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Abstract: The purpose of this qualification work is to study the physical and mechanical behavior of
concrete with the addition of 0.5% and 1% coconut fiber, which has been subjected to two chemical
treatments to reduce its degradation. The coconut fibers were extracted from the raw material
and cut into pieces 4 cm long. Subsequently, the fibers were subjected to two chemical treatments.
The first involved immersing the fibers in 4% sodium hydroxide (NaOH) solution, and the second
treatment involved coating them with gum arabic and silica fume. A total of 50 samples of fibers
were collected in their natural and post-treated state to be tested. The dosage was prepared for
design strengths of 210 and 240 kg/cm2 (20.59 and 23.54 MPa), so that the percentages of 0.5%
and 1% volume of coconut fiber, for the two treatments selected, replaced the respective volume
of coarse aggregates. The cylinders with 1% addition of fibers had the best performance for the
design strength of 20.59 MPa, including the cylinders without fibers. Those with 0.5% addition
of fibers presented better performance for the 23.54 MPa dosage, although this was lower than
the cylinders without fibers. In all cases, the cylinders with NaOH-treated fibers outperformed
their counterparts with fibers treated with gum arabic and silica fume. Finally, a CO2 balance was
determined, and an environmental gain up to 14 kg in CO2 emissions was established for each cubic
meter of composite concrete.

Keywords: coconut fiber; silica fume; mercerization; compression strength; elasticity modulus;
CO2 emissions

1. Introduction

Concrete is a dominantly used construction material worldwide. Its manufacture
involves the release of quantities of greenhouse-gas emissions to the atmosphere each year,
accounting for 5% of global anthropogenic CO2 emissions [1]. Growing environmental
awareness has led to several efforts to reduce concrete greenhouse emissions, without
undermining its physical and mechanical properties. Different strategies, such as the
addition of fly ash and furnace slags [1,2] and the inclusion of recycled PET fiber [3] or
recycled concrete aggregates and agriculture and industry by-products [4,5], have been
applied. Research on the usage of natural fibers, owing to their economy, low energy
consumption, and wide availability [6–8] has also been conducted.

As a by-product of the coconut industry, coconut husk fiber is used in concrete man-
ufacturing, representing a possibility of obtaining a composite material with improved
mechanical characteristics and low cost [9]. An additional, less evident benefit is the CO2
sequestration achieved by encapsulating the fibers in the mixture because the final disposal
method of coconut husk, owing to various circumstances, is usually incineration [10,11].
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Despite the economic and environmental advantages listed above, the organic nature
of coir fibers renders them vulnerable to degradation, owing to the environmental con-
ditions in which the composite material is found and to the chemical aggressiveness of
the cementitious matrix [12,13]. For this reason, mitigation measures, including different
chemical treatments, are necessary to use. Fiber-matrix adhesion also plays an impor-
tant role in composite concrete performance [12]. Some of these treatments are of the
hydrophobic type, i.e., their purpose is to reduce the hydrophilic behavior of the fibers
and improve fiber-matrix adhesion [14]. Hydrophobic treatments include acetylation and
mercerization, as well as the use of sodium chloride, methacrylate, isocyanate, and silane,
among others [14]. An alternative approach is to protect the fiber by adding silica fume,
thereby producing a local pozzolanic effect (in the vicinity of the fiber) that increases the
protection against chlorides [15].

The length of the fiber included in the concrete mix is a variable of significant influence
on the mechanical performance of the final product. Previous studies have shown that
specimens with better characteristics are obtained with lengths close to 5 cm, compared
with 2.5 and 7.5 cm [16].

The present study sought to identify important differences in the physical and me-
chanical characteristics between composite concrete cylinders with coir fibers cut to 4 cm
long. The latter was subjected to two different treatments (mercerization and silica fume
coating) to make the fibers more endurable to degradation and adherent to the cementitious
matrix, both highly desirable qualities in fibers [12]. The goal of this research was to include
chemical treatment as an additional influential variable in coconut-fiber composite concrete
performance. We also explored how these chemical treatments influenced the strength of
the fibers alone. We further estimated the environmental benefit of using coconut fibers
in concrete, estimating the potential amount of carbon dioxide produced by burning co-
conut husk or fiber, accounting for in-concrete fiber and husk remainders (pith) from fiber
extraction. These remainders, if not incinerated, would be returned to land, thereby further
decreasing CO2 emissions.

