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Abstract: Vanadium dioxide (VO2) is a well-known thermochromic material that can potentially be
used as a smart coating on glazing systems in order to regulate the internal temperature of buildings.
Most growth techniques for VO2 demand high temperatures (>250 ◦C), making it impossible to
comply with flexible (polymeric) substrates. To overcome this problem, hydrothermally synthesized
VO2 particles may be dispersed in an appropriate matrix, leading to a thermochromic coating that
can be applied on a substrate at a low temperature (<100 ◦C). In this work, we reported on the
thermochromic properties of a VO2/Poly-Vinyl-Pyrrolidone (PVP) nanocomposite. More specifically,
a fixed amount of VO2 particles was dispersed in different PVP quantities forming hybrids of various
VO2/PVP molar ratios which were deposited as films on fused silica glass substrates by utilizing the
drop-casting method. The crystallite size was calculated and found to be 35 nm, almost independent
of the PVP concentration. As far as the thermochromic characteristics are concerned, the molar ratio
of the VO2/PVP nanocomposite producing VO2 films with the optimum thermochromic properties
was 0.8. These films exhibited integral solar transmittance modulation (overall wavelengths)
∆Trsol = 0.35%–1.7%, infrared (IR) switching at 2000 nm ∆TrIR = 10%, visible transmittance at 550 nm
TrVis = 38%, critical transition temperature TC = 66.8 ◦C, and width of transmittance hysteresis loop
∆TC = 6.8 ◦C. Moreover, the critical transition temperature was observed to slightly shift depending
on the VO2/PVP molar ratio.

Keywords: hydrothermal synthesis; thermochromic VO2; low-temperature VO2/PVP nanocomposites;
thermochromic coatings

1. Introduction

Versatile solutions to the expanding and rapid increase in worldwide energy demands as well
as the restrictions concerning environmental pollution by utilizing renewable energy sources and
energy-efficient materials have already attracted both scientific interest and commercial attention.
The energy consumption in buildings alone is estimated to be approximately 40% of the world’s total
energy consumption, and it is anticipated it will increase steadily [1–3]. Central heating, ventilation,
and air conditioning are the main energy consumers, being responsible for about 30% of annual
carbon dioxide emissions [3]. Moreover, heat transmittance and insulation inefficiency of windows are
responsible for 15%–22% of a building’s energy loss [4–7].
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In recent years, ‘smart’ windows have received widespread attention as one of the potential
solutions to reducing energy consumption by air conditioning in modern architecture. ‘Smart’ windows
are able to intelligently self-regulate the amount of transmitted heat, while keeping the visible
transmission mainly unchanged. Vanadium dioxide (VO2) is one of the most promising solid-sate
materials for smart windows due to its unique optical properties related to its inherent and ultrafast
reversible structural (phase-change) transition from a monoclinic VO2(M) to tetragonal rutile VO2(R)
structure at a critical transition temperature of TC = 68 ◦C, for pure monocrystalline material [8–10].

Conventionally, ‘smart’ thermochromic windows are fabricated by vapor phase deposition
techniques such as sputtering [11–14], chemical vapor deposition (CVD) [15–17], and pulsed laser
deposition (PLD) [18]. However, all these techniques are restricted by the cost and scale of vacuum
systems. Moreover, most of these growth techniques, although they are of high fidelity and can produce
good quality thermochromic VO2 films, demand high deposition temperatures (>400 ◦C) [11,14–18],
with very few employing sputtering techniques between 250 and 300 ◦C [12,13,19–21], making it
impossible to utilize flexible (polymeric) substrates.

Another approach, called the ex-situ approach [22], to the fabrication of VO2 thermochromic films
is to first synthesize the desired material as a powder and then to deposit the material as a film onto
the desired surface. Thermochromic VO2 in the form of powders have been synthesized by various
methods, such as thermolysis [23,24], rapid thermal annealing [25], pyrolysis [26], and, the most
utilized method, hydrothermal (solvothermal) synthesis [27–31]. The latter is the most promising
due to the high crystallinity of the resulting products, the precise phase control, the versatility on the
synthetic parameters, and the possibility of large-scale synthesis [32].

