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Abstract: The performance of carbon fibers depends on the properties of the precursor polyacryloni-
trile (PAN) fibers. Stretching of PAN fibers results in improved tensile properties, while potentially
reducing its compressive properties. To determine optimization trade-offs, the effect of coagulation
conditions and the stretching process on the compressive modulus in the transverse direction (ET)
was investigated. A method for accurately determining ET from polymer fibers with non-circular
cross-sectional shapes is presented. X-ray diffraction was used to measure the crystallite size, crys-
tallinity, and crystallite orientation of the fibers. ET was found to increase with decreasing crystallite
orientation along the drawing direction, which decreases the tensile modulus in the longitudinal direc-
tion (EL) proportionally to crystallite orientation. Stretching resulted in greater crystallite orientation
along the drawing direction for fibers formed under the same coagulation conditions. Increasing the
solvent concentration in the coagulation bath resulted in a higher average orientation, but reduced the
impact of stretching on the orientation. The relationship between ET and EL observed in the precursor
PAN fiber is retained after carbonization, with a 20% increase in ET achieved for a 2% decrease in EL.
This indicates that controlled stretching of PAN fiber allows for highly efficient trading off of EL for
ET in carbon fiber.

Keywords: fiber compression; microstructure of fibers; structure–property relations

1. Introduction

Carbon fiber (CF) is an important modern construction material due to its light weight
and high tensile properties. This has made CF-reinforced composites an ideal construction
material for the aerospace and wind energy industries [1–3]. The properties of the composite
are highly dependent on the properties of the individual [4,5]. Thus, there is considerable
interest in measuring and modifying the mechanical properties of individual CFs. The most
widely used method for producing CFs is by carbonization of a polyacrylonitrile (PAN)
fiber precursor, commonly called a white fiber (WF). The WF spinning process is a crucial
step in the production of CF, as the structural properties of the final CF will be determined
by the structure of the WF [6–9]. Thus, the processing parameters of the WF have been the
focus of much study [10–12].

A high-quality WF with strong tensile properties requires a strong orientation along
the fiber axis, high crystallinity, minimal voids, and a circular cross-section [13,14]. Drawing
the fiber during the coagulation process (i.e., jet stretch) and after coagulation (i.e., post-
draw stretch) are important processing conditions for tailoring these properties. The total
increase in length between the extruded fiber and the final WF is known as the total draw
ratio (TDR). Increasing the TDR during the spinning process increases the orientation
along the fiber axis [15], increases the crystallinity [16] and the homogeneity [17], and
promotes the formation of a rounded cross-section [18]. Surface roughness also increases
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with drawing [19,20], which must be accounted for when considering its properties in
the transverse direction. A well-drawn fiber results in superior tensile properties, such as
increased tensile strength and tensile modulus [13,15,18,21,22].

However, there has been minimal reported consideration on the impact of TDR on
the CF compressive properties, despite the fact that most carbon fiber reinforced materials
are limited not by their tensile properties but by their compression properties in practical
applications [4,23,24]. A potential reason for the relative paucity of compression studies
compared to tension studies of CFs and their precursor WFs is the added complexity of
measuring the compressive properties of a single fiber.

Different methods have been reported in the literature to address this. Firstly, tra-
ditional nanoindentation experiments have been supported with mathematical models,
atomic force microscopy, and finite element analysis to ensure the unconstrained circular
cross-section of the fiber does not impact the result [25,26]. Another method probes CFs
embedded in a composite using nanoindentation to measure the reduced modulus in the
transverse and longitudinal directions from which the five unique stiffness coefficients
of a transversely isotropic fiber can then be calculated [27–30]. In the method used here,
the free-standing fiber is compressed and a Hertzian contact mechanics model is used to
account for the circular cross-sectional shape of the fiber. This technique has been applied
both to CF [31–33] and to polymer fibers [34,35].

While some modifications due to increasing TDR are expected to also improve com-
pressive properties (e.g., reduction of voids, high crystallinity), orientation of the graphitic
crystallites along the fiber axis are expected to negatively impact the compressive properties.
Most prominently, the orientation of graphitic sheets such that their planes are layered
perpendicular to the compression direction will reduce the compressive modulus.

Here, WFs processed under different spinning conditions and TDRs were compressed
along the transverse direction to measure transverse compressive modulus (ET), which was
compared to its longitudinal tensile modulus (EL) and the orientation of the crystallites.
Furthermore, several WFs were carbonized, and the moduli of the CF were also compared.
While increasing ET resulted in a decreased EL, a significant increase in ET was observed
for minimal decrease in EL. This promising result suggests that ET can be tailored to the
required application by varying the TDR during WF spinning, maximizing the compressive
properties without meaningfully impacting the highly desirable tensile properties of CF.

2. Materials and Methods
2.1. Spinning

Two sets of WFs were spun using a wet-spinning technique on a 500-filament pilot-
scale spinning line. The polymer solution consisted of commercially available polymer
purchased from Japan Exlan Co., Ltd. (Osaka, Japan), which contains acrylonitrile, methyl
acrylate, and itaconic acid in a 96:3:1 ratio, in a DMSO solvent with a polymer concentration
of 20 wt % and a viscosity average molecular weight of 176 kg mol−1. Using a discovery
HR3 hybrid rheometer with parallel plates 40 mm apart, a flow sweep test at 70 ◦C and
1 s−1 shear rate was performed to measure the polymer solution shear viscosity as 103 Pa.s.
All fibers were extruded at a velocity of 2.50 m/min from a spinneret with a hole diameter
of 80 µm. For the first set, the polymer was extruded into a 30 ◦C DMSO/water coagulation
bath with a 70/30 vol % ratio and a residence time of 30 s, followed by a 40 ◦C DMSO/water
gradient bath with a 50/50 vol % ratio with a residence time of 14 s. For the second set, the
polymer was extruded into a single higher temperature 60 ◦C DMSO/water coagulation
bath with a 65/35 vol % ratio, with a residence time of 30 s.

Both coagulation conditions had a jet stretch ratio of 0.7×. Thermal post drawing
was subsequently performed on the same line, which involved a washing bath stretch, a
hot water stretch, and a steam stretch. For the WF extruded into a 30 ◦C coagulation bath
(hereafter, “30C series”) a wash bath stretch of 1.25×, a hot water stretch of 2.50×, and
a variable steam stretch for a total draw ratio of 7.2×, 8.0×, 9.2×, 10.0×, and 10.8× was
applied. For the WF extruded into a 30 ◦C coagulation bath (hereafter, “60C series”) a
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wash bath stretch of 1.62×, a hot water stretch of 2.50×, and a variable steam stretch for a
total draw ratio of 7.8×, 10.0×, and 12.6× was applied. These parameters were chosen as
they were found to minimize pores and filament breakage. The processing parameters for
each sample are listed in Table 1, with the assigned name based on their coagulation bath
temperatures (i.e., 30 ◦C and 60 ◦C) and their TDR. For example, the 30C series WF that has
a TDR of 9.2 is named 30C-9×.

Table 1. The coagulation bath conditions, the stretching ratios at each stretching stage, and the total
draw ratio (TDR) of the WFs measured in this study.

Name Coagulation Conditions Jet Stretch Wash Bath
Stretch

Hot Water
Stretch

Steam
Stretch TDR

30C-7× 70% DMSO @ 30 ◦C + 50% DMSO @ 40 ◦C 0.7 1.25 2.50 3.29 7.2
30C-8× 70% DMSO @ 30 ◦C + 50% DMSO @ 40 ◦C 0.7 1.25 2.50 3.66 8.0
30C-9× 70% DMSO @ 30 ◦C + 50% DMSO @ 40 ◦C 0.7 1.25 2.50 4.20 9.2

30C-10× 70% DMSO @ 30 ◦C + 50% DMSO @ 40 ◦C 0.7 1.25 2.50 4.57 10.0
30C-11× 70% DMSO @ 30 ◦C + 50% DMSO @ 40 ◦C 0.7 1.25 2.50 4.94 10.8
60C-8× 65% DMSO @ 60 ◦C 0.7 1.62 2.50 2.76 7.8

60C-10× 65% DMSO @ 60 ◦C 0.7 1.62 2.50 3.51 10.0
60C-13× 65% DMSO @ 60 ◦C 0.7 1.62 2.50 4.44 12.6

2.2. Carbonization

Select WFs (60C-8×, 60C-10×, 60C-13×) were carbonized on the carbon fiber pro-
duction line at Carbon Nexus, Deakin University (Australia). All three WFs were drawn
through four oxidation zones with a tension of 100 cN across a single 500-filament tow, at
temperatures of 230, 240, 250, and 260 ◦C for Zones 1 through 4, respectively. This was
followed by drawing with a tension of 50 cN, through low temperature carbonization zones
at temperatures of 450, 550, and 650 ◦C through Zones 1 to 3, respectively. Finally, the
fiber was drawn with a tension of 100 cN through high temperature carbonization zones
at a temperature of 1100 and 1400 ◦C for Zones 1 and 2, respectively. The line speed was
22 m/h, resulting in a dwell time within each zone of 16.4, 4.9, and 3.2 min in the oxidation
zones, low temperature carbonization zones, and high temperature carbonization zones,
respectively. Both low- and high-temperature carbonization zones were filled with nitrogen
to create an inert atmosphere.

2.3. Compression

The compression was performed on the fiber compression instrument detailed in [36],
using the analysis method included therein. In particular, the removal of the ‘initial section’
removes the impact of surface roughness that is introduced by increased drawing. ET was
fitted to the Hertzian contact mechanics model developed by Morris et al. [37]

U =
4F
π

(
1

ET

)(
sinh−1

(
R
b

))
(1)

where F is the force per unit length, R is the radius of the fiber, and b is the contact segment
width between the fiber and the tip. This model was chosen based on a comparative study
of the available models by Hillbrick et al. [38].

All fibers (i.e., both WF and CF samples) were compressed at a rate of 1 µm/s us-
ing 0.1 µm steps up to the maximum load, held at maximum load for either 120 s (first
compression of a fiber) or 5 s (subsequent compressions on the same fiber, at a different
location), and then released at the same rate. The longer hold duration was used to analyze
the non-elastic deformation (detailed in Figure 1 and the associated text) of the fiber, with
the outcome of this analysis inferred for the subsequent 5 s hold duration compressions
on the fiber. The presented ET values were fitted from the loading segments of both, 120 s
and 5 s hold compressions, with no measurable difference between 120 s and 5 s observed.
The WFs were compressed to a maximum load of ~50 mN over 10 s, while the CFs were
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compressed up to a maximum load of ~500 mN over 100 s. Several (5–10) compressions
were performed at different positions along each individual fiber, and at least 4 individual
fibers were tested for each sample type.
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Figure 1. (a) Load–displacement curves from sequential compression of 30C-7× WF at the same po-
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Figure 1. (a) Load–displacement curves from sequential compression of 30C-7× WF at the same
position (first—Black; second—Blue). Each cycle consists of a loading segment (solid circle), a 120 s
hold segment at maximum load (solid circle), and an unloading segment (empty circle). (b) Creep
during the hold segment, showing the exponential decay to the point creep plateaus. The data (solid
circles) have been fitted with an exponential decay function (line).

The compression displacement of the CFs remained constant during the hold duration;
however, the compression displacement of the WFs increased during the hold duration
due to polymer creep [39]. This creep was also present within the loading curve, and was
dependent upon the loading rate and the amount of physical aging undergone by the
polymer [40,41], which changes the fitted ET. Thus, the physical aging of the WF samples
were standardized by heating them above their glass transition (Tg) followed by controlled
cooling to reset the amount of aging experienced. Each sample was heated at 120 ◦C for
1 h, then cooled at a rate of no greater than 10 ◦C/h and compressed 20 days after cooling.

2.4. SEM

SEM images of the fiber cross-sections were obtained using a Hitachi TM4000 under an
accelerating voltage of 5 kV. WFs were prepared for SEM imaging by securing a 500-filament
tow using rubber tubing, freezing the sample in liquid nitrogen, and then cutting using a
microtome to minimize the impact on the cross-sectional shape. The fibers were not coated.
The SEM images were used to determine R for the WF samples.

2.5. Favimat

Tensile testing was performed using a Textechno H. Stein Favimat + Robot 2 single
fiber tester equipped with single-fiber clamps to measure EL and breaking stress for all
fibers. The testing was performed on fibers of gauge length 25 mm, with a pretension of
1 cN/tex and a testing speed of 10 mm/min. For the WF fibers, 25 fibers were tested; while
50 fibers were tested for the CF samples, and the average value was taken. Favimat testing
was also used to determine the cross-sectional area for the CF samples, from which a value
for R was calculated.

2.6. X-ray Diffraction (XRD)

XRD was performed using a Rigaku SmartLab diffractometer equipped with a Cu Kα

source. To measure the crystallinity and crystal size, parallel beam scanning in transmission
mode was performed across the range 2θ = 5◦–60◦. The profile was fitted using TOPAS-
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Academic, Version 6 (Coelho Software), with peaks fitted using a pseudo-Voigt function.
The crystallinity was determined using

Crystallinity =
AC

AA + AC
(2)

where AC is the summed area of the first and second order (001) crystalline peaks at ~17◦

and ~29◦ and AA is the area of the amorphous peak at ~26◦ [42,43]. The crystallite size was
determined using Scherrer’s equation:

Crystallite Size =
Kλ

βcosθ
(3)

where K is the Scherrer constant (0.89 in this case), λ is the wavelength (1.541 Å for Cu Kα),
and β is the FWHM of the peak at ~17◦. To measure orientation, a 2D image was taken and
integrated azimuthally over the peak at ~17◦. This integrated profile was fitted using a
Lorentzian function, with the orientation defined as:

orientation =
180 − ε

180
(4)

where ε is the FWHM of the integrated profile. Under this definition, a theoretical perfectly
aligned sample would have an orientation of 1. Due to instrumental broadening, the
practical maximum is most likely in the 0.95–1 region.

3. Results and Discussion
3.1. Subsection

A number of issues need to be considered when analyzing a transverse compression
displacement curve on a (viscoelastic) polymeric fiber, such as physical ageing, creep,
and plastic (permanent) deformation. Figure 1a presents two load–displacement curves
from the same position on the same 30C-7× WF, one directly after the other. In both
compressions, the sample was held under maximum load for 120 s, during which time
the displacement increased (i.e., polymer creep). The decay of the creep rate is plotted in
Figure 1b, showing the creep plateaus during the hold segment. The presence of creep
impacts the determination of ET by fitting the elastic portion of the loading curve in two
ways. Firstly, creep will be present throughout the loading curve, making it viscoelastic,
hence the need to compare fibers with identical loading rates. This issue was addressed by
keeping the strain rate the same between all WF compressions performed. Secondly, the
presence of creep masks the presence of plasticity. That is, for an elastic material, the loading
and unloading curves will overlap when the sample remains within its elastic regime. For
a viscoelastic material, the loading and unloading curves never overlap; therefore, it is not
readily apparent if the loading curve has entered the plastic regime and contains a section
unsuitable for calculating ET.

To identify if permanent, plastic deformation has occurred, two loading and unloading
experiments were performed sequentially in the same fiber position with a hold period at
maximum load and the two unloading curves compared. The first loading curve (Figure 1a)
shows the displacement with increasing load, with contributions due to creep. During the
first hold duration at maximum load, the amount of creep plateaus. For the first unloading
and second loading curves, much of the creep remains present, making these sections
unsuitable for fitting. During the second hold duration, the sample returns quickly to the
creep plateau. Finally, the second unloading overlaps with the first unloading curve as they
share essentially identical starting positions. If the sample had responded plastically, or if
the creep had not plateaued after the first hold duration, the two unloading curves would
not overlap. Thus, we suggest that an overlapping pair of unloading curves is evidence
that plasticity has not occurred and that the first loading curve can be fitted to provide an
accurate ET value.
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Figure 2a shows two loading curves from a single 30C-7× fiber at positions less than
2 mm apart, with the fitted curve and ET values indicated. The considerable difference
between these two curves and their fitted ET was typical for 30C-7× WF, resulting in a
mean ET = 1.96 (0.52) GPa (value in brackets are standard deviations) across 95 different
compressions and a coefficient of variation (CoV) of 27%. A histogram plotting all measured
ET values is shown in Figure 2b. The values appear to be from a bimodal distribution rather
than a single distribution. The higher and lower distributions give a mean ET,higher = 2.29
(0.26) GPa and ET,lower = 1.37 (0.25) GPa resulting in a CoVhigher = 11% and CoVlower = 18%,
respectively. This double distribution is observed even when comparing data taken from a
single fiber, indicating it is not due to differences between individual fibers.
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Figure 3a presents an SEM image of 30C-7× WF cross-sections, showing that some
of the cross-sections are circular, while others are bean-shaped. As the analysis method
used to fit ET depends on the cross-sections being (roughly) circular, we propose that
the higher distribution is due to erroneously applying the method to bean-shaped cross-
sections which are much closer to rectangular in shape. Indeed, refitting the curves that
comprise the higher distribution using a standard E = stress/strain relationship results in
ET = 1.36 (0.30) GPa, which is consistent with ET,lower = 1.32 (0.21) GPa. Figure 3b–e shows
that circular and bean-shaped cross-sections were observed in all other WFs in the 30C
series, and a similar double distribution was also observed in ET values fitted from the
load–displacement curves. The remainder of this study discarded the ET,higher values and
considered ET = ET,lower for these five WF types.

Increasing the coagulation bath temperature is reported to promote the formation of
WFs with cross-sections that are circular [44,45]. SEM images of the 60C series are presented
in Figure 4, where the cross-sections are almost all circular. Fitting the compression data
for these WFs resulted in a single distribution, supporting the proposal that the double
distribution is due to the mixture of bean-shaped and circular cross-sections found in the
30C series of WFs. The ET values for all WFs are compiled in Table 2 alongside the tensile
properties measured using the Favimat, EL and breaking stress.
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Table 2. The mean EL values, the breaking stress, the mean ET values, and the densities for the
WFs and CFs investigated in this study. The EL and density values were measured using a Favimat.
Standard deviations are indicated in the round brackets. The confidence intervals (95% confidence)
have been provided for the modulus values. The number of measurements is indicated after each
confidence interval in curly brackets.

Name EL (GPa) Con. Int. 95% Breaking Stress (GPa) ET (GPa) Con. Int. 95% Density (g/cm3)

30C-7× 16.6 (0.28) 0.12 {25} 0.89 (0.05) 1.32 (0.21) 0.08 {32} 0.67 (0.09)
30C-8× 16.8 (0.33) 0.14 {23} 0.90 (0.08) 1.10 (0.20) 0.07 {34} 1.18 (0.08)
30C-9× 17.6 (0.24) 0.10 {25} 1.00 (0.06) 1.24 (0.27) 0.07 {62} 1.18 (0.06)

30C-10× 17.9 (0.34) 0.14 {24} 1.07 (0.06) 0.93 (0.11) 0.08 {10} 1.18 (0.11)
30C-11× 18.3 (0.29) 0.12 {25} 1.09 (0.07) 1.06 (0.19) 0.08 {24} 1.18 (0.10)
60C-8× 15.5 (0.32) 0.13 {25} 0.79 (0.05) 1.63 (0.20) 0.09 {20} 1.18 (0.06)