This paper is organized as follows. Section 2 presents the materials and methods;
Section 3 presents the results and discussion. Finally, the conclusions are reported in
Section 4.

2. Materials and Methods
2.1. Materials

Coconut husk was purchased from farmers in the town of Cojimíes, Ecuador. Aggre-
gates and cement were purchased from Holcim, Ecuador. Caustic soda and gum arabic
were purchased from La Casa del Químico S.A. Silica fume (SikaFumeTM) was purchased
from Aplika S.A.

The cement and coarse and fine aggregates were subjected to several essays to examine
their properties and used later to determine the mix design. Table 1 shows the values for
coarse and fine aggregates, extracted and processed from andesites in Pifo, Ecuador.

In the case of cement, Holcim FuerteTM type I was used. Its properties are shown in
Table 2.

The husk was progressively soaked and cleaned so that the fibers could be separated
from the pith. Once the fiber was sufficiently clean, its properties were found in a similar
way to the aggregates, as shown in Table 3. These properties were used to determine the
fiber amounts in each mix and the fiber dry mass for CO2-footprint estimations.
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Table 1. Properties of coarse and fine aggregates.

Ref. Property Unit Coarse
Aggregate

Fine
Aggregate

[17] Nominal maximum size mm 19.05 -
[17] Fineness modulus - - 2.76

[18,19] Density (oven dried) g/cm3 1.89 2.19
[18,19] Density (saturated surface dry) g/cm3 2.35 2.23
[18,19] Absorption % 2.00 2.07

[20] Dry compacted density g/cm3 1.49 -
[21] Moisture content % 2.72 2.66

Table 2. Properties of concrete.

Ref. Property Unit Value

[22] Density g/cm3 2.68
[23] Normal consistency (moisture) % 23

Table 3. Properties of coconut fiber.

Property Unit Value

Density (saturated surface dry) g/cm3 0.582
Absorption % 145.5

Subsequently, the fiber was cut into pieces 40 mm long according to the criteria
of [16,24]. A portion of the staple fibers was immersed in a 4% by weight solution of
sodium hydroxide (NaOH) for 24 h [25]. Afterwards, the fibers were rinsed in tap water
until a neutral pH was reached and allowed to drain for storage. The other part of the fibers
was dipped in liquid gum arabic for 1 min to generate bonding, followed by the adhesion
of silica fume around them [26]. The fibers were left to dry in the shade for later storage.
Figure 1 shows the appearance of the fibers during the different chemical treatments.
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Figure 1. (a) Appearance of fibers during NaOH treatment, and (b) silica-fume treatment.

A sample of uncut fibers was collected and subjected to the treatments described
above. Another part was left untreated (50 specimens by typology). These were labeled,
and their weight and length were taken. They were tested at the Polytechnic Textile Center
from the National Polytechnic School (EPN). An Instron 3345 tensile testing equipment
was used, following the guidelines of the ASTM D2256 standard [27]. The specimens were
located in the apparatus and tensile loads at a crosshead speed of 30 mm/minute were
applied until break. Breaking force (N) and elongation (mm/mm) were measured using the
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machine, obtaining the toughness (N/tex) as a result of dividing the breaking force over
linear density (tex), and the latter was calculated with the specimen’s weight and length.

2.2. Specimen Preparation and Testing

The specimens were prepared and tested at the Laboratory of Materials Strength, Soil
Mechanics, Pavements, and Geotechnics of the Pontifical Catholic University of Ecuador.
Cylinders 30 cm in height and 15 cm in diameter were prepared. Cylinders with and
without fibers were manufactured for design strengths of 20.59 and 23.54 MPa at ages
14, 28, and 56 days. The cylinders to which fiber was added were distinguished by the
volume percentage of fiber (0.5% and 1%) and by the treatment to which the fiber was
subjected (mercerization or silica-fume treatment). The design mixes were elaborated
starting from the ACI 211.1 standard [28], and then changes were introduced to reach the
design strengths. The final mix designs are detailed in Table 4.

