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Abstract: This study describes the production of reinforced polysaccharide (PS)-based films, by
adding mesoporous silica nanoparticles (MSNs), to either pectin (PEC) or chitosan (CH) film forming
solutions, either containing glycerol (GLY) as a plasticizer, or not. Film characterization demonstrated
that MSNs and GLY were able to significantly increase the plasticity of both PS-based biomaterials and
that the interactions between PSs and nanoparticles were mainly due to hydrogen bonds. Moreover,
MSN-containing films were less transparent, compared to controls prepared with either PEC or
CH, in the absence of GLY, while all films containing MSNs, but obtained with the plasticizer, were
as transparent as the films prepared with PEC or CH alone. MSN addition did not influence the
thickness of the PEC-based films, but increased that of CH-based ones, prepared both in the absence
and presence of GLY. MSN-containing PEC-based films possessed a more compact and homogeneous
morphology, with respect to both control films, prepared, with or without GLY, and to the CH-based
films, containing MSNs, the structure of which showed numerous agglomerations. Finally, moisture
content and uptake were reduced, in all films prepared in the presence of MSNs. The suggested
addition of MSNs might have given rise to novel biomaterials for food or pharmaceutical applications.

Keywords: chitosan; pectin; silica nanoparticles; edible films; glycerol

1. Introduction

In the last decades, there has been a worldwide demand for replacing the highly pollutant
oil-based plastics, by renewable and biodegradable materials. In fact, there has been an increased
interest in the development and application of biodegradable/edible films and coatings in the food
industry, as a consequence of the increasing consumer demand for safe and stable functional foods,
with a low environmental impact [1]. Ideal candidates for reducing the huge amount of conventional
plastics are the “bioplastics, manufactured exclusively with natural polymers, which are able to be fully
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recycled into the environment, in a short time, following their utilization as packaging materials” [2–4].
Renewable resources for producing bioplastics are represented by several polysaccharides (PSs) that are
able to constitute the matrices for edible films and coatings [5,6]. Nevertheless, films based on natural
polymers are widely known to exhibit poor mechanical resistance, as well as limited barrier and thermal
properties. Consequently, these biomaterials had so far restricted commercial applicability in the food
packaging sector. More recently, much attention has been given to the production of biopolymer
composites, where at least one of their components has nanometric dimensions (1–100 nm) [7].
Such nanoreinforcement is due to the nanoparticles of different chemical natures that are added to a
variety of biopolymers, with the aim of obtaining biomaterials with enhanced mechanical and other
chemico-physical properties. A uniform nanoparticles dispersion, within a polymer matrix, leads to a
very large matrix/filler interfacial area, which changes the molecular mobility, the relaxation behavior,
and the resulting thermal, and tensile properties of the material. In this context, special consideration
was given to the mesoporous silica nanoparticles (MSNs), due to their unique features, such as the
high surface area, controllable pore structure, large pore volume, optically transparent properties,
low toxicity, high chemical and thermal stability, and versatile chemically modifiable surface [8].
These nanoparticles act as material reinforcements because they allow an intercalation/exfoliation of
silicate layers in the polymer matrix, and therefore, their use is turning into a promising option, to
improve the technological features of biopolymer-based films. Hence, the objective of the present work
was the reinforcement of either pectin (PEC) or chitosan (CH)-based films, by means of MSNs. PEC
is an anionic PS, occurring in fruits and numerous vegetables which represents the major structural
component of cell walls [9]. It is currently used in fruit jellies, pharmaceuticals, and cosmetics, for
its thickening and emulsifying properties, and ability to solidify to a gel [10]. Conversely, CH is a
cationic biopolymer being derived from the deacetylation of chitin [11], the second most abundant
polysaccharide, existing in nature, mainly found in the exoskeleton of crustaceans, and in fungal
cell walls. CH is frequently used in designing drug delivery systems, because of its biodegradability,
non-toxicity, antibacterial, and hemostatic characteristics. Despite the individual advantages, both PSs
give rise to films, with some drawbacks, due to their brittleness and poor mechanical and moisture
barrier properties. Hence, PEC-MSN and CH-MSN biocomposites, plasticized with glycerol (GLY)
or not, have been prepared and partially characterized to find possible applications of the novel
biomaterials, both in food and pharmaceutical sectors.

