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Abstract: We report our recent progress on fabricating dehydrated tellurite glass fibers. 

Low OH content (1 ppm in weight) has been achieved in a new halogen-containing lead 

tellurite glass fiber. Low OH-induced attenuation of 10 dB/m has been confirmed in the 

range of 3–4 µm using three measurement methods. This shows the dehydrated  

halo-tellurite glass fiber is a promising candidate for nonlinear applications in a 2–5 µm region. 

Keywords: glass fiber materials; nonlinear optical fibers; mid-infrared 

 

1. Introduction 

The mid-infrared (mid-IR) 2–5 μm region is one of the atmospheric transmission windows, where 

the Earth’s atmosphere is relatively transparent. It is an important area for use of remote laser sensing 

for atmospheric, security and industrial applications, such as detecting remote explosives, 
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countermeasures against heat-seeking missiles and covert communication systems [1]. A 2–5 µm 

broadband or tunable laser source with a medium or high average power level (100 mW–10 W) is 

therefore in high demand. To realize this purpose, typically χ
(2)

 nonlinear crystal based optical 

parametric oscillators (OPOs) are used. However, with such an output power level and wide 

wavelength tunability, the size of crystal OPO is normally large and requires complicated optical 

configurations. Instead, recent progress in dispersion tailored highly nonlinear microstructured optical 

fibers [2] has shown that fiber-based χ
(3)

 nonlinear laser sources, such as the supercontinuum [3], fiber 

OPO [4], or frequency comb [5] can also fulfill this task. What is more, fiber lasers show significant 

advantages over other solid state lasers as an effective approach to provide economic, compact and 

flexible optical components. Also excellent beam quality can be given from a single mode fiber.  

A 2–5 µm mid-IR fiber nonlinear laser source should be based on a fiber using a nonlinear glass 

with high transparence in 2–5 µm. The position of the IR absorption edge, i.e., the infrared longwave 

transmission limit, of an optical glass is intrinsically limited by the multiphonon absorption edge of the 

glass. This can be simply explained by Hooke’s law using the two-mass spring model [6]. In general, 

as summarized in Table 1, non-silica glasses, such as tellurite (TeO2 based), fluoride (typically ZrF4 or 

AlF3 based), and chalcogenide (chalcogen S, Se, Te based) glasses [7–9], possess excellent optical 

transparence in the wavelength range of 0.4–7 µm, 0.3–8 µm and 1–16 µm respectively, and thus are 

promising candidates as fiber materials for mid-infrared nonlinear optical applications over the 

conventional silica glass. The latter shows inferior transparence beyond 2 µm, due to (i) the strong 

fundamental vibration hydroxyl absorption at 2.7 µm, and (ii) high loss (>50 dB/m) starting from 3 µm 

due to the tail of the multi-phonon absorption of Si-O network. 

Table 1. Comparison of various optical glasses as host materials for mid-infrared nonlinear 

fibers [7–9]. 

 
Silica (SiO2 

based) 

Tellurite 

(TeO2 based) 

Fluoride (ZrF
4
 

or AlF
3
 based) 

Chalcogenide 

(chalcogen S, 

Se, Te based) 

Refractive index n at 1.55 µm 1.46 2–2.2 1.5–1.6 2.3–3 

Nonlinear refractive index n
2
  

(× 10
−20 

m
2

/W) 
2.5 20–50 2–3 100–1000 

λ
0
, zero dispersion wavelength of 

material (µm) 
~1.3 ~2 ~1.7 >5 

IR longwave transmission limit up to 3 µm 6–7 µm 7–8 µm 12–16 µm 

Thermal stability for fiber drawing excellent good poor good 

Viscosity around fiber drawing 

temperature 
flat steep steep flat 

Durability in environment excellent good poor, hygroscopic good 

Toxicity safe safe relatively high relatively high 

Technically, tellurite glasses can be regarded as a high-index, highly nonlinear version of fluoride 

glasses. First, their viscosity curves in the range of the fiber drawing temperatures are both relatively 

steep [10]. Second, both tellurite and fluoride glasses have the zero dispersion wavelength of the bulk 
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material at ~2 µm [11]. Also the longwave transmission limits of these two glass types are both located 

at ~ 6–7 µm. But tellurite glasses have high refractive index n (2.0–2.2) and nonlinear refractive index n2 

