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Abstract: In this study, elementary kenaf fibres were separated from fibre bundles using two different
treatments. The first involved treating with nitric acid (HNO3) while the second used a mixture of
hydrogen peroxide (H2O2) and acetic acid (CH3COOH). Both treatments were successful in isolating
the elementary fibres but the H2O2/CH3COOH gave a better fibre yield and required a shorter
treatment time. The fibres treated with HNO3 had an average length of 0.2 mm, an aspect ratio of 15
and a defect density of 21 defects per mm. In contrast, the H2O2/CH3COOH treated fibres had a
length of 2.3 mm, an aspect ratio of 179 and a defect density of 14 defects per mm. Both treatments
removed lignin, pectin, and waxes. They also increased cellulose crystallinity in the fibres, especially
for HNO3 treatment. However, they resulted in some oxidation of cellulose. The H2O2/CH3COOH
treatment gave a substantial improvement in the thermal stability of the fibres while a marked
decrease was observed for the HNO3 treatment.

Keywords: elementary fibres; fibre extraction; fibre separation; fibre isolation

1. Introduction

Natural fibres, particularly bast fibres such as flax, hemp, kenaf, ramie, and jute [1–4],
have started to be used in recent years as the reinforcement in polymer-matrix com-
posites. This is part of a wider thrust to use eco-friendly materials in lieu of their less
environmentally-friendly counterparts. Eco-friendly materials offer benefits extending
from their production right through to their end-of-life disposal. In the case of natural
plant fibres, they are a renewable material, while their production is much less energy
intensive than that of synthetic reinforcing fibres. The fibres are also less harmful to workers.
Being intrinsically biodegradable, they are also less problematic for end-of-life disposal.
Moreover, they are CO2 neutral [4].

Several methods have been used to improve the performance of composites reinforced
with natural fibres. Most of these involve fibre surface modification using chemical, physical
or thermal treatments. The chemical treatments include alkaline [5–7], silane [8] and
acetylation treatments [9]. The physical treatments include stretching, calendaring and
electric discharge (corona and cold plasma treatments) [10]. Thermal treatment [11] involves
the use of thermal energy at the glass transition temperature of lignin [12], which removes
the lignin that supports and holds the elementary fibres together [2].

Another method which can be used is to increase the fibre aspect ratio by isolating
the elementary fibres (individual single cell fibres). This method is thought to have more
potential compared to fibre surface modifications in enhancing composite mechanical
properties [13]. This is supported by the work of Stuart et al. [14] who separated flax
fibres into elementary fibres using pectinase and/or ethylenediaminetetraacetic acid. The
elementary flax fibres were used to reinforce epoxy-matrix composites. It was observed
that the use of elementary fibres increased the mechanical properties of the composites,
especially the tensile strength and work of fracture. However, otherwise, there has been
very little research carried out in this area.
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Several workers have examined the extraction of elementaries from kenaf fibres for
pulp or paper production. Shin et al. [15] found that chemical treatments using sodium hy-
droxide and anthraquinone, and bleaching using sodium chlorite, acetic acid, and sodium
hypochlorite, were ineffective in separating the elementary fibres. However, elementary
fibres were successfully isolated when they were treated with water, bleached with sodium
chlorite, acetic acid, and sodium hypochlorite, and then treated using electron beam irradi-
ation. Mazumder et al. extracted elementary fibres from kenaf using nitric acid (HNO3)
and also a mixture of hydrogen peroxide (H2O2) and acetic acid (CH3COOH) [16]. Cala-
mari et al. also isolated kenaf elementaries using an H2O2/CH3COOH mixture following
pretreatment with alkali [17].

Elementary fibres are particularly attractive for use in injection moulded and extruded
thermoplastic composites. Good reinforcement efficiency cannot be achieved in these
processes using the fibre bundles since they must be chopped into low aspect ratio segments
in order to provide short enough fibres for the feed. However, elementary fibres are
short enough to feed into the moulder or extruder while also having an inherently high
aspect ratio. As a result, they have the potential to provide a potent reinforcement in
these composites.

While extraction of kenaf elementaries has been examined for pulp or paper pro-
duction, no research appears to have been conducted previously on extraction of kenaf
elementaries specifically for use as the reinforcement in polymer matrix composites.

The objectives of the present study were to break down the kenaf fibre bundles into
individual separated elementary fibres, so as to be in a form that would be suitable for use
in injection moulded and extruded thermoplastic composites, and to undertake a detailed
characterisation of the fibres produced in this way.