Table 4. Mix designs.

Code Design f’c
(MPa) Cement

Fine
Aggregate/

Cement

Coarse
Aggregate/

Cement

Water/
Cement

M1 20.59 1 2.07 1.66 0.57
M2 23.54 1 1.77 1.36 0.50

Seven cylinders were manufactured for each category (mix design, cylinder age, fiber
content, and fiber treatment), giving a total of 210 cylinders.

At their corresponding ages, the cylinders were subjected to the compression test
following the procedure dictated in the ASTM C39 standard [29]. Additionally, for the
56-day cured cylinders, the modulus of elasticity was determined in accordance with ASTM
C469 [30]. An example of the specimens during the respective tests is shown in Figure 2.
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2.3. Determination of Compressive Strength and Modulus of Elasticity

With the maximum strength results obtained from the compression tests of the cylin-
ders, the maximum compressive stress or f’c (MPa) was obtained by dividing the maximum
load resisted by the cylinder over its cross-sectional area.

Two out of seven fifty-five-day cylinders were selected for the modulus of elasticity
test. The data used were provided by a compressometer, which recorded the applied
loads and deformations as the test was performed. Each one of these values enabled the
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calculation of stress S (MPa) by dividing the maximum load resisted by the cylinder over
its cross-sectional area. The unit strain ε was computed by dividing the length variation
taken from the compressometer over the average length of the cylinder. S and ε were used
to obtain the modulus of elasticity according to ASTM C469 standards [30].

2.4. Carbon-Footprint Determination

To determine the carbon footprint, we started by accounting for the organic compo-
nents of the husk (i.e., fiber and pith) and dry fiber, as obtained from [31,32]. The carbon
percentage of each one of them was determined according to the work of Vilela [10] and
Encinas Soto [33]. With the above information, a weighted sum of the carbon contributions
by component was made. Accordingly, we were finally able to establish the CO2 equivalent.
The details are shown in Table 5.

Table 5. Percentage of carbon in dry husk and fiber (discounting moisture).

Component C
(%)

Mass in
Husk (%)

C Husk
(%)

Mass in
Fiber (%)

C Fiber
(%)

Pectin 37.11 19.26 7.15 3.17 1.17
Cellulose 44.44 28.47 12.65 45.85 20.37

Hemi-
cellulose 45.17 11.49 5.19 0.26 0.12

Lignin 63.4 39.5 25.04 48.38 30.67
Total 50.03 52.34

Once the percentage of carbon was obtained, the mass of CO2 was determined by
mass balance, which was similar to Vilela’s method [10], as indicated in Equation (1).

MCO2(kg) =
MCO2

MC
mC (1)

where MCO2 is the molecular mass of CO2, equal to 44.01 g/mol, MC is the molecular mass
of carbon, equal to 12.01 g/mol, and mC is the mass of carbon per unit of matter (fiber and
husk, dimensionless).

Laboratory calculations (based on Table 3 data) yielded a dry bulk density of 237.04 kg/m3

of coconut fiber (including possible voids). Thus, having the proposed percentages in the
volumes of 0.5% and 1% of coconut fiber enabled us to determine the dry mass of fiber of
1.18 and 2.37 kg per m3 of the concrete mix, respectively.

Considering the research of Puentes and Joya [31], who found that the dry weight of
the coconut fiber represents about 30% of the husk as a whole, we estimated that producing
the above-mentioned amounts of dry coconut fiber required the use of 3.95 and 7.90 kg of
coconut husk. Thus, the CO2 emissions saved (directly or indirectly) can be found using
Equation (2).

ECO2(kg) = PmCO2
(2)

where P is the dry mass of matter (kg) and mCO2 is the mass of CO2 per unit of matter (fiber
or husk, dimensionless).