(20–50 × 10
−20

 m
2
/W), while fluoride glasses typically have n of ~1.5 and n2 of ~2 × 10

−20
 m

2
/W. From 

Table 1, it is seen that chalcogenide glasses show excellent IR transmission up to 16 µm and possesses 

high n2 of 100–1000 × 10
−20

 m
2
/W. However, its zero dispersion wavelength of the bulk is beyond 5 

µm. In order to make a chalcogenide glass nonlinear fiber with a zero dispersion wavelength close to 

1.5 or 2 µm, which is the lasing wavelength of the conventional erbium or thulium doped fiber lasers, 

very large waveguide dispersions need to be introduced, requiring the final fiber core diameter to be 

submicron. This is disadvantageous for power scaling. Therefore, tellurite glasses are an ideal host 

material as a fiber nonlinear medium for 2–5 µm wavelength range. In principle, broadband  

mid-IR four-wave-mixing can be realized using a single mode large mode area tellurite fiber pumped 

with a high power Tm/Ho doped fiber laser [12]. 

Figure 1. Comparison of absorption coefficients of some selected impurities in a 

conventional tellurite glass (composition: 75TeO2-20ZnO-5Na2O, mol.%) (summarized 

from results in Reference [13].) 

 

Water, commonly existing in many optical materials as the hydroxyl group OH
−
, is usually difficult 

to be eliminated. The absorption spectrum of the OH fundamental vibration is around 3 µm and varies with 

the glass composition. In pure silica, the fundamental vibration of OH band is located at 2.70 (± 0.02) µm 

and with an extinction coefficient of 10 dB/m/ppm (in weight) [14], while in ZrF4-based fluoride glass, 

it is located at 2.87 µm with an extinction coefficient of 5 dB/m/ppm (in weight) [15]. For tellurite 

glass, the fundamental vibration of OH band has an extinction coefficient of ~1 dB/m/ppm (in mole) or 

~10 dB/m/ppm (in weight) [16], but it is much wider than the above two glasses and ranges from 3–4 µm. 

This is because the wavelength of the fundamental OH vibration reflects the strength of OH bonding 

with the surrounding molecules. The large variety of deformed [TeO4] and [TeO3] units in tellurite 

glass network causes very different sites of OH groups and consequently the bond strength of OH 

groups shows much larger variation [16]. This is very different from the situation of pure silica glass, 

in which the [SiO4] tetrahedra units are identical in the short range leading to the fundamental OH 

absorption as narrow as ~150 nm (~200 cm
−1

) [15]. Based on the data given in Ref. [13], Figure 1 
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shows the measured transmission spectra of bulk tellurite glasses (base: 75TeO2-20ZnO-5Na2O, mol.%) 

doped with the impurities including the transition metal (TM) ion Ni
2+

, the rare earth (RE) ion Nd
3+

, 

and the hydroxyl group OH
−
. It is seen that the fundamental vibration of the hydroxyl group OH

−
 is the 

most harmful impurities for blocking the transmission of a tellurite glass in 2–5 µm region, in terms of 

the wide absorption range (3–4 µm) and the high peak absorption coefficient (10 dB/m/ppm). Because 

the nonlinearity n2 of tellurite glasses is one order of magnitude higher than those of silica and fluoride 

glasses, less than a meter length of tellurite nonlinear fiber is acceptable for many nonlinear optical 

applications, indicating that an acceptable OH peak absorption loss is no more than the level of 10 dB/m. 

In other words, the OH impurity in a usable tellurite glass fiber should be no more than the level of 1 ppm 

in weight. It must be pointed out that, without any dehydration process, the tellurite glass, which was 

prepared in the open atmosphere, has a strong water absorption coefficient of ~1400 dB/m peaking at 

3.4 µm [16]. Therefore, even an 8 mm-long non-dehydrated tellurite glass fiber, will suffer a 15–20 dB 

loss in the range of 3–4 µm [17]. Since the tail of multiphonon absorption of tellurite glasses starts 

from ~5 µm, a proper dehydration process is the key to extend the high transmission window  

(i.e., absorption coefficient < 0.1 cm
−1

) of a tellurite glass fiber to 5 µm.  