In order to transform the powder into film, various deposition methods have been applied, most
notably sol-gel methods. Sol-gel is a proper inexpensive method for large-scale deposition, utilizing
fast processing techniques such as dip and spin coating [33]. In particular, the sol-gel method is suitable
for the deposition of VO2, either directly on rigid or on flexible substrates (membrane) attached to glass
surfaces. In the sol-gel method, a mixture of a precursor-supporting material along with the particles
of the functional material are used (e.g., usually a polymer or monomer along with VO2 particles) in
order to synthesize the films [33–35]. Hence the polymer has to be adequately selected to fulfill several
demands, including: (i) Stabilization of the VO2 particles dispersion, (ii) prevention of agglomerations,
and (iii) protection of VO2 particles, e.g., from oxidation/reduction by air or water vapor, which is
especially important during the long storage period. Among the various prospective polymeric host
matrices, such as polyoxymethylene, polyvinyl alcohol, polyacrylic acid, etc., the one fulfilling the
above criteria to a fairly satisfying level has been identified to be Poly-Vinyl-Pyrrolidone (PVP) [36].
Although the sol-gel process is a promising technique for achieving a low deposition temperature for
thermochromic VO2 film fabrication, various concerns such as thickness control and repeatability have
not yet been met equivalently in all the different deposition methods used (spin-coating, drop-casting,
dip-coating, and spraying), thus sustaining the interest of the research community and industry [37,38].

In the present work, thermochromic VO2/polymer nanocomposite films were deposited
uniformly using a casting method on glass substrates. The method selected was polymer-assisted
deposition employing the drop-casting technique. The polymer utilized was PVP. A parametric study
was carried out in order to examine the effect of the VO2/PVP molar ratio on the thermochromic
properties. The quantities of both the dispersant (distilled water) and the VO2 particles were kept
constant, while the quantity of PVP was varied, in order to change the molar ratio of VO2/PVP. It is
the first time that such a study has been performed, since until now the majority of research [39–44]
has mainly focused on the thermochromic behavior of VO2 powder/composite, without showing how
the thermochromic properties are affected by the presence of a host material.
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2. Materials and Methods

2.1. Synthesis of VO2 Particles

The reagents used were vanadium pentoxide, V2O5 (+98% pure), as the vanadium source
and oxalic acid dihydrate, H2C2O4·2H2O (≥99.0% pure), as the reducing agent. All reagents were
purchased from Sigma Aldrich (Merck, Germany) and were used without further purification.

VO2 particles were synthesized via a typical hydrothermal procedure using a Parr Teflon-lined
stainless steel autoclave. In a typical procedure, 2 mmol of V2O5 powder and 8 mmol of H2C2O4·2H2O
were dissolved in 2.22 mol of deionized water, resulting in a 32 vol% filling of the Teflon vessel.
After stirring, the original dark yellow mixture turned into a dark green-blue solution. For the
hydrothermal treatment, the precursor mixture was transferred to the acid digestion vessel and
into a furnace for treatment at 220 ◦C for 12 h. The obtained blue-black solid product was isolated
via centrifugation, after drying at 80 ◦C for 4 h. Finally, to acquire the desired crystalline phase of
thermochromic VO2 the solid product was annealed at 700 ◦C for 2 h under a constant nitrogen
gas flow.

2.2. VO2/Polymer Nanocomposite Coatings

The as-prepared VO2 particles were dispersed ultrasonically in deionized water at a concentration
of 10 mg/mL for 30 min and stirred for 1 h to produce a suspension. Then, an appropriate amount of
PVP K-30 was added in different molar ratios of VO2/PVP, from 0.2 to 1.2, by decreasing the amount
of PVP while keeping constant the amount of VO2 particles. The suspension was stirred for 2 h to
enhance its homogeneity. Prior to the deposition, fused silica glass substrates were treated with ethanol
and propanol inside a sonication bath for 5 min, respectively. Finally, the mixture was uniformly casted
on the substrates and dried for 1 h at 70 ◦C.

2.3. Structural and Morphological Characterization/Thermochromic Properties

The structural characterization of VO2 particles and nanocomposite films was performed by X-ray
diffraction (XRD) using a Rigaku RINT-2000 diffractometer (Tokyo, Japan). The X-rays were produced
by a 12 kW rotating anode generator with a Cu anode equipped with a secondary pyrolytic graphite
monochromator. A Cu Kα radiation with wavelength λ = 0.154 nm was used. Measurements were
performed with θ/2θ configuration, scanning from 20◦ to 80◦ with a step of 0.02◦/min. The crystallite
size of the VO2 was calculated by using the Scherrer Equation;

d(nm) =
0.9·λ(nm)

B· cos(θB)
(1)

where λ = 0.154 nm, B the full width at half maximum (FWHM) at 2θ = 27.8◦ corresponding to the
characteristic (011) direction of the VO2 peak, and θB = θ.

