, catalysis, membrane separation, electrochemistry, and
convective heat transfer (heat exchangers). The future investigations should involve not
only 2D transverse flow case, but also parallel flow, including inner flow in a hollow-fiber
membrane with the internal surface profiling.
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