In this work, we have prepared the tellurite glass preforms in an ultradry atmosphere filled 

glovebox, and halide compounds are added into the tellurite glass compositions. The fabricated 

dehydrated halo-tellurite glass fibers show low OH induced attenuation from 3–4 µm, indicating that 

they are promising candidates for 2–5 µm nonlinear optical applications. 

2. Experimental Section 

An ultradry atmosphere filled glovebox with less than 0.2 ppm water (in volume) was employed for 

the fabrication including chemical batching, glass melting, preform making and annealing.  

The compositions of the studied tellurite glasses were 75TeO2-20ZnO-5Na2O (TZN),  

75TeO2-20ZnO-4Na2O-2NaCl (TZNX), and 60TeO2-20PbO-20PbCl2 (TLX) (mol.%). Commercial 

chemicals, tellurium dioxide (TeO2), zinc oxide (ZnO), sodium carbonate (Na2CO3), sodium chloride 

(NaCl), lead oxide (PbO), lead chloride (PbCl2), with purity better than 99.999% were used as raw 

materials for the glass melting. For each composition, a batch of 70-gram powder was well mixed in a 

plastic bottle and then melted in a gold crucible inside a furnace in the glovebox at 700–900 °C for 2 h.  

The melt was then cast in a preheated metal mold, and a bubble-free glass rod with an outer 

diameter (OD) of 16 mm and length between 45–65 mm was obtained. Figure 2 shows the photograph 

of the tellurite glass rods with 16 mm outer diameter (OD). A customized soft glass fiber drawing 

tower was employed for drawing each rod into an unclad fiber with an OD of 180 µm, with the yield 

>50 m. A bulk sample was then obtained from the preform remainder with two parallel ends polished.  

Figure 2. Optical photograph of tellurite glass rods with 16 mm outer diameter (OD):  

(a) 75TeO2-20ZnO-4Na2O-2NaCl (TZNX). (b) 60TeO2-20PbO-20PbCl2 (TLX). 
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A customized soft-glass fiber drawing tower was used for fiber drawing. A mixed N2 and O2 gas 

with the same moisture level was used as the purge in the furnace on the fiber drawing tower during 

the fiber drawing. 

The transmission spectra of the polished bulk glasses were measured by a Cary 500 Scan  

UV-VIS-NIR spectrophotometer from 190 to 2500 nm and by a Varian 670-IR FT-IR spectrometer 

(Fourier transform infrared) spectrophotometer from 2.5 to 25 µm (i.e., 4000–400 cm
−1

), respectively. 

The absorption coefficient (in the unit of cm
−1

) of the residual OH impurity in the bulk glass was 

calculated according to the Beer-Lambert law and converted to the bulk attenuation in dB/m. After 

loading the sample, dry N2 gas was purged into the measurement chamber for at least 5 min to 

minimize the water vapor and carbon dioxide before the measurement was carried out. 

A NICOLET 5700 FT-IR spectrometer (Thermo Electron Corporation) was employed for the loss 

measurement of the unclad TZNX and TLX fibers in the 1.0–4.8 µm region. The propagation loss of 

the fiber was measured using the cutback method. The total cutback length for TZNX and TLX unclad 

fibers was 7 cm and 52 cm respectively. 

Another measurement of the OH induced loss in the fabricated dehydrated tellurite fibers was 

carried out using a crystal OPO based on 1064 nm nanosecond laser pumped magnesium oxide doped 

periodically lithium niobate (MgO:PPLN) (Covesion Ltd). The idler of the OPO was tuned between 

2.8–4.0 µm. The losses of each fiber were then measured at each discrete wavelength with the cutback 

method. At each wavelength, at least 7 cutback points were measured. The total cutback length for 

TLX fiber samples was between 50–70 cm, while for TZNX fiber samples it was 25 cm for 3.2–3.6 µm 

range and 40 cm for other wavelengths. 

The refractive index of the TLX glass was measured from 0.3 to 4.0 µm, using Alpha-SE 

Spectroscopic Ellipsometer (J.A. WOOLLAM CO. INC., Lincoln, NE 68508, USA) between 0.3–1.7 

µm and a home-made laser diffractive refractometer at 2.0, 3.0 and 4.0 µm respectively. 

The micro-Raman spectra of polished tellurite glass samples were measured using a Renishaw 

Raman Microscope with a depolarized 632.8 nm HeNe laser source. For each scan, the red laser was 

focused on the top surface of the sample with the assistance of the CCD camera on the Raman microscope. 

3. Results and Discussion 

3.1. OH-Induced Attenuation in Dehydrated Tellurite Bulks and Unclad Fiber 

Figure 3 shows the OH-induced attenuation of dehydrated tellurite bulk glasses. The polished TZN, 

TZNX and TLX samples are 4.20, 8.75 and 2.70 mm thick, respectively. It is seen that, for the TZN 

glass, which was melted in the dry atmosphere with water content of less than 0.2 ppm, the OH-induced 

loss peaking at 3.4 µm is reduced down to 0.38 cm
−1

, which is one order of magnitude lower than that 

in the TZN glass melted in the open atmosphere [16]. This result is close to that reported by  

Ebendorff-Heidepriem et al., in [18], in which the TZN glass was melted in the dry atmosphere with 

10 ppm water content. This can be explained that, during the glass melting, only the surface of the 

glass melt can be dehydrated by the dry atmosphere and the convection of the melt from the inner body 

to the surface is fairly slow. In the limited melting time, the amount of the OH impurity in the glass 

melt is weakly related to the water content in the melting atmosphere. It must be noted that choosing a 
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very long melting time (e.g., more than 10 h) is not ideal because it will cause significant evaporation 

from the melt and, consequently, a large deviation of the final glass composition from the designed one.  

Figure 3. OH-induced attenuation of dehydrated 75TeO2-20ZnO-5Na2O (TZN),  

75TeO2-20ZnO-4Na2O-2NaCl (TZNX) and 60TeO2-20PbO-20PbCl2 (TLX) bulk glasses.  

 

An active approach is therefore necessary for further removing the OH content in the tellurite glass 

and fiber. It is known that reactive atmosphere processing (RAP) is an effective approach for 

dehydrating fluoride glasses [19]. Dry reactive halogen gas (such as NF3, HF, SF6, and CCl4) is purged 

into the fluoride melt to react with the OH groups inside the glass. The hydroxyl groups bonded with 

the glass network via hydrogen bonding are converted into the volatile compounds HF or HCl, which 

can be removed from the melt naturally at high temperature. Chlorine drying is also a common method 

in the fabrication of silica fiber preforms to reduce the OH peaks at 1.38 µm (first overtone) [20]. For 

tellurite glasses, in order to avoid using highly toxic and reactive halogen gases, halogen-containing 

solid compounds are preferable. Previously, fluorotellurite glass, obtained by introducing fluorine into 

the oxide tellurite glass matrix, has been proposed to remove the OH groups with the assistance of 

fluorine, and also to extend the mid-IR transmission [21]. However, the oxyfluoride glass has strong 

tendency to be crystallized easily during the heating process and hence is not a thermally stable host 

material for fiber drawing. Also the introduction of fluorides causes the glass hygroscopic. In addition, 

introducing fluorides into tellurite glasses, results in significant decrease of both the refractive index 

and the nonlinear refractive index [21]. In this work we have introduced solid-state chloride 

compounds, such as NaCl and PbCl2, into the glass composition. Here the chemical reaction between 

chlorine and OH during the glass melting is a pyrohydrolysis reaction, which can be expressed as  

OH
− 

+ Cl
−
 = HCl↑ + O

2−
.  