2. Materials and Methods

2.1. Materials

Citrus peel low-methylated (7%) PEC (Aglupectin USP) was purchased from Silva Extracts s.r.l.
(Gorle, BG, Italy). CH (mean molar mass of 3.7 × 104 g/mol) with a degree of 9.0% N-acetylation, was
purchased from Professor R.A.A. Muzzarelli (University of Ancona, Italy) [12]. GLY was obtained from
the Merck Chemical Company (Darmstadt, Germany). MSNs were prepared and characterized, as
recently reported by Fernandez-Bats et al. [8]. All other chemicals and solvents were of analytical grade.

2.2. Film Preparation

PEC-based film forming solutions (0.6% w/v) were prepared from a PEC stock solution (2% w/v
of water), at pH 7.5. CH-based film forming solutions (0.6% w/v) were prepared from a CH stock
solution (2% w/v of hydrochloric acid 0.1 N, stirred overnight) at a pH 4.5. All film forming solutions,
with added MSNs or not (3% w/w of PEC or CH), were prepared in the absence or presence of GLY
(30% w/w of PEC or CH), in 50 mL of distilled water and characterized, as previously described [12,13].
The film forming solutions were then cast onto 8 cm diameter polycarbonate Petri dishes and allowed
to dry in an environmental chamber, at 25 ◦C and 45% Relative Humidity (RH) for 48 h. The dried
films were peeled, intact, from the casting surface and tested, as described below.
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2.3. Film Thickness and Opacity

The thickness was performed for each film, in six different points, with a digital micrometer
(DC-516, sensitivity 0.001 mm). The opacity test measurements, carried out six times for each sample,
were performed, as described by Tonyali et al. [14]. Opacity was calculated as follows:

Opacity (mm−1) = A600/x (1)

where A600 was the absorbance at 600 nm and x was the film thickness (mm).

2.4. Film Mechanical Properties

Mechanical properties of films, namely tensile strength, elongation at break, and Young’s modulus,
were obtained by using a universal testing instrument Model No. 5543A (Instron, Norwood, MA, USA).
The obtained films were cut into strips (10 mm × 50 mm), by using a sharp razor blade. Each strip was
conditioned in an environmental chamber, at 25 ◦C and 50% RH, for 2 h. Finally, six strips of each film
type were tested. The mechanical properties were measured, according to the ASTM D882-97 [15].

2.5. Morphology Analysis (SEM)

Film surfaces and cross-sections were analyzed by Scanning Electron Microscope (SEM).
Films were cut using scissors, mounted onto a stub, and sputter-coated with platinum–palladium
(Denton Vacuum Desk V), before being observed by the Supra 40 ZEISS (EHT = 5.00 kV, in lens detector).
Micrographs for sample surfaces were obtained at 25,000× magnifications, whereas cross-sections
were obtained at both 25,000× and 50,000× magnifications.

2.6. Fourier Transform Infrared (FT-IR) Spectra

FT-IR measurements of the films were performed by a Bruker model ALPHA spectrometer (Bruker
model ALPHA spectrometer, Leipzig 04318, Germany) equipped with attenuated total reflectance
(ATR) accessory. The measurements were obtained in 4,000–400 cm−1 region, at 4 cm−1 resolution for
24 scans.

2.7. Film Moisture Content

Moisture content of each film was measured gravimetrically, according to Farhan and Hani [16],
and Singh et al. [17], with some modifications. In particular, test specimens (5 cm × 5 cm) at different
positions of each film type were uniformly cut and placed on glass Petri dishes. Film moisture content
was determined by drying each specimen in an oven, at 105 ◦C, until a constant dry weight was
obtained. Film moisture content was calculated as:

Film moisture content (%) = (W1−W2)/W1×100, (2)

where W1 is the initial weight of the film and W2 is the film weight, after drying at 105 ◦C, overnight.
Each measure was carried out in triplicates.