Both HNO3 and H2O2/CH3COOH treatments were examined. These treatments were
chosen as being a more traditional and a more recent treatment, respectively, commonly
used for pulp production. The aspect ratio, chemical composition, and thermal degradation
of the untreated and treated fibres were examined. Crystallinity of cellulose in both the
untreated and treated fibres was also investigated. In addition, the defect density of the
treated fibres and the degree of oxidation of cellulose in the fibres were determined.

2. Materials and Methods
2.1. Materials

Kenaf fibre bundles (KF) were obtained from the Malaysian Agriculture Research and
Development Institute (MARDI). The kenaf fibres are shown as received in Figure 1 while
a chemical analysis conducted on the same batch of fibres, using the Technical Association
of Pulp and Paper Industries (TAPPI) test methods, is given in Table 1 [18]. Seventy
percent nitric acid (HNO3), thirty percent hydrogen peroxide (H2O2) and glacial acetic acid
(CH3COOH) were obtained from Ajax Finechem.

Fibers 2022, 10, x FOR PEER REVIEW 3 of 18 
 

 

Figure 1. Kenaf fibres as received. 

Table 1. Chemical analysis (wt%) of kenaf fibres [18]. 

Description Test Method Analysis (wt%) 

Holocellulose TAPPI T 249-75 91.2 

Cellulose TAPPI T 203 os-74 60.9 

Hemicelluloses TAPPI T 203 cm-99 30.3 

Pentosan TAPPI T 223 cm-01 17.3 

Alkali solubility  TAPPI T 212 om-02 16.8 

Lignin content  TAPPI T 222 om-02 11.1 

Moisture content  TAPPI T 264 om-88 10.0 

Hot water soluble  TAPPI T 207 cm-99 1.19 

Ethanol-toluene  TAPPI T 204 cm-97 0.73 

Ash content  TAPPI T 211 om-02 0.65 

2.2. Kenaf Fibre Extraction 

Elementary kenaf fibres were chemically extracted from the kenaf fibre bundles. Two 

techniques were used, adapted from treatments given in the literature for pulp production 

[16,19–22]. The chemicals, temperature, and time used in the treatments are important 

parameters since they affect the yield, dimensions and level of degradation of the resulting 

elementary fibres. Agglomeration of the fibres due to hydrogen bonding must also be 

minimised during the drying process. 

One of the two techniques used nitric acid (HNO3) while the second used a mixture 

of hydrogen peroxide (H2O2) and acetic acid (CH3COOH). Prior to treatment, the kenaf 

fibre bundles were cut to a length of 100 mm. The first treatment involved soaking the 

fibres bundles in 60% HNO3 [19] at 80 ± 2 °C for 30 min. The treated kenaf fibres were then 

soaked in 60% HNO3 at room temperature for five weeks to increase the yield of elemen-

taries. In the second treatment, the fibre bundles were soaked in a mixture of 20% H2O2 

and glacial CH3COOH (50:50) [20] at 98 ± 2 °C for 7 h [16]. The extracted fibres were fil-

tered then washed using tap water, distilled water and deionized water, respectively, un-

til the pH value of the solution was approximately 7. The extracted kenaf fibres were kept 

in deionized water and then frozen to reduce agglomeration. The frozen fibres were then 

freeze dried in a Lyovac GT 2 freeze drier for one to two days [21,22]. A flowchart showing 

the two treatments is given in Figure 2. 

Figure 1. Kenaf fibres as received.



Fibers 2022, 10, 63 3 of 17

Table 1. Chemical analysis (wt%) of kenaf fibres [18].

Description Test Method Analysis (wt%)

Holocellulose TAPPI T 249-75 91.2

Cellulose TAPPI T 203 os-74 60.9

Hemicelluloses TAPPI T 203 cm-99 30.3

Pentosan TAPPI T 223 cm-01 17.3

Alkali solubility TAPPI T 212 om-02 16.8

Lignin content TAPPI T 222 om-02 11.1

Moisture content TAPPI T 264 om-88 10.0

Hot water soluble TAPPI T 207 cm-99 1.19

Ethanol-toluene TAPPI T 204 cm-97 0.73

Ash content TAPPI T 211 om-02 0.65

2.2. Kenaf Fibre Extraction

Elementary kenaf fibres were chemically extracted from the kenaf fibre bundles. Two
techniques were used, adapted from treatments given in the literature for pulp produc-
tion [16,19–22]. The chemicals, temperature, and time used in the treatments are important
parameters since they affect the yield, dimensions and level of degradation of the resulting
elementary fibres. Agglomeration of the fibres due to hydrogen bonding must also be
minimised during the drying process.

