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Abstract: Au-Pt-Ti/high-k/n-InAlAs metal-oxide-semiconductor (MOS) capacitors with HfO2-Al2O3

laminated dielectric were fabricated. We found that a Schottky emission leakage mechanism dominates
the low bias conditions and Fowler–Nordheim tunneling became the main leakage mechanism at high
fields with reverse biased condition. The sample with HfO2 (4 m)/Al2O3 (8 nm) laminated dielectric
shows a high barrier height φB of 1.66 eV at 30 ◦C which was extracted from the Schottky emission
mechanism, and this can be explained by fewer In–O and As–O states on the interface, as detected by
the X-ray photoelectron spectroscopy test. These effects result in HfO2 (4 m)/Al2O3 (8 nm)/n-InAlAs
MOS-capacitors presenting a low leakage current density of below 1.8 × 10−7 A/cm2 from −3 to 0 V
at 30 ◦C. It is demonstrated that the HfO2/Al2O3 laminated dielectric with a thicker Al2O3 film of
8 nm is an optimized design to be the high-k dielectric used in Au-Pt-Ti/HfO2-Al2O3/InAlAs MOS
capacitor applications.

Keywords: high-k dielectric; leakage current mechanism; interface characteristics

1. Introduction

According to the requirements of high speed, low power dissipation, and low noise application
for RF devices used in telecommunication and other modern integrated circuits, increasing interest
is focused on new III-V compound devices of InAs/AlSb and InAlAs/InGaAs HEMTs (high-electron
mobility transistors), as these devices possess high electron mobility and peak velocity in the
channel [1–5]. However, due to the narrow band gap of channels of these HEMTs, the devices suffer
from serious current leakage which is considered as the biggest issue of InAs/AlSb and InAlAs/InGaAs
HEMTs [6,7]. In this kind of device, InAlAs is most frequently used as the protective layer on the above
barrier and as the gate contact semiconductor [1,3], and some reports proposed to deposit a high-k
dielectric film on InAlAs, together with the gate electrode, to become a metal-oxide-semiconductor
(MOS) capacitor isolated gate structure, in order to effectively suppress the leakage current. HfO2 that
presents a high dielectric constant is a popular candidate as the high-k dielectric [8–10], however it
does not match well with InAlAs and the poor lattice match would degrade its performance [9]; Al2O3

is used frequently as the high-k dielectric as well [10,11], however its dielectric constant is not high
enough, and that will lead to a lower EOT (effective oxide thickness) which is not beneficial for reducing
device size. For improvement, the HfO2-Al2O3 laminated dielectric layer is proposed, and in this new
device structure, a compromised dielectric constant can be achieved and the leakage current can be
effectively suppressed [12–14]. In our previous paper [13], the physical and electrical performance of
the new Au-Pt-Ti/high-k/n-InAlAs MOS capacitors with HfO2-Al2O3 laminated dielectric were studied
in detail. However, its leakage current mechanism was not mentioned, and this scheme has been
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covered in few other papers. To better understand the generation reason of the leakage current of
the Au-Pt-Ti/HfO2-Al2O3/n-InAlAs MOS capacitor, we study the leakage current mechanism of the
new devices at different bias condition ranges in detail. As InAs/AlSb HEMTs and InAlAs/InGaAs
HEMTs work under negative gate voltage bias conditions, we studied the reverse-bias leakage current
mechanism in this paper as in the case of a real application.

2. Experiment

The device structure from bottom to top is a 350 µm semi-insulating InP substrate, a 200 nm
InP buffer layer, a 500 nm Si-doped In0.5Al0.5As semiconductor layer with a doping concentration
of 1 × 1017 cm−3 [15], a 12 nm oxide layer with Al2O3-HfO2 dielectrics, and a metal with structure of
Ti (20 nm)/Pt (20 nm)/Au (200 nm). The detailed schematic layer structures of the prepared sample
can be found in our previous published paper [14]. In order to identify the impact of the thickness
of the Al2O3 inserting layer, we manufactured two kinds of samples with an oxide layer of HfO2

(4 nm)/Al2O3 (8 nm) laminated dielectrics (marked as Sample #1), and HfO2 (8 nm)/Al2O3 (4 nm)
laminated dielectrics (marked as Sample #2), respectively. The detailed fabrication process is listed in
Table 1 [16–20].

Table 1. Process description of Au-Pt-Ti/HfO2-Al2O3/n-InAlAs metal-oxide-semiconductor
(MOS) capacitor.