2.8. Film Moisture Uptake

Moisture uptake of each film was measured, gravimetrically, in triplicates, as described by
Manrich et al. [18]. In particular, films were cut into 5-cm-sided squares, dried at 105 ◦C for 24 h,
conditioned at 23 ± 2 ◦C, into a desiccator, previously equilibrated at 50% RH, with a saturated
Mg(NO3)2 solution for 24 h. The moisture uptake was calculated as:

Film moisture uptake (% dry matter) = (Ws−Wd)/Ws × 100, (3)
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where Ws and Wd are the weight of the swollen (24 h at 50% RH) and the dried films, respectively.
Each measure was carried out in triplicates.

2.9. Statistical Analysis

All data were analyzed by the JMP software (SAS Institute, Cary, NC, USA, version 5.0). The data
were subjected to analysis of variance, and the means were compared, using the Tukey–Kramer HSD
"honestly significant difference” test. Differences were considered to be significant at p < 0.05.

3. Results and Discussion

3.1. Film Thickness and Opacity

Thickness is a useful parameter, as it serves as a basis for determining several functional properties
of the films. As for CH-based films, the data reported in Table 1 indicates that the thickness value
significantly increased when MSNs were presented into the film matrix, whereas the addition of MSNs
did not lead to a statistically significant change of PEC-based film thickness. This result could be
explained with the increase of viscosity of nanoparticle-containing CH-based film-forming solution [7],
which is able to affect the spreadability and thickness of the derived materials [19]. Conversely, the
addition of GLY to the film-forming solutions was observed to increase the thickness of the CH-based,
as well as of that of the PEC-based films. In addition, in the presence of both GLY and MSNs, CH
film thickness resulted in almost three-times greater than that measured with films made by CH
alone. Since the appearance of the coated foods plays an important role in consumer acceptability, the
opacity of the biomaterials was evaluated, by measuring the light transmission through the films, at a
wavelength of 600 nm. Table 1 clearly indicates that the opacity values of both PEC- and CH-based
films, markedly increased, when MSNs were present into the film matrices and GLY was absent.
Nevertheless, it is worthy to note that the concomitant presence of GLY had a remarkable effect in
decreasing film opacity, since the MSNs-containing both CH- and the PEC-based films appeared to be
transparent, as the control films, thus, indicating that the GLY allowed to obtain a more homogenous
nanoparticle dispersion inside the film matrix, as it was confirmed by SEM experiments (see below).

3.2. Film Mechanical Properties

We have previously observed that the mechanical properties of protein-based films were
significantly improved in the presence of MSNs, reaching the maximum values, at a concentration of
3% of nanoparticles [8]. In addition, 30% GLY concentration was found to satisfactorily plasticize the
PS-based films [12,13]. Therefore, we selected such a formulation of film-forming solutions to compare
the tensile strength, elongation at break, and the Young’s modulus of the nanoparticle-containing films,
to those of the control films. Table 1 shows that both MSN and GLY were able to significantly increase
the plasticity of, both, the PEC- and the CH-based biomaterials. As for the PEC-based films, MSN, and
GLY alone, increased the film elongation at break, and reduced Young’s modulus, even though a more
marked effect on these parameters was obtained by adding both MSN and GLY. At the same time, the
concurrent presence of nanoparticles and plasticizer significantly reduced the tensile strength of the
PEC-based films. Similar results were obtained by analyzing the CH-based biomaterial, even though,
in this case, GLY alone exhibited the most plasticizing effect. Conversely, previously reported data on
the MSN effects on the mechanical properties of protein-based films, showed a concomitant increase of
both tensile strength and elongation at break [8], thus, indicating different interactions of the same
nanoparticles grafted into the matrices of different biopolymer nature.
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Table 1. Effect of mesoporous silica nanoparticles (MSNs) on film thickness, transparency, and
mechanical properties of the pectin (PEC) and the chitosan (CH) films plasticized with glycerol (GLY),
or not.

Film Thickness
(µm)

Opacity
(mm−1)

Tensile Strength
(MPa)

Elongation at
Break (%)

Young’s Modulus
(MPa)

PEC-based

Control 37.5 ± 1.3 1.91 ± 0.16 33.4 ± 7.8 0.8 ± 0.2 5750.2 ± 612.2

+ MSN 40.1 ± 1.2 3.63 ± 0.72 * 40.8 ± 2.5 2.2 ± 0.7 3732.5 ± 264.0 *

+ GLY 56.8 ± 2.5 * 2.05 ± 0.28 27.7 ± 4.4 9.4 ± 2.5 * 1067.6 ± 49.3 *

+ MSN + GLY 58.2 ± 2.1 * 1.88 ± 0.29 16.6 ± 2.4 * 15.2 ± 1.4 * 712.3 ± 52.4 *

CH-based

Control 30.1 ± 3.1 2.20 ± 0.28 56.2 ± 4.2 7.7 ± 1.8 3438.1 ± 501.3

+ MSN 51.3 ± 1.2 * 6.62 ± 1.88 * 42.4 ± 8.3 13.0 ± 5.6 2088.8 ± 137.3 *

+ GLY 61.2 ± 2.3 * 1.44 ± 0.89 12.5 ± 2.3 * 82.5 ± 2.0 * 130.5 ± 52.2 *

+ MSN + GLY 81.7 ± 3.7 * 1.87 ± 0.35 28.1 ± 2.2 * 54.9 ± 4.2 * 427.3 ± 64.2 *

* Values significantly different at p < 0.05 from those obtained without MSN and GLY.

3.3. Film Morphology

Figure 1 shows the images of the different films and their surfaces and cross-sections obtained from
the SEM analysis. The control, PEC-based films, prepared in the absence of GLY and MSNs, appeared
to be more compact and homogenous, in both, the surface (Figure 1,A1) and the cross-section (Figure 1,
inset A2), than the control CH films (Figure 1, insets C1 and C2). The presence of MSNs conferred to
the surface of the PEC-based films, prepared either in the presence or absence of GLY, an even more
compact and homogeneous structure, compared to the control films, probably due to a widespread
inclusion of MSNs, into the PEC network responsible for the major smoothness of the matrices obtained
(Figure 1, inset A3 and B3). This hypothesis seemed to be confirmed from the film cross-section SEM
images, at 25,000× magnification, which shows a more compact and homogeneous structure of the
MSN-containing film matrices, exhibiting more evident continuous zones, in comparison with the
control sample (Figure 1, inset A4 and B4), as well as from the zoomed SEM micrographs (obtained
at 50,000× magnification), showing the pervasive inclusion of nanoparticles in the PEC film matrix
(Figure 1, inset A5 and B5). Numerous aggregations were observed, by contrast, in the cross-sections
of the CH-based films prepared in the presence of MSNs, without (Figure 1, inset C4 and C5) or with
(Figure 1, inset D4 and D5) GLYs. In fact, these films exhibited many protuberances or fractured
morphology, probably due to the MSNs interactions with the CH chains. These results were similar to
those reported by Liu et al. [20], who found that the ultrastructure of the starch-based materials was
much rougher and exhibited numerous aggregations, due to the asymmetrical MSN dispersion in the
film matrix.
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Figure 1. SEM morphology of the PEC (A,B) and the CH (C,D) films, prepared in the absence
(A1,A2,C1,C2) or presence of either GLY (B1,B2,D1,D2), MSN (A3–5,C3–5), or both GLY and MSN
(B3–5,D3–5).