One of the two techniques used nitric acid (HNO3) while the second used a mixture
of hydrogen peroxide (H2O2) and acetic acid (CH3COOH). Prior to treatment, the kenaf
fibre bundles were cut to a length of 100 mm. The first treatment involved soaking the
fibres bundles in 60% HNO3 [19] at 80 ± 2 ◦C for 30 min. The treated kenaf fibres were
then soaked in 60% HNO3 at room temperature for five weeks to increase the yield of
elementaries. In the second treatment, the fibre bundles were soaked in a mixture of 20%
H2O2 and glacial CH3COOH (50:50) [20] at 98 ± 2 ◦C for 7 h [16]. The extracted fibres were
filtered then washed using tap water, distilled water and deionized water, respectively,
until the pH value of the solution was approximately 7. The extracted kenaf fibres were
kept in deionized water and then frozen to reduce agglomeration. The frozen fibres were
then freeze dried in a Lyovac GT 2 freeze drier for one to two days [21,22]. A flowchart
showing the two treatments is given in Figure 2.

The elementary kenaf fibres isolated using 60% HNO3 are referred to here as KFTN
while the those separated using the mixture of H2O2 and CH3COOH are referred to as
KFTHA. Untreated kenaf fibre bundles, chopped into 2 mm lengths, were used as a control.
These are referred to as chopped KF.

2.3. Scanning Electron Microscopy (SEM)

The KFTN and KFTHA fibres were imaged with a Hitachi S3400-X scanning electron
microscope (SEM) using secondary electrons. The specimens were first sputter coated with
gold. The SEM was operated in high vacuum at an accelerating voltage of 10 kV.
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Figure 2. Flowchart showing HNO3 and H2O2/CH3COOH treatments.

2.4. Aspect Ratio of Extracted Kenaf Fibres

The length and diameter were measured for 500 KFTN and 50 KFTHA fibres and
the aspect ratio then determined for each process using the average values of these two
parameters. The fibres were sprinkled onto glass slides and then examined using a Nikon
Eclipse ME600 optical microscope. The measurements were made using the UTHSCSA
ImageTool program.

2.5. Fibre Defects

Defects in the extracted fibres (kinks, micro-compressions, pits, nodes, dislocations
and initial breaks) were examined using a Hitachi S3400-X scanning electron microscope
using the method given in Section 2.3 but with an accelerating voltage of 15 KV. Ten fibres
of each type were examined.

2.6. Fourier Transform Infrared (FTIR) Spectroscopy

The chopped and extracted fibres were examined using a Perkin Elmer Spotlight
400 FTIR instrument in attenuated total reflectance (ATR) mode in the range of 650–4000 cm−1

with a resolution of 4 cm−1. Sufficient material (~1 g) was placed on the crystal window
to completely cover its area. A single sample containing a substantial number of fibres
was analysed for each of the different fibre treatments. All of the fibres in each sample
were analysed simultaneously with the spectra obtained being the average result from the
individual fibres. The chemical composition of the fibre surfaces was then characterised
from absorption peaks of the FTIR spectra.
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2.7. Raman Spectroscopy

Cellulose and lignin in the chopped and extracted fibres were analysed using a Perkin
Elmer Ramanstation 785-nm (near-IR) laser-based Raman spectrometer in the spectrum
range of 200–2000 cm−1. A single sample approximately 1 g in weight (containing a
substantial number of fibres) was analysed in each case. All of the fibres in each sample
were analysed simultaneously with the spectra obtained being the average result from the
individual fibres.

2.8. Cellulose Crystallinity

The cellulose crystallinity of the fibres was determined using both X-ray diffraction
(XRD) and solid state nuclear magnetic resonance (NMR). A single sample containing a
substantial number of fibres was analysed in each case. All of the fibres in each sample
were analysed simultaneously with the spectra obtained being the average result from the
individual fibres.