Process Step Process Description

1 InP buffer layer deposition MBE (molecular beam epitaxy) at 470 ◦C

2 InAlAs semiconductor layer
deposition MBE at 350 ◦C

3 Surface treatment of InAlAs 36–38% HCl solution for 1 min and a 7%
(NH4)S solution for 15 min, then dry in N2

4 Al2O3 film deposition

Pass precursor of Al element as TMA
(trimethylaluminium)

for 0.5 s, then pass N2 for 2 s in order to
transfer the Al-base residue out, then pass

precursor of O element as H2O for 0.5 s.
Repeat the above process steps to obtain the

required thickness

5 HfO2 film deposition

Pass precursor of Hf element as TEMAH
(tetrakis ethylmethylamino hafnium) for 1 s,
then pass N2 for 2 s in order to drive off the
Hf-base residue, then pass precursor of O
element as H2O for 1 s. Repeat the above

process steps to obtain the required thickness

6 Post-deposition annealing (PDA)
Heat the film from ambient temperature to

380 ◦C in N2 over 15 s, annealing for 60 s, and
then cool to ambient temperature over 300 s

7 Metal Magnetron sputtering. Size of
150 µm × 150 µm

3. Measurement and Discussion

The leakage current measurement of the Au-Pt-Ti/HfO2-Al2O3/InAlAs MOS-capacitors under
reversed bias condition is shown in Figure 1. It is found that the leakage current density J achieves a
significant low value below 10−6 A/cm2 in the bias voltage Vg ranges from −3 to 0 V at a temperature
of 30 ◦C for the both Sample #1 and #2. In particular, Sample #1 shows a much lower leakage current,
below 1.8× 10−7 A/cm2 from−3 to 0 V at 30 ◦C which is three times less than Sample #2 with the leakage
current value below 6.5 × 10−7 A/cm2. This demonstrates that the thickness ratio of Al2O3 and HfO2
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films clearly impact the leakage current. We note that the electric field E of Al2O3 should be higher than
that of HfO2, since the dielectric constant of HfO2 is higher than that of Al2O3. However, we simply
formulate E by applying V/Tox (Tox is oxide thickness) in order to present an intuitive view of the
leakage current changing trend. In addition, it is found that the leakage current density J increases as the
temperature increases. This may be explained by the violent electron movements at high temperatures.
To better understand the generation reason of the leakage current of the Au-Pt-Ti/HfO2-Al2O3/InAlAs
MOS capacitor and the reason for the lower leakage current of the sample with the higher thickness
ratio of Al2O3 and HfO2 films, we will study the leakage current mechanism of the devices at different
bias condition ranges and different temperatures in detail.
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Figure 1. The leakage current measurement of the Au-Pt-Ti/HfO2-Al2O3/InAlAs MOS-capacitors
under reversed bias condition at different temperatures. The solid symbol is for Sample #1 with
HfO2 (4 nm)/Al2O3 (8 nm) laminated dielectrics, and the hollow symbol is for Sample #2 with HfO2

(8 nm)/Al2O3 (4 nm) laminated dielectrics.

Schottky emissions often happen in low electrical fields. The energy band diagram for Schottky
emissions under the reversed bias condition is shown in Figure 2 [21–24]. Electrons surmount the
metal–HfO2 surface barrier first, and then surmount the barrier at HfO2-Al2O3, and finally fall into the
conduction band of InAlAs to form the leakage current. It can be verified by linear fitting the curve of
ln J versus Ei

1/2 with a straight line, where J is the leakage current density and Ei is the electric field
intensity under reversed bias voltage [25,26]. Schottky emission is temperature dependent, and the
slope of linear approximation on the curve of lnJ vs Ei

1/2 needs to be consistent at different temperatures,
which is the typical feature of Schottky emission [11,25,26]. Therefore, we make the line fit on the
measurement curve under different temperatures of 30/50/70 ◦C in order to identify it correctly by the
same scope of the fitting straight line, as shown in Figure 3. According to the analysis, the Schottky
emission occurs in the bias range of −1.1–0 V and −1.7–0 V for Sample #1 and Sample #2, respectively.
As we presented before, Sample #1, with a higher thickness ratio of Al2O3 and HfO2 films, shows a
reduced leakage current in the Schottky region. This can be explained by its higher barrier height
φB. The barrier height φB,n can be extracted from the equation φB,n = kTln(A*T2/J0)/q according to
the Schottky emission mechanism, where k is the Boltzmann constant, T is the temperature, q is the
electron charge, A* is the effective Richardson constant as the value of 105600A/K2m2, and J0 is the
saturation current density [15]. The extracted φB,n values are listed in Table 2. The φB,n we extracted
was illustrated as in Figure 2. It presents the barrier at HfO2/Al2O3 where is the top of the barrier.
It is worth noting that the φB,n we obtained from the Schottky mechanism should be lower than the
ideal barrier height by a value of 4φB as shown in Figure 2. This gap can be explained by the Schottky
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barrier lowering effect [15,16]. It was found that Sample #1 presents a higher φB,n value than Sample
#2, indicating that increasing the thickness of the Al2O3 film can suppress the accessibility of carriers
to climb over the barrier to form a leakage current in the case of a fixed total thickness of laminated
dielectric. In addition, it is noted that φB increases as the temperature is increased, while the leakage
current is also increased as the temperature is increased (Shown in Figure 1). This is because electrons
move more violently at high temperatures, making it easier for the electrons to cross through the even
higher barrier between the oxide layer and the gate electrode, to form an increased gate leakage current.
As a result, the samples show a clear, increased leakage current by one order of magnitude when the
temperature was increased from 30 ◦C to 70 ◦C.
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Table 2. Extracted barrier height φB,n from the Schottky emission leakage mechanism at
different temperatures.

Sample #1
HfO2 (4 nm)/Al2O3 (8 nm)

Sample #2
HfO2 (8 nm)/Al2O3 (4 nm)

30 ◦C 1.66 eV 1.62 eV
50 ◦C 1.73 eV 1.70 eV
70 ◦C 1.83 eV 1.80 eV

As Schottky emission is strongly related to dielectric-semiconductor interfacial conditions, a 60 s
etching process was applied to the dielectric surface in order to make the interface suitable for X-ray
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photoelectron spectroscopy (XPS). An Al sputtering ion beam was applied in the XPS setup with a
beam current density of 1.067 × 10−5 A/cm2 under 12,000 V. The XPS spectra were calibrated against the
C–C peak at 284.8 eV. Advantage software was used to analyze the XPS data, the binding energy peak
positions indicate the chemical environment of the elements and the peak areas show the elemental
composition. The measurements of the O 1s peak are shown in Figure 4. Figure 4a presents the XPS
measurement of the O 1s peak of the dielectric-semiconductor interface, and Figure 4b presents the
comparison of the ratio of various oxide contents on the interface. It is found that a larger amount
of Al2O3 with O 1s peak at 532.25 eV is presented in Sample #1, compared with Sample #2, which
leads to enhanced matching between the dielectric and semiconductor and benefits the interfacial
quality. Sample #2 presents Al–O and In–O on the interface, which forms interface states to degrade
the interface quality. In addition, Sample #2 shows higher HfAlO components on the interface as well.
The HfAl–O chemical bond is not as stable as the Al–O chemical bond because of its lower affinity
with the oxide atom, make it easy to generate oxygen vacancies and dangling bonds in the presence of
impurities from the epitaxial process to form interface states, i.e., As–O and In–O states, leading to a
higher concentration of interfacial states. Thus, the leakage current that was contributed by interfacial
traps is higher for Sample #2 with thinner Al3O2 at 4 nm. Therefore, increasing the ratio of Al2O3 to
HfO2 is helpful to increase the interface quality, and to suppress the Schottky leakage current.
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When Vg is continually biased to the negative direction, the Fowler–Nordheim (F–N) tunneling,
which can be verified by fitting the curves of ln(J/Ei

2) versus 1/Ei with a straight line [27–31], becomes
the main leakage mechanism. According to the extraction in Figure 5, the F–N emission occurs in
the range −3–−1.1 V and −3–−1.7 V, for Sample #1 and Sample #2, respectively. It indicates that
when the electrical field intensity is large enough, the electrons obtain enough energy to tunnel the
potential barrier to make F–N tunneling occur. It is noted that the slope of the F–N fitting straight line
under different temperatures is not the same. This is because the F–N tunneling is not proportional
to temperature [32], which is different from the Schottky emission mechanism. The effective barrier
height can be extracted from the F–N fitting curve, and values are shown in Table 3. It is found that the
barrier extracted for Sample #1 is higher than that of Sample #2 at 30 ◦C and 70 ◦C, resulting in Sample
#1 showing a reduced leakage current in the F–N region at room temperature. In contrast, Sample #1
shows a lower barrier height, of 0.18 eV, than Sample #2, showing a barrier height of 0.26 eV with the
temperature of 50 ◦C. This should make Sample #1 present a higher leakage current under the F–N
region, which is consistent with the leakage current test result in Figure 1.
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Table 3. Extracted barrier height from the F–N leakage mechanism.

Sample #1
HfO2 (4 nm)/Al2O3 (8 nm)

Sample #2
HfO2 (8 nm)/Al2O3 (4 nm)

30 ◦C 0.24 eV 0.21 eV
50 ◦C 0.18 eV 0.26 eV
70 ◦C 0.09 eV 0.03 eV

4. Discussion

The leakage current conduction mechanism of an Au-Pt-Ti/HfO2-Al2O3/InAlAs MOS-capacitor
is dependent on the bias voltage. The Schottky emission occurs at a very low negative bias, and
F–N tunneling becomes a dominant conduction mechanism when the electrical field intensity is
increased continually. Due to the larger barrier height and lower interface states, the sample with
HfO2 (4 m)/Al2O3 (8 nm) laminated dielectric shows a very low leakage current density of below
1.8 × 10−7 A/cm2 from−3 to 0 V at 30 ◦C. In conclusion, the HfO2 (4 m)/Al2O3 (8 nm) laminated dielectric
structure is an optimized design to be the high-k dielectric used in Au-Pt-Ti/HfO2-Al2O3/InAlAs MOS
capacitors to suppress the leakage current.
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