3. Results and Discussion
3.1. Physical and Mechanical Characteristics of the Fiber

The fibers were divided into the following three typologies: NT (untreated fibers), CS
(fibers treated with caustic soda or NaOH), and SF (fibers treated with silica fume). The
results are illustrated in Figure 3. The NaOH or caustic soda treatment promoted a slight
increase in the maximum elongation of the fibers compared with the NT and SF fibers.
Likewise, a higher linear density was found in relation to the other typologies. However, a
lower value of average breaking strength (and consequently, of toughness) was obtained for
the CS fibers in relation to the NT and SF fibers. The high dispersion of the observed values



Fibers 2022, 10, 96 6 of 12

was primarily due to the heterogeneity of coir fibers, which can present imperfections and
defects in significant quantities [34].
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Figure 3. (a) Average breaking strength, (b) linear density, (c) toughness, and (d) elongation.

In general, the mechanical properties of coconut fiber were lower than those of other
natural and synthetic fibers, which could mean less load transfer from the composite to
fiber, and thus lower composite strength [35]. Nonetheless, the decrease in CS and SF
properties could be balanced with better fiber-matrix adhesion, meaning better composite
properties [35].

3.2. Composite Concrete Density

We found that adding fibers at the proposed percentages had little effect on the density
of the composite concrete, finding values between 2265 and 2298 kg/m3 in the case of the
design strength of 20.59 MPa and between 2260 and 2274 kg/m3 in the case of the design
strength of 23.54 MPa. This result agreed with that of Ismail [36], who found that the effect
of fiber addition on the density had little significance in low fiber–cement ratios.

3.3. Compressive Strength

Table 6 shows the compressive strengths obtained for the different types of cylinders
for design strengths of 20.59 MPa, i.e., NF (without fiber), CS (fibers with caustic soda
treatment), and SF (fibers with silica-fume treatment), at fiber contents of 0.5% and 1% and
ages of 14, 28, and 56 days.



Fibers 2022, 10, 96 7 of 12

Table 6. Compressive strength results for base dosage of 20.59 MPa.

Mixture 14 Days 28 Days 56 Days

NF 20.01 (0.69) 23.26 (1.64) 26.91 (2.71)
CS 0.5% 20.09 (0.99) 26.58 (0.96) 34.15 (1.65)
CS 1% 21.19 (1.19) 26.38 (0.42) 29.79 (1.68)

SF 0.5% 18.49 (0.62) 24.75 (1.60) 24.60 (1.43)
SF 1% 24.16 (1.35) 24.19 (1.27) 28.42 (1.85)

Figure 4 shows the effect of the fibers with their respective treatments on the compres-
sive strength of the cylinders for the base dosage of 20.59 MPa. In this case, the cylinders
with fibers generally presented higher compressive strengths than those without fibers.
Particularly, better results were generally obtained with the cylinders that contained CS
fiber in their composition.
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Moreover, except for the case of SF 1% at 14 days, the strengths of the SF cylinders were
lower than that of the CS cylinders. In the case of CS cylinders, the results can be compared
with those of Yan et al. [37], who used a design strength at the age of 28 days of 20 MPa,
fiber length of 50 mm, and an amount of fibers equal to 1% by mass of cement. As in the
present research, better results are obtained in the composite concrete with NaOH-treated
fibers than in the concrete without fibers.

Table 7 shows the compressive strengths obtained for the different types of cylinders
for design strengths of 23.54 MPa as aforementioned, and for the ages of 14, 28, and 56 days.

Table 7. Compressive strength results for base dosage of 23.54 MPa.

Mixture 14 Days 28 Days 56 Days

NF 26.75 (0.64) 30.97 (1.52) 36.69 (1.84)
CS 0.5% 21.05 (2.98) 28.52 (3.12) 36.15 (1.81)
CS 1% 22.32 (1.06) 30.32 (1.11) 34.36 (2.30)

SF 0.5% 24.11 (0.96) 30.82 (0.95) 31.29 (3.49)
SF 1% 20.82 (1.31) 26.01 (1.38) 32.75 (2.24)
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Figure 5 shows the effect of fibers with their respective treatments on the strength of
the cylinders. In this case, CS and SF cylinders had lower compressive strengths than those
without fibers. For high design strengths, coir fibers tended to produce a reduction in the
compressive strength of the composite concrete, as demonstrated by Ogunbode et al. [38] SF
cylinders, for the ages of 14 and 28 days, exceeded the CS cylinders’ compressive strength
by 0.5% in volume fiber content and by 1% fiber content and 56 days’ age (0.5% and 1%
volume fiber content).
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3.4. Modulus of Elasticity

Figure 6 shows the results of the modulus of elasticity for the different types of
cylinders prepared for the design strength of 20.59 MPa. Cylinders with fibers had a lower
modulus of elasticity than those without fibers (related to a slight reduction in stiffness
and inferior toughness), similar to what Ali [39] obtained for the same fiber content and
length. Cylinders with 1% fiber also had higher modulus of elasticity values than those
with 0.5%. Among the two types with fiber, CS cylinders had a higher modulus of elasticity
than SF cylinders.
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Figure 7 shows the results of the modulus of elasticity for the different types of
cylinders produced and for a design strength of 23.54 MPa. Once again, the values of
modulus of elasticity were higher in the case of cylinders without fibers or NF, and among
the cylinders with fibers, the highest values were provided by CS cylinders. In this case,
the values were slightly higher with a volume fraction of fibers of 0.5%, in relation to the
volume fraction of 1%.
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3.5. CO2-Emission Savings

Figure 8 shows an estimate of the emissions saved by encapsulating the carbon con-
tained in the fibers. In the case of direct CO2 emissions savings, this value amounts to
4.55 kg CO2 emissions for concrete with 1% fiber. However, if the emissions saved by the
other husk components that were needed to obtain the fiber from the mix were consid-
ered, and after processing the fiber were also used for other purposes, it accounted for
14.49 kg CO2 emissions. Flower and Sanjayan [1] estimated that a typical 25 MPa concrete
production releases 290 kg CO2 per m3. With 1% fiber replacement, it would enable a CO2
emission reduction of around 5%, which increases with decreased design strength, owing
to less cement inclusion (the most polluting concrete component) [1].
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4. Conclusions

Experiments with coconut-fiber composite concrete were performed by changing the
fiber treatment, fiber volume proportion, mix design, and cylinder ages. The maximum
values of the studied properties can be observed in a combination of NaOH-treated fibers,
with lower design strength, and lower fiber volume proportion. Fiber-matrix adhesion
played a key role in improving the performance of CS cylinders compared with SF cylin-
ders. Fiber inclusion in concrete mixes was a feasible strategy to reduce greenhouse-gas
emissions during concrete manufacturing, owing to the acceptable mechanical properties
and complementarity to the corresponding strategies reviewed in the literature. Based on
our results, the following conclusions were drawn:

• The best results were obtained for concrete cylinders made with a design strength of
20.59 MPa, including a 0.5% volume fraction of NaOH-treated fibers, which slightly
exceeded that of fiber-free concrete. Mostly, increasing the fiber volume fraction and
design compressive strength led to a major disadvantage in compressive strength and
modulus of elasticity of composite concrete, compared with fiber-free concrete.

• Concrete density was not significantly affected by the volume fractions used in this re-
search. More coconut fiber would be needed in the concrete mix to achieve lower densities.

• The mechanic properties of the fibers were similar among the CS and SF fibers. We ob-
served a reduction in their features compared with the NT fibers, except for elongation
and linear density, for which CS fibers achieved better performance.

• In all cases, the dosages of composite concrete with fibers exceeded the expected
compressive strengths of 20.59 and 23.54 MPa, demonstrating the feasibility of adding
0.5% and 1% fibers and maintaining admissible mechanical properties.

• Emission savings of up to 4.54 kg CO2 were observed, considering only the contribution
of the fibers and up to 14.49 kg CO2 per cubic meter of concrete, considering the non-
incineration of all components of the original husk, with the addition of 1% of fibers.
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