XRD was carried out using a Philips X’pert Multipurpose XRD system. The specimens
were scanned from 8◦ to 55◦ at 2Ө. A step size of 0.026◦, a voltage of 45 kV and a current of
40 mA were used. Time per step and revolution time were 51 and 4 s, respectively. The
crystallinity index CrI was calculated using the Segal’s equation [23] given by:

CrI =
I002 − Iam

I002
(1)

where I002 denotes the maximum intensity of the 002 peak at about 2Ө = 22.0–22.5◦ and
Iam is the lowest intensity corresponding to the 2Ө value near 18.0–18.5◦ (amorphous
background) [24,25].

Solid state 13C NMR was carried out using a Bruker Avance III 300 Solid State NMR
instrument. The crystalline and amorphous peaks at 89 ppm and 84 ppm were used for
determining the cellulose crystallinity [26].

2.9. Degree of Oxidation

Some oxidation of the cellulose is to be expected from the treatments used to extract the
elementaries from the fibre bundles. This can be detrimental to the mechanical performance
of the fibres. Accordingly, the degree of oxidation was determined from the solid state
13C NMR spectra by integrating the peak at 174 ppm (C-6′) corresponding to the carboxyl
groups [27]. The degree of oxidation indicates the weight percent of carboxyl in the
cellulose [28].

2.10. Thermogravimetic Analysis (TGA)

Thermogravimetric analysis (TGA) was conducted using a TGA Q5000 thermogravi-
metric analyser under an air atmosphere with a flow rate of 15 mL/min in order to examine
thermal decomposition of the chopped and treated fibres. The fibres were heated from
room temperature to 700 ◦C in a platinum pan at a heating rate of 10 ◦C/min.

3. Results and Discussion
3.1. Extracted Kenaf Fibres

Elementary fibres were successfully extracted from the fibre bundles using both
techniques. The extracted elementary fibres are shown in Figures 3–5. It can be seen
from Figure 4 that the ends of the fibres were quite different for the two treatments. The
KFTHA fibres had narrow tapered ends, as is usual for elementary fibres, but the ends
of the KFTN fibres were square, indicating that the fibres had been broken during the
treatment. As a result of breakage, the KFTN fibres were shorter than the KFTHA fibres, as
is shown in the following section.
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The yields of the KFTN and KFTHA fibres were quite low being 36% and 58% of the
initial weight, respectively. The low yields are attributed to loss of elementaries during the
washing step together with fibre degradation during the treatments [29].

3.2. Aspect Ratio of Extracted Fibres

Histograms showing the length and diameter of the treated fibres are given in
Figures 6 and 7. The fibre length histogram for the KFTN fibres is skewed to lower values
due to fibre breakage. The other histograms show essentially normal distributions.
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The lengths and diameters of the KFTN and KFTHA fibres are given in Table 2,
together with their calculated aspect ratios. The KFTHA fibres were an order of magnitude
longer than the KFTN fibres with an average length of 2312 µm compared with 180 µm for
the KFTHA fibres. The average diameter was, however, similar, being 13.0 µm compared
with 11.7 µm, respectively. In comparison the untreated fibres had an average diameter of
97 µm. The diameters of the treated fibres are within the range considered to be indicative
of elementary fibres [30] providing quantitative confirmation that the treatments had
been successful.
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Table 2. Length, diameter, and aspect ratio of KFTN and KFTHA fibres. Error shown is one standard
deviation.

Sample
Measured Fibre Length (µm) Measured Fibre Diameter (µm)

Aspect
RatioMinimum

Length
Maximum

Length Average Length Minimum
Diameter

Maximum
Diameter

Average
Diameter

KFTN 53.5 685.0 179.5 ± 95.6 3.7 24.0 11.7 ± 3.1 15.3

KFTHA 872.1 3462.4 2312.3 ± 627.3 6.9 21.9 13.0 ± 3.0 178.5

As a result of their much longer length, the KFTHA fibres had a much higher aspect
ratio of 179 compared with a value of 15 for the KFTN fibres. The low fibre length and
resulting low aspect ratio for the KFTN fibres is attributed to the higher strength of the acid
used and the longer treatment time [31].

Overall, the results indicate that the KFTHA treatment is superior to the KFTN treat-
ment in terms of yield, treatment time and aspect ratio.

Other workers have also extracted elementaries from kenaf using both HNO3 and
H2O2/CH3COOH treatments. Mazumder et al. [16] obtained elementaries somewhat
longer than those obtained from the KFTN treatment used here using a more dilute HNO3
solution and a shorter treatment time. They also used an H2O2/CH3COOH treatment and
obtained fibres of similar length to those obtained here for the KFTHA treatment, as also
obtained by Calamari et al. [17]. The results from these workers are compared with those
from the present study in Table 3.