60C-10× 16.9 (0.32) 0.13 {25} 0.81 (0.06) 1.65 (0.14) 0.06 {20} 1.18 (0.08)
60C-13× 18.0 (0.37) 0.15 {25} 0.94 (0.09) 1.22 (0.16) 0.07 {20} 1.18 (0.07)

Figure 5a plots the relationship between ET and EL for the WFs investigated, with
the error bars representing standard deviation. Overall, there appears to be a linearly
decaying relationship between ET and EL. However, the relationship between TDR and ET
is not straightforward, as shown in Figure 5b. While there is no general trend between the
two series, there appears to be a trend within each series of WFs. This suggests that the
coagulation conditions also have a significant impact on how the TDR can impact the ET.
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3.2. XRD

To explore this further, the orientation, crystallite size, and crystallinity of the WFs were
measured using XRD, with the results presented in Table 3. Figure 6a shows a typical 2D
diffraction image from the WF and the azimuthally integrated profile centered at 2θ = 17◦ as
indicated by the dashed line. The FWHM (ε) of this peak is used to calculate the crystallite
orientation of the WFs. Figure 6b shows that more stretching increased the orientation for
both series, but in a different manner. A linear fit for both series is presented in Figure 6b.
For the 30C series there is a slope of 1.8 × 10−3 which intercepts TDR = 10 at 0.955. For the
60C series, there is a slope of 3.3 × 10−3 which intercepts TDR = 10 at 0.935. That is, the
30C series has a higher average value but increases at a lower rate with respect to TDR.
Figure 6c shows that more stretching increased the crystallite size in a linear manner, with
both series following the same trend. Figure 6d shows that the crystallinity did not appear
to be dependent on the TDR within the range investigated. It is important to note that while
the crystallinity has generally been reported to increase with increased stretching in the
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literature [16,18,46], such studies are on a single WF as it is increasingly stretched during its
spinning process. Here, multiple finished WFs experiencing different spinning conditions
are being compared. Bajaj et al. compared finished WF with 4×, 5×, and 6× TDR and saw
no increase in the crystallinity with respect to stretching [47]. However, they also observed
no change in crystallinity throughout the entire spinning process. Shin et al. reported
that the stage at which stretching is applied (i.e., jets stretch or post-draw stretch) has a
significantly larger impact on crystallinity than the TDR [48]. Moskowitz et al. compared
WFs with constant TDR distributed differently between the initial jet stretch and the final
post-draw stretch [49]. They observed a decrease in crystallinity as the WF progressed
along the spinning process despite the additional stretching, but the finished WF had the
same crystallinity for all samples. They concluded that crystallinity is difficult to measure
and interpret due to the convolution of the amorphous and second order peaks. That is
to say, the crystallinity of WFs is impacted by many spinning parameters and does not
necessarily share a linear relationship with any parameter, including post-draw stretching.
The most probable proposal is that, within our coagulation conditions, there is a maximum
crystallinity of ~75% which has been reached by all WFs studied.
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Table 3. The orientation, crystallinity, and the crystallite size as measured using XRD for the WFs
investigated in this study. Standard deviations are indicated in the round brackets, while experimental
error is indicated after the ± sign.

Name Orientation Crystallinity (%) Crystallite Size (Å)