3.4. Film FT-IR Analyses

To elucidate the molecular interactions of both PEC and CH with MSNs, all films were also
analyzed by the ATR-FT-IR (Figure 2). The bands detected in the region below 1,000 cm–1 arose from
inter-atomic vibrations, the bands around 832 and 400 cm−1, being characteristic of the silanol groups
(Si–OH), and being related to the Si-O stretching and deformation frequencies [21,22]. The spectra
of all PEC-based films (Figure 2, panel A) results were quite similar, representing bands originating
from the vibrations of the functional groups of the compounds existing in their matrices, and showing
only some differences in the relative intensities and positions. Nesic et al. [23] reported that the
interactions between the PEC and the silica, occur between the hydroxyl groups of the PS and the
oxygen containing groups of MSNs. The absorption bands in the range between 3,400 and 3,000 cm−1

and 1,410 cm−1 were typical of hydroxyl groups of bound water, as well as of Si–OH linkage [24],
whereas the peaks at 1,751 and 1,628 cm-1, corresponded to the C=O stretching of esterified carboxylic
groups (–COOCH3) and free carboxylic groups (–COOH), respectively. The stretching, asymmetric,
symmetric, and deformation vibrations of the siloxane network, could be identified with the bands
around 1,177 cm−1 [25]. All these interactions were more marked in the CH film (Figure 2, panel B)
spectra, showing a broad band at 3,267 cm–1, apparently related to the hydroxyl and amino groups
occurring on the polysaccharide chains [26]. Finally, the band at 2,881 cm−1 was assigned to the C–H
stretching vibrations, the band near 1,461 cm−1 owed to the stretching frequency of the carbonyl
amidic groups present within the CH chains, with some degree of acetylation, whereas the band
in the range of 1,250–1,030 cm–1 was related to the asymmetric stretching vibration of the Si–O–Si
group. In conclusion, all the film FT-IR data showed evident interactions of the PS matrix, with both
GLY and MSNs, by hydrogen bonds, and these interactions became increasingly pronounced in the
CH–based films.
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Figure 2. FT-IR spectra of PEC (A) and CH (B) films prepared in the presence or absence of GLY
or MSN.

3.5. Film Moisture Content and Uptake

The prepared films were further characterized for their water moisture content and uptake, as
these characteristics were extremely important for potential food packaging applications, especially,
when water activity is high or when the film must be in contact with water, and acts as a food protective
barrier [27]. In fact, higher moisture content might considerably limit edible film use as a packaging
material. Figure 3 shows the positive influence of the MSNs on the film moisture content and uptake,
indicating that the addition of MSNs to film-forming solutions significantly reduced both parameters,
by using, both, PEC and CH as a film matrix, in the absence or presence of GLY, thus, suggesting that
MSNs enhanced the moisture resistance of the prepared biomaterials. This phenomenon is likely due to
the modified matrix structure by the hydrogen bond interaction between the two types of PSs and the
nanoparticles. These results can be related to the interaction of nanoparticles, with both biopolymers,
due to the hydrogen bonds, as described above. Consequently, the resulted dens network reduced
the diffusion of water molecules into the matrix [28]. In fact, the equilibrium moisture uptake value
depended on the film hydrophilic feature, as well as on its morphology. Therefore, MSNs probably
produced a tortuous pathway and, consequently, a reduced water uptake. These findings were in
agreement with the data previously reported for montmorillonite-containing films, made either with
starch/carboxymethyl cellulose [29], or with methyl cellulose [30].
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Figure 3. Effect of MSN on moisture-content and uptake of PEC (A) and CH (B) films, prepared with
or without GLY. “a” values significantly different at p < 0.05, from those obtained without MSN.

4. Conclusions

In the present study, PEC- and CH-based films, containing MSNs, were prepared by casting to
obtain innovative biomaterials. FT-IR showed a strong interaction between PSs and nanoparticles,
which influenced the behavior and the stability of both kinds of films. Morphology studies
demonstrated an evident nanoparticle dispersion into the PEC matrix, as well as the absence of
any nanoparticle agglomeration observed, conversely, in the CH-based films. MSNs were shown to
decrease the moisture content and uptake of the prepared films, as a consequence of their interaction
with both PEC and CH, by hydrogen bonds, and the formation of the resulting dens network which
is able to reduce the diffusion of water molecules inside the biomaterial. In addition, MSN and GLY
significantly increased the plasticity of both PEC- and CH-based biomaterials, also influencing their
thickness and transparency. Therefore, MSNs are suggested as effective additives of PS-based films,
for food industrial applications, when coatings or wrappings with reduced hydrophilic properties
are required.
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