Table 3. Comparison of fibre dimensions from present work with those from previous studies.

Chemical Treatment
Fibre Dimensions

This Work Previous Studies

HNO3

- average fibre length: 0.18 mm
- average fibre width: 0.012 mm
- aspect ratio: 15

Mazumder et al. [16]
- average fibre length: 0.64 mm

H2O2/CH3COOH

- average fibre length: 2.31 mm
- average fibre width: 0.013 mm
- aspect ratio: 179

Mazumder et al. [16]
- average fibre length: 2.18 mm

Calamari et al. [17]
- average fibre length: 2.45 mm
- average fibre width: 0.012 mm
- aspect ratio: 204

3.3. Defect Density of Elementary Fibres

The treated fibres exhibited defects such as kinks, micro-compressions, pits, nodes,
dislocations, and initial breaks. Representative SEM images of the fibre defects are shown
in Figure 8. The defect density was significantly higher (t-test 95% confidence interval) for
the KFTN fibres than for the KFTHA fibres, with the average values being 20.8 (standard
deviation 8.8) and 13.6 (standard deviation 3.8) defects/mm, respectively.

The higher defect density of the KFTN fibres than the KFTHA fibres is again attributed
to the strength of the acids used [31]. The HNO3 treatment caused breakage of the fibres,
as indicated by their square ends and shorter length. This is considered to be due to the
fibres being attacked by the acid at defects such as dislocations and kinks [32,33].



Fibers 2022, 10, 63 10 of 17Fibers 2022, 10, x FOR PEER REVIEW 11 of 18 
 

 

Figure 8. SEM micrographs showing fibre defects in KFTN fibres (left–top: dislocation; bottom: 

kink) and KFTHA fibres (right–top: pits; bottom: kink) at ×2000 (top) and ×4700 (bottom) magnifi-

cations. 

3.4. FTIR Spectra 

FTIR spectra of the chopped KF, KFTN and KFTHA fibres are shown in Figure 9. The 

absorption peaks for the chopped KF fibres were the same as those observed by Ozturk et 

al. [34] for kenaf stem. 

The spectra from the chopped KF, KFTN and KFTHA fibres all showed absorption 

peaks at 3329 cm−1 (O-H stretching [35]), 2900 cm−1 (C-H stretching [35], 1635 cm−1 (O-H 

bending [35]), 1420 cm−1 (-CH2 and OCH in-plane bending [36]), 1360 cm−1 (C-H bending 

[36]), 1313 cm−1 (-CH2 wagging [36]), 1170-1082 cm−1 (pyranose ring skeletal C-O-C [36]), 

1102 cm−1 (C-OH group [36]) and 893 cm−1 (COC, CCO and CCH deformation and stretch-

ing [36]). These peaks are all characteristic of cellulose, although the peaks at 3329 cm−1, 

2900 cm−1 and 1102 cm−1 are also seen in hemicellulose and lignin. The spectra also showed 

a peak at 1635 cm−1 which is attributed to the presence of moisture. 

There were however significant differences between the spectra obtained for the 

treated and untreated fibres. The untreated fibres showed a peak at 1500 cm−1 which is 

attributed to the C=C aromatic in plane vibrations in lignin [37]. This peak was absent in 

the treated fibres, indicating that the fibre treatments had removed the lignin.  

The untreated fibres also showed a peak at 1716 cm−1, which is attributed to C=O 

stretching of ketone and carbonyl groups in hemicellulose [35], pectin, and waxes [36,38]. 

This peak was again absent for the KFTN fibres but a peak at the same wavenumber was 

present for the KFTHA fibres. However, for these fibres, the peak is attributed to C=O 

stretching corresponding to carboxylic groups [39] from oxidized cellulose and/or acetyl 

groups [40] due to the KFTHA treatment. The results are therefore considered to indicate 

that pectin and waxes have been removed by the fibre treatments. 

Figure 8. SEM micrographs showing fibre defects in KFTN fibres (left–top: dislocation; bottom: kink)
and KFTHA fibres (right–top: pits; bottom: kink) at ×2000 (top) and ×4700 (bottom) magnifications.

3.4. FTIR Spectra

FTIR spectra of the chopped KF, KFTN and KFTHA fibres are shown in Figure 9.
The absorption peaks for the chopped KF fibres were the same as those observed by
Ozturk et al. [34] for kenaf stem.

