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Abstract: This paper generalizes the results of our research, which was aimed at the development of
adaptive cutting tool coatings for high speed dry cutting, from the inception of the idea to complex
multilayer coatings for processing tough metals. Typically, the streams of external energy and matter
during high speed cutting are causing damage to the tool materials and to the hard, protective
coatings through multiple mechanical and chemical processes including oxidation, however these
oxidation processes could be used to improve the tools’ lifetime. The structure and the phase
transformations on the wear surface in the nanostructured single layer and nanolaminated multilayer
PVD coatings were investigated by a set of electron spectroscopy methods. The dynamics of the
secondary phase formation on the various stages of tool life is demonstrated. The obtained results
show that the enhancement of non-equilibrium processes during friction leads to a dominating
formation of protective triboceramics on a base of sapphire-like, tungsten, and niobium polyvalent
oxides with a structure which decisively improves the wear performance. The mechanisms of the
formation of non-equilibrium protective oxides at high speed dry cutting and the non-equilