Supplementary Materials: Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage

Cheng Cheng ¹, Kun Tong ², Yajun Fang ¹, Jintao Wang ¹, Yang Liu ¹ and Junjun Tan ^{1,*}

- ¹ Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; m17786540459@163.com (C.C.); m13297988101@163.com (Y.F.); m13797401653@163.com (J.W.); m15705594386@163.com (Y.L.)
- ² Beijing Institude of Aerospace Testing Technology, Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing 100074, China; casctongkun@126.com

* Correspondence: tanjunjun2011@hbut.edu.cn

 Table S1. Elemental analysis of samples prepared with varied RAMP values for 4-h hydrothermal

 time

unic.						
R амр (%)	Weight (mg)	N (%)	C (%)	H (%)		
0	4.668	0.00	6.85	0.7255		
5	4.9615	0.00	5.75	0.666		
50	4.8695	0.02	5.51	0.6305		
100	5.0345	0.145	4.89	0.503		

Table S2. Recently reported cases of self-motivated fluorescent hydroxyapatite.

Ref.	Source of Nitrogen	Temperature (°C)	Time/h	Excitation Wavelength /nm	Emission Wavelength /nm	Fluorescence Lifetime/ns	Quantum Yield/%
[48]	NH3·H2O/(NH4)2HPO4	180	24	341	428	7.2	/
[49]	NH4H2PO4	180	24	344	427	9.2	31
[27]	NH3·H2O/(NH4)2HPO4	180	24	345	432	11.6	22
[28]	NH3·H2O/(NH4)2HPO4	180	24	351	432	/	/
[29]	NH3·H2O /(NH4)2HPO4	190	24	340	427	/	/
[50]	NH3·H2O/(NH4)2HPO4	190	24	341	428	/	/
[51]	NH3·H2O/(NH4)2HPO4	190	24	341	427	/	/
[52]	NH3·H2O/(NH4)2HPO4	180	24	337	441	/	/
[30]	Ammonium citrate	190	24	336	432	4.36	40.16
This study	(NH4)3PO4	180	4	340	440	7.9	73.8

polyacrylamide Sodium citrate,

diammonium

phosphate Sodium citrate,

histidine

170

200

6

6

[62]

[63]

Ref	Reaction Materials	Temperature °C	Time/h	Excitation Wavelength/nm	Emission Wavelength/nm	Fluorescence Lifetime/ns	Quantum Yield/%
[53]	Citric acid, urea	160	8	360	435	7.6	71
[54]	Ammonium citrate	160	6	365	437	10.6	13.5
[55]	Citric acid, dicyandiamide	180	3	370	452	4.78	36.5
[56]	Citric acid, dicyandiamide	180	12	350	440	/	32.4
[57]	Citric acid, EDA, PEG-2000	160	8	350	450	/	75.8
[58]	Sodium citrate, NH4HCO3	200	3	340	440	6.52	31
[59]	Trisodium citrate, L-cysteine	200	2	400	505	15.8	/
[60]	Sodium citrate, urea	160	6	370	446	7.60	67
[61]	Sodium citrate,	200	3	343	434	/	18

340

350

440

440

5.82

/

53.8

29.7

Table S3. Recently reported cases of citrate-derived fluorescent carbon nanodots.

Figure S1. Lifetime (τ) of fluorescent hydroxyapatite synthesized at *R*_{AMP} values of (**a**) 5%; (**b**) 50%; and (**c**) 100%. The hydrothermal time was 4 h.

Figure S2. XPS survey spectrum, and C 1*s* and N 1*s* high-resolution XPS spectra, of samples with *R*_{AMP} values of 5% (**a**–**c**), 50% (**d**–**f**), and 100% (**g**–**i**). The hydrothermal time was 4 h.

Figure S3. Synthesizing fluorescent hydroxyapatite using other compounds containing an NH² group.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).