The spectra from the chopped KF, KFTN and KFTHA fibres all showed absorption
peaks at 3329 cm−1 (O-H stretching [35]), 2900 cm−1 (C-H stretching [35], 1635 cm−1

(O-H bending [35]), 1420 cm−1 (-CH2 and OCH in-plane bending [36]), 1360 cm−1 (C-H
bending [36]), 1313 cm−1 (-CH2 wagging [36]), 1170–1082 cm−1 (pyranose ring skeletal
C-O-C [36]), 1102 cm−1 (C-OH group [36]) and 893 cm−1 (COC, CCO and CCH deformation
and stretching [36]). These peaks are all characteristic of cellulose, although the peaks at
3329 cm−1, 2900 cm−1 and 1102 cm−1 are also seen in hemicellulose and lignin. The spectra
also showed a peak at 1635 cm−1 which is attributed to the presence of moisture.

There were however significant differences between the spectra obtained for the
treated and untreated fibres. The untreated fibres showed a peak at 1500 cm−1 which is
attributed to the C=C aromatic in plane vibrations in lignin [37]. This peak was absent in
the treated fibres, indicating that the fibre treatments had removed the lignin.

The untreated fibres also showed a peak at 1716 cm−1, which is attributed to C=O
stretching of ketone and carbonyl groups in hemicellulose [35], pectin, and waxes [36,38].
This peak was again absent for the KFTN fibres but a peak at the same wavenumber was
present for the KFTHA fibres. However, for these fibres, the peak is attributed to C=O
stretching corresponding to carboxylic groups [39] from oxidized cellulose and/or acetyl
groups [40] due to the KFTHA treatment. The results are therefore considered to indicate
that pectin and waxes have been removed by the fibre treatments.
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In addition, the untreated fibres showed a peak at 1593 cm−1. This is attributed to
C=C aromatic in-plane vibrations combined with C=O stretching, which is again indicative
of lignin [37,41]. This peak was absent for the KFTHA treatment although a peak at the
same wavenumber was present for KFTN. This peak is, however, considered to be due to
-NO2 asymmetrical stretching vibrations [42] resulting from the reaction between cellulose
and HNO3 [43].

A further peak was evident for the untreated fibres at 1238 cm−1 and this is attributed
to C-O stretching of acetyl groups from lignin [8]. A peak was also present at the same
wavenumber for the KFTHA treatment, but this is attributed to C-O stretching of ac-
etates [44] resulting from reaction of cellulose with H2O2/CH3COOH. The assignment of
this peak to species other than lignin is consistent with the absence of the 1500 cm−1 lignin
peak in the treated fibres.

The KFTN fibres exhibited a peak at 1280 cm−1 which was not present for the other
treatments. This peak is attributed to -NO2 symmetrical stretching [39,45] due to reaction
between cellulose and HNO3 [43] and is not considered to be due to the presence of lignin.

3.5. Raman Spectra

Raman spectra of the chopped KF, KFTN and KFTHA fibres are given in Figure 10.
The chopped KF, KFTN and KFTHA presented Raman shifts at 376 cm−1, 1094 cm−1,
1118 cm−1, 1340 cm−1, 1350 cm−1 and 1374 cm−1 corresponding to HCC and HCO bending
and stretching vibrations in cellulose [46]. A Raman shift at 1600 cm−1 was present in
the spectrum of the chopped KF fibres due to aromatic parts in lignin [46–48]. However,
this Raman shift was not present for the KFTN and KFTHA fibres, further confirming the
removal of lignin.
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3.6. Crystallinity of Cellulose

The crystallinity indexes of cellulose in the chopped KF, KFTN and KFTHA fibres
obtained using XRD and NMR are shown in Figure 11. The crystallinity index could also be
determined from the FTIR spectra using the ratio of the 1420 cm−1 to 893 cm−1 peaks [36]
and these values are also included in Figure 11. The results shown in Figure 11 were
obtained from the average spectra from the individual fibres in each of the samples. It is
noted that XRD gave substantially higher values than NMR, with the values from FTIR
being intermediate between the two. However, apart from the FTIR result for the KFTHA
fibres, the trends were the same for all three methods, with the crystallinity being higher in
the treated fibres than in the untreated ones. This indicates that amorphous components
were removed when the fibre bundles were broken down into elementaries, providing
further evidence of the removal of hemicellulose and lignin [40] during the fibre treatments.