As seen in Figure 3, for the TLX glass, it is seen that the OH-induced loss is further reduced down 

to 0.17 cm
−1

 at 3.4 µm by another factor of 2.2 in comparison with the TZN glass. The addition of 

NaCl for the TZNX glass did not show a dehydration effect as effective as PbCl2. The solubility of 

PbCl2 in water is 4.5 g/L (i.e., 1.62 × 10
−2

 mol/L) at 20 °C and thus practically it is insoluble, while the 

solubility of NaCl in water is 359 g/L i.e., 6.15 mol/L at 20 °C) [22]. Therefore, NaCl raw chemical 

can be contaminated by the moisture much more easily than PbCl2. In addition, the molar percentage 
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of the chlorine in TLX composition is 20 times higher than that in the TZNX composition and it might 

be another reason responsible for the capability for removing OH impurity from the glass melt. As 

explained by the above pyrohydrolysis reaction, the chlorides not only replace the OH impurity inside 

the glass melt, but also generate HCl vapor. The latter is in the bubble state and continuously leaves 

from the glass melt. It effectively stirs the whole glass melt and lets the whole melt have enough 

chance to access the interface of the glass melt and the dry atmosphere.  

In addition, for all three curves in Figure 3 there are two small peaks at 3.43 µm and 3.51 µm, 

which are artifacts arising from the protective polymer thin film coated on the optic elements in the 

VARIAN FTIR instrument. 

Figure 4. Comparison of OH-induced attenuation of dehydrated (a) TZNX and (b) TLX 

glass unclad fibers (red curve for left axis) and bulks (blue curve for right axis). 

 

In Figure 4a,b, the red curve for the left axis is the loss curve of the dehydrated unclad fiber; the 

blue curve for the right axis is the bulk loss of the glass from the same preform. The total cutback 

length for TZNX and TLX unclad fibers was 7 cm and 52 cm respectively. It is seen that the loss 

curves of the fiber and bulk match each other fairly well in terms of the lineshape, but for the absolute 

value, there is a deviation with a factor of 3–7 between the bulk and the fiber. This is mainly because 

(i) the thickness of the bulk is not sufficiently large to give an accurate loss value when the  

OH-induced loss is reduced from 1000 dB/m level to 100 dB/m level, and (ii) during the polishing 

procedure, there might be contamination from the polishing liquid on the bulk surface. On the other 

hand, these are not issues in the cutback loss measurement for the unclad fibers and the loss measured 

from the fiber should be reliable.  
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In order to confirm the validity of the above statement, the losses of the dehydrated TZNX and TLX 

unclad fibers were also measured at some discrete wavelengths between 2.8–4.0 µm using the MgO: 

PPLN based OPO. From Figure 4a,b, it is seen that the measured fiber loss values using the OPO are 

close to the results from the FTIR measurement. For each sample, at the peak wavelength, the absolute 

difference between the fiber loss using the FTIR method and the one using the OPO is no more than  

5 dB/m.  

It is worth mentioning that there has been 12 months between the fiber loss measurement from the 

FTIR and the later one using the OPO source, while the unclad TLX fiber has been stored in the air 

without any special care. No significant degrading is observed in terms of the loss value.  

Therefore, under the dehydration process using halo-tellurite glasses containing lead chloride, the 

OH-induced loss at 3.4 µm has been reduced down to 10 dB/m, corresponding to OH levels of 1 ppm 

in weight. Compared with the previously reported lowest OH-induced loss (90–100 dB/m at 3.3 µm) in 

tellurite glass fibers [18], our results show one order of magnitude improvement. 

Additionally, the loss of the TLX unclad fiber was measured to be 0.6 dB/m at 1.55 µm using the 

cutback method, indicating that the scattering losses due to the defects like bubbles inside the glass 

fiber should be negligible, because the viscosity of the glass melt was well controlled to avoid the 

bubbles when the glass rods was made. 

3.2. Refractive Index, Dispersion and Nonlinearity of Dehydrated Tellurite Glasses 

Figure 5. Refractive index curves of TZN and TLX glasses.  

 

The measured refractive index of TLX glass was fitted using the three-term Sellmeier equation 

           
             

             
         , in which λ is wavelength in 

micrometers, and Bi (i = 1, 2, 3) and Ci (i = 1, 2, 3) are the coefficients of the equation, for the TLX 

glass, the fitted six coefficients are seen in Table 2. Figure 5 shows the refractive index and material 

dispersion curves of TLX glass from 0.3 to 5µm. The refractive index curve of TZN glass was also 

plotted in Figure 5 in the range of 0.4–3 µm, according to the Sellmeier parameters of similar tellurite 

glasses [11]. Because the composition of TZN is very close to TZNX, their index and dispersion 

curves should be very close to each other.  
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It is seen from Figure 6 that the zero material dispersion wavelength λ0 of TLX glass is located at 

2.30 µm, while λ0 of TZN glass is located at 2.15 µm. This is useful information for designing 

dispersion tailed mid-IR nonlinear fiber using the TLX composition in the future. 

Figure 6. (a) Dispersion curves of TZN and TLX glasses; (b) Detailed curves of TZN and 

TLX near their zero material dispersion wavelengths.  

 

Table 2. Sellmeier coefficients of TLX glass. 

Sellmeier coefficients Glass B1 C1 B2 C2  B3 C3 

TLX 1.212 6.068 × 10
−2

 2.157 7.068 × 10
−4

 0.1891 45.19 

Based on the measured refractive index, the nonlinear refractive index n2 of TLX glass was 

calculated using the well-known BGO equation [23]:  

     
   

  

 
  

             
      

                       
   

              
   

 

 
 

 
(1) 

where νd is the Abbe number (                 , nd, nF, and nC are the refractive indices at 

587.6 nm, 486.1 nm and 656.3 nm respectively), and n0 is the refractive index at the interesting 

wavelength, respectively. The n2 of the TLX glass is calculated to be 5.0 × 10
−19

 m
2
/W, about 20 times 

higher than that of silica glass and also higher than TZN glass (1.7 × 10
−19

 m
2
/W [12]) and the lead 

silicate glass Schott SF57 (4.1 × 10
19

 m
2
/W [24]). 

In addition, it is worth noting that the BGO formula is empirical and there is deviation between the 

n2 values calculated by the BGO equation and the values obtained by various measurements [23]. As 

stated in Reference [23], the agreement between the calculation and the measurement is quite good for 
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low index, low dispersion materials, but becomes progressively worse for high index, high dispersion 

materials because the presence of polarizable ions like heavy metals causes the deviation of the 

dispersion curve from the assumed linear form. However, because the experiment for measuring the n2 

of bulk samples is normally complicated, the BGO equation is still a reliable and convenient tool to 

estimate the n2 values of glasses. 

Figure 7. Relative reduced Raman intensities of studied tellurite glasses and referenced 

pure silica glass, normalized to the peak intensity of silica at 440 cm
−1

. 

 

3.3. Raman Gain Coefficients of Dehydrated Tellurite Glasses 

Figure 7 shows the calculated relative reduced Raman intensities of the studied tellurite glasses in 

comparison with a referenced pure silica glass, normalized to the peak intensity of silica at 440 cm
−1

. 

The calculation procedure of relative reduced Raman intensity was described in detail in [25] by Shi et al. 

The TLX glass has a calculated peak Raman gain coefficient gR of 22.6 × 10
−11

 cm/W at 1.55 µm, ~35 

times higher than that of silica (0.638 × 10
−11

 cm/W), indicating the potential as a mid-IR fiber-based 

Raman gain medium. 

4. Conclusions 

In conclusion, we report a new dehydrated halo-tellurite glass unclad fiber with the lowest recorded 

OH content (1 ppm in weight) and the lowest OH-induced loss (10 dB/m level) in the 3–4 µm region. 

The high nonlinear refractive index and the high Raman gain coefficient of the new tellurite glass, 

indicate the potential for fiber based nonlinear applications in the 2–5 µm region. Currently, work is 

mainly focused on: (i) further reducing the OH content down to the level 0.1 ppm in weight and the 

OH-induced loss to 1 dB/m, by optimizing dehydration conditions (e.g., chlorine addition and melting 

time); and (ii) fabricating fibers with core/cladding structures, including hollow core fiber and small 

core highly nonlinear fiber for mid-IR applications.  
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