30C-7× 0.955 (0.004) 77 ± 8 83 ± 1
30C-8× 0.952 (0.005) 81 ± 10 86 ± 3
30C-9× 0.949 (0.004) 83 ± 10 91 ± 10

30C-10× 0.962 (0.004) 73 ± 6 101 ± 4
30C-11× 0.960 (0.004) 79 ± 8 96 ± 8
60C-8× 0.929 (0.005) 77 ± 8 84 ± 2

60C-10× 0.938 (0.004) 72 ± 5 95 ± 7
60C-13× 0.946 (0.004) 76 ± 10 92 ± 13

The key difference between the crystal structures of the 30C and 60C series is the
orientation, with the 30C series having a higher overall orientation, but the increase in
orientation with increasing TDR is lower. The higher overall orientation can be attributed
to the effect of spinning conditions excluding post-draw stretching on the orientation. WFs
have been reported to have orientation at the point of coagulation, before any post-draw
stretching has been applied, which affects the orientation of the finished WF [18,21]. Fur-
thermore, some WFs are more readily aligned in the direction of drawing [50]. In particular,
a higher solvent concentration in the coagulation bath results in higher orientation for WFs
of similar TDR [8], consistent with the observation here that the 30C series with higher
DMSO concentration has a higher orientation. Regarding the decreased impact of stretching
for the 30C series, stretching to increase orientation has diminishing returns as the sample
approaches the maximum practical orientation given instrumental limitations.

Therefore, the relationship between TDR and orientation is only applicable to WF pro-
duced under similar coagulation conditions. Rather, when ET is plotted against orientation—
as shown in Figure 7—an inversely proportional relationship is observed, confirming that
orientation is correlated to ET. These results highlight the importance of the coagulation
conditions, which determines the impact of subsequent stretching on the crystal structure
and mechanical properties of the WF. Therefore, the solvent concentration must also be con-
sidered when modifying the orientation to engineer more desirable mechanical properties.
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3.3. Carbonization

To confirm the inverse relationships between ET and EL are preserved in the final
CF, the 60C series WFs were carbonized. Figure 8 plots ET to EL for the 60C series after
carbonization, with the error bars representing (a) standard deviation and (b) confidence
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intervals with 95% confidence level. The standard deviation describes the distribution of ET
measurements (including physical variance within the fiber structure) and does not reflect
the uncertainty in the mean result, whereas the confidence interval clearly shows that the
inverse relationship between ET and EL and its dependence on stretching has remained
after carbonization. The difference between the ET gained to the EL lost is significant, with
a 20% increase in ET to a 2% decrease in EL.
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4. Conclusions

Compression was performed on WFs that were formed under two sets of coagulation
conditions, with increasing amounts of post drawing applied to the WFs within each set, to
investigate the relationship between the TDR and ET. To fit ET from a compression curve,
a loading segment that did not exhibit plastic deformation behavior was fitted using the
elastic contact mechanics model developed by Morris et al. Due to the presence of polymer
creep, it was not readily apparent whether plasticity had occurred during compression.
Instead, a method for determining if the offset is from polymer creep or plastic deformation
is presented. In this method, the WF is allowed to creep until a plateau is reached, unloaded,
and then immediately recompressed. The unloading curves of these two compressions will
overlap if no plastic deformation has occurred.

SEM imaging suggested the cross-sectional shape of the WF had a significant impact
on the fitted ET value, with bean-shaped cross-sections fitting a much higher ET. Thus,
only WFs with a circular cross-section were considered. As expected, the ET increased
when the orientation of the crystallites within the WF decreased, which also resulted in
a slight decrease in EL. For WFs with similar TDR, a higher solvent concentration in the
coagulation bath resulted in a higher orientation. However, it also resulted in less sensitivity
to changes in the TDR. Thus, while reducing the amount of post drawing is a powerful
method for increasing the ET of a WF, consideration of the coagulation conditions prior to
post-draw stretching is required to fully utilize this method. Further studies could be done
by lowering the coagulation bath solvent concentration and TDR to explore the amount ET
can be improved before other desirable properties of the WF (and resultant CF) become
significantly impacted.

For the WFs where reduced stretching resulted in reduced orientation, the increase
in ET remained after carbonization. This resulted in a CF that had a 20% increase in ET
with negligible loss of EL. This not only suggests that EL can be systematically traded for
increased ET by controlled stretching, but it also suggests that this can be done in a highly
efficient manner to maximize ET gained in the final CF.
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