The results from all three methods also indicate that the crystallinity is higher in the
KFTN fibres than in the KFTHA ones. This is considered to be due to the formation of ester
groups created by the reaction of carboxylic groups with unreacted hydroxyl groups in the
cellulose treated with HNO3 [49].

3.7. Degree of Oxidation

The degree of oxidation of cellulose, as determined using solid state 13C NMR, was
similar for both treatments with values of 7.4% and 6.9% being obtained for the KFTN and
KFTHA fibres, respectively. As noted earlier, the degree of oxidation indicates the weight
percent of the carboxyl in the cellulose [28].
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3.8. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) and first derivative thermogravimetric analysis
(DTG) curves of the chopped KF, KFTN and KFTHA are shown in Figures 12 and 13, re-
spectively. The extrapolated onset (Tonset) and endset (Tendset) decomposition temperatures
of the chopped KF, KFTN and KFTHA and their maximum weight loss temperatures (Tmax)
are given in Table 4.
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Table 4. Decomposition temperatures of chopped KF, KFTN, and KFTHA fibres.

Sample Temperature Chopped KF KFTN KFTHA

1st Step

Tonset (◦C) 23 21 24

Tmax (◦C) - - -

Tendset (◦C) 60 87 58

2nd Step

Tonset (◦C) 258 187 310

Tmax (◦C) 339 309 330

Tendset (◦C) 353 347 343

3rd Step

Tonset (◦C) 439 413 422

Tmax (◦C) 462 424 432

Tendset (◦C) 481 441 440

The curves showed three important steps. The weight loss at the first step was caused
by moisture in the fibres [50]. The second step resulted from thermal decomposition of
hemicellulose which occurred over the temperature range 280 ◦C to 320 ◦C [7] and that of
cellulose over the temperature range 320 ◦C to 380 ◦C [51]. The weight loss at the third step
was due to oxidation of the degradation products from the second step [52]. The third step
could also involve decomposition of thermally stable residues such as lignin [14,53].

The thermal stability of the KFTN fibres was noticeably poorer than that of the un-
treated fibres, especially at the second step where the onset of degradation occurred at
187 ◦C compared with 258 ◦C for the untreated fibres. The maximum weight loss also
occurred at a lower temperature (309 ◦C) than in the untreated fibres (339 ◦C). These differ-
ences are considered to be due to the presence of cellulose nitrate in the fibres resulting from
the HNO3 treatment, as indicated by the FTIR results. The decomposition at approximately
200 ◦C is consistent with the denitration of cellulose nitrate [54].

In contrast, the KFTHA fibres showed a substantially higher thermal stability at the
second step than the untreated fibres, with the onset temperature being 310 ◦C compared
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with 258 ◦C for the untreated fibres. This is considered to be due to the removal of
lignin [55].

This work has shown that high aspect ratio elementary fibres can be produced by
the H2O2/CH3COOH treatment. This is of considerable practical importance since, as a
result of their high aspect ratio, the elementary fibres have the potential for substantially
improving the reinforcement efficiency in injection moulded and extruded thermoplastic
natural fibre composites.

A novel finding of the work was that the thermal stability of the fibres was increased
considerably by the H2O2/CH3COOH treatment. This is of particular significance for
thermoplastic composites since it would permit higher processing temperatures. In turn,
this would expand the range of thermoplastic polymers that could be used as the matrix
for natural fibre thermoplastic composites.

4. Conclusions

Elementary fibres were successfully separated from kenaf fibre bundles using both 60%
HNO3 (KFTN) and a mixture of 20% H2O2 and glacial CH3COOH (KFTHA). The KFTHA
treatment gave a substantially higher fibre yield than the KFTN treatment while the fibre
aspect ratio was much larger. The defect density in the KFTHA fibres was also considerably
lower. FTIR and Raman spectra of the untreated and treated fibres confirmed that lignin
had been removed from the fibres by the chemical treatments. Both treatments produced
some oxidation of the cellulose in the fibres but increased cellulose crystallinity with the
increase being somewhat greater for the KFTN fibres. The thermal stability of the fibres was
increased substantially by the KFTHA treatment but decreased substantially by the KFTN
treatment. The increase in thermal stability obtained from the KFTHA treatment would
permit higher processing temperatures which would allow a wider range of thermoplastics
to be used as the matrix material in natural fibre composites.
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