The morphology of the VO2 particles and nanocomposite films was determined by scanning
electron microscopy (SEM, JEOL 7000, Tokyo, Japan) operating at 15 keV, while the microscopic
nanostructures were observed by transmission electron microscopy (TEM) on a JEM-2100 instrument
(JEOL, Tokyo, Japan) equipped with LaB6 filament, operating at 200 kV.

The critical transition temperature of the VO2 particles was determined by differential scanning
calorimetry (DSC) using a PL-DSC system from Polymer Laboratories. Measurements were performed
from 20 to 170 ◦C and back to 20 ◦C with a step of 10 ◦C/min, under a nitrogen flow of 20 cc/min.
By identifying the critical transition temperature during heating (T1) and cooling (T2) procedures,
the critical transition temperature (TC) as well as the width of the hysteresis loop of the VO2 powder
were calculated as defined by the Equations below:

TC =
T1 + T2

2
(2)
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∆TC = T1 − T2 (3)

The thermochromic properties of the nanocomposite films were examined by recording the
transmittance spectra in the temperature range of 25 and 90 ◦C. For this, a Perkin Elmer Lambda 950
UV/Vis/NIR spectrophotometer, operating at λ = 250–2500 nm with a homemade heating sample stage
attachment and a thermocouple on contact with the surface of the film to measure the temperature,
was used. The temperature was controlled by an ACUSHNET FP-900 temperature controller (Taipei,
Taiwan) at a heating rate of 1.5 ◦C/min. IR switching is defined as the difference of transmittance
value at λ = 2000 nm, between 25 and 90 ◦C.

∆TrIR (%) =TrIR(25 ◦C) − TrIR(90 ◦C) (4)

while integral luminous transmittance is defined as:

Trlum(%) =

∫ 750
350 Blum(λ) ∗ Tr(λ)dλ∫ 750

350 Blum(λ)dλ
(5)

where Tr(λ) is the recorded transmittance spectrum at 25 or 90 ◦C and Blum(λ) is the standard luminous
efficiency function for photopic vision [45].

Moreover, solar transmittance modulation ∆Trsol (%) is defined as the difference of integral solar
transmission between 25 and 90 ◦C, obtained by the formula:

∆Trsol(%) =

∫ 2500
250 Bsol(λ) ∗ Tr(T = 25 ◦C, λ)dλ−

∫ 2500
250 Bsol(λ) ∗ Tr(T = 90 ◦C, λ)dλ∫ 2500

250 Bsol(λ)dλ
(6)

where Tr(λ) is the recorded transmittance spectrum at 25 or 90 ◦C and Bsol(λ) is the solar irradiance
spectrum for an air mass (AM) of 1.5 (corresponding to a solar zenith angle of 48.2◦ [46].

Furthermore, in order to determine the critical transition temperature of VO2/polymer
nanocomposite films through optical measurements, the transmittance as a function of temperature
(25–90 ◦C) by a step of 1.5 ◦C/min at λ = 2000 nm was recorded for both the heating and cooling
procedure. The derivative of transmittance (dTr/dT) versus temperature was plotted and fitted by
a Gaussian curve for both procedures. The minimum of the fitting curves determined the critical
transition temperature T1 and T2 for the heating and cooling procedure, respectively. Thus, the critical
transition temperature TC and the width of transmittance hysteresis loop were obtained by Equations
(2) and (3), respectively.

3. Results and Discussion

3.1. Structural and Morphological Characterization of VO2 Particles

Figure 1a shows the XRD pattern of VO2 powder particles (for 2θ = 20–80◦), from which the
monoclinic phase of VO2 (M) is confirmed (JCPDS card No. 43-1051). The crystallite size of the VO2

powder was calculated from the XRD pattern using Scherer’s Equation (Equation (1)) and was found
to be around 35 nm. TEM imaging revealed the material to be composed of nanoflakes, with particles
varying from less than 25 to 400 nm, as presented in Figure 1e,f. The thermochromic behavior of
the VO2 particles was confirmed by the DSC diagram of Figure 1b, from which the critical transition
temperature and the hysteresis width were calculated and found to be TC = 66.6 ◦C and ∆TC = 12.1 ◦C.
The morphology of the VO2 particles was investigated by SEM, presented in Figure 1c,d, in which
nanoflake agglomerates with sizes up to about 500 nm can be observed.
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and 37.0° corresponding to the VO2 (011) and (200) crystallographic directions, respectively, 
according to JCPDS card No. 44-0252. The small peak at around 25° is attributed to the glass substrate. 
Thus, the polymer PVP does not affect the crystallinity of the VO2. In addition, the crystallite size of 
VO2 in the composite was calculated and found to be the same (35 nm) as that of VO2 in powder form. 
However, the rest of the peaks corresponding to the VO2 powder (Figure 1a) could not be detected in 
the composite, probably due to the presence of the host material (PVP). 

In order to investigate the effect of the amount of PVP in the morphology of the surface of 
VO2/polymer nanocomposite films, SEM at ×1500 magnification was performed. VO2 particles, as 

Figure 1. (a) XRD pattern; (b) differential scanning calorimetry (DSC) curve; (c,d) SEM images, and
(e,f) TEM images of VO2 powder particles.

3.2. Structural and Morphological Characterization of VO2/Polymer Nanocomposite Films

The XRD pattern of VO2/polymer nanocomposite films at the optimized ratio of VO2/PVP = 0.8
deposited on fused silica glass substrate is shown in Figure 2a, along with a picture of the film in
Figure 2b. The monoclinic phase of VO2 was confirmed by the two characteristic peaks at 2θ = 27.8◦

and 37.0◦ corresponding to the VO2 (011) and (200) crystallographic directions, respectively, according
to JCPDS card No. 44-0252. The small peak at around 25◦ is attributed to the glass substrate. Thus,
the polymer PVP does not affect the crystallinity of the VO2. In addition, the crystallite size of VO2

in the composite was calculated and found to be the same (35 nm) as that of VO2 in powder form.
However, the rest of the peaks corresponding to the VO2 powder (Figure 1a) could not be detected in
the composite, probably due to the presence of the host material (PVP).
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Figure 2. (a) XRD pattern and (b) image of VO2/Poly-Vinyl-Pyrrolidone (PVP) nanocomposite film
with ratio VO2/PVP = 0.8 deposited on fused silica substrate.

In order to investigate the effect of the amount of PVP in the morphology of the surface of
VO2/polymer nanocomposite films, SEM at ×1500 magnification was performed. VO2 particles, as
shown in Figure 3, were found to have almost entirely been submerged, particularly at the optimized
ratio of VO2/PVP = 0.8, within the polymer matrices exhibiting a smooth composite finish surface
without cracks. Moreover, it was found that the presence of polymer for all ratios from 0.2 to 1
prevented the agglomeration of particles with an average grain size of more than 500 nm.
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3.3.  Effect of VO2/PVP Molar Ratio on Thermochromic Properties  

The transmittance spectra from 250 to 2500 nm of VO2/polymer nanocomposite films with a 
different VO2/PVP molar ratio at 25 and 90 °C are presented in Figure 4a–d. It can be seen that all 
films exhibit a thermochromic behavior. Utilizing these spectra along with Equations (4)–(6) IR 
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Figure 3. SEM images of VO2/PVP nanocomposite films with a different molar ratio of VO2: PVP from
0.2 to 1.2.

3.3. Effect of VO2/PVP Molar Ratio on Thermochromic Properties

The transmittance spectra from 250 to 2500 nm of VO2/polymer nanocomposite films with a
different VO2/PVP molar ratio at 25 and 90 ◦C are presented in Figure 4a–d. It can be seen that all films
exhibit a thermochromic behavior. Utilizing these spectra along with Equations (4)–(6) IR switching at
2000 nm, Trlum and Trsol, were calculated and are presented in Table 1.

Table 1. Optical characteristics of VO2/polymer nanocomposite films.

VO2/PVP * Trlum(%) ∆TrIR(%) ∆Trsol(%)

0.2 24.5 7 1.72
0.4 27.2 5.7 0.36
0.6 26.9 7.8 1.00
0.8 37.1 10.2 1.22
1 36.8 7.8 1.35

1.2 41.2 4.8 0.35

* molar ratio.

According to Table 1, it is clear that the luminous transmittance is decreasing as the concentration
of PVP increases (i.e., the ratio of VO2/ PVP is decreases) due to the anticipated increase of film
thickness, varying between 3 and 5 µm, as a result of the casting method. Concerning the effect of
PVP on IR switching, there is an optimal ratio of VO2/PVP = 0.8, for which IR switching becomes
maximum and equal to 10.2%, as presented in the graphical representation of data in Figure 5a.
Furthermore, the calculated solar transmittance modulation varied from 0.35% to 1.7% without any
evident indication on whether there is a correlation with the VO2/PVP molar ratio, rather than a
moderately noticeable non-linear increase of ∆Trsol with the increase of PVP in solution concentration
(i.e., a decrease of the VO2/PVP molar ratio). Although solar transmittance modulation is low
enough when compared to thermochromic films prepared by other techniques at higher deposition
temperatures [1,4,16], a systematic investigation on the dispersion of VO2 powder in the solvent should
lead to an improvement of thermochromic characteristics. Additionally, a different casting method
such as dip coating or spin coating will be employed in order to increase the homogeneity of the films,
resulting in an increase of luminous transmittance.
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The transmittance hysteresis loop of VO2/PVP nanocomposites with different amounts of PVP,
at λ = 2000 nm is presented in Figure 6. From these heating–cooling loops, it is evident that the
transition is a fully reversible process for all VO2/PVP nanocomposite samples. By using Equations (2)
and (3), the critical transition temperature and the hysteresis width, respectively, were calculated.
The results are presented in Table 2, while in Figure 5b the variation of TC is graphically presented as a
function of the VO2/PVP molar ratio. It is observed that TC is increasing in regards to the molar ratio
of VO2/PVP from 62 ◦C (VO2/PVP = 0.2) to 68 ◦C (VO2/PVP = 1.2). This behavior can be attributed



Coatings 2019, 9, 163 9 of 12

to the increasing concentration of polymer in the films (from the 1.2 to the 0.2 VO2: PVP molar ratio),
since a higher polymer concentration seems to inhibit the agglomeration of VO2 nanoparticles. Thus,
the transition is enhanced by reducing the energy needed for VO2 particles in the film to transition
from the monoclinic to the full tetragonal rutile phase (and vice versa), leading to lower TC values.
A similar phenomenon is observed for the width of transmittance hysteresis loop, since it is increased
from 3.5 ◦C for VO2/PVP = 0.2 to 8.1 ◦C for VO2/PVP = 1.2, indicating that the increase of PVP
facilitates the transition, thus lowering the hysteresis width.
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Table 2. Critical transition temperature TC and width of transmittance hysteresis loop (∆TC) of
VO2/PVP nanocomposite films for different amounts of PVP.

VO2/PVP * ∆TC (◦C) TC (◦C)

0.2 3.5 62.2
0.4 5.0 65.6
0.6 6.0 67.6
0.8 6.8 66.8
1.0 4.9 67.6
1.2 8.1 67.8

* molar ratio.

4. Conclusions

In this work, hydrothermal synthesis was employed to formulate pure monoclinic VO2 particles.
Subsequently, VO2/PVP nanocomposite films were fabricated by polymer-assisted deposition on
fused silica commercial glass at low treatment temperatures (<70 ◦C). Both thermochromic and optical
properties were examined as a function of the VO2/PVP molar ratio varying from 0.2 to 1.2, by only
changing the amount of PVP in the solution. The IR switching at 2000 nm was found to depend on
the molar ratio of VO2/PVP and the optimal ratio was determined to be 0.8, for which ∆TrIR = 10.2%.
The integrated luminous transmittance varied from 24.5% to 41.2% as the ratio of VO2/PVP increased
from 0.2 to 1.2 (i.e., the amount of PVP was decreased), probably due to the increase on thickness of the
produced films. Additionally, the solar transmittance modulation of the VO2/PVP nanocomposites
non-linearly increased from 0.35% to 1.7% as the amount of PVP increased (i.e., a lower VO2/PVP
molar ratio). Finally, it was observed that the critical transition temperature non-linearly increased from
62.2 to 67.8 ◦C as the ratio of VO2/PVP increased. This was attributed to the presence of the polymer
which inhibits the agglomeration of the VO2 particles, resulting in lower TC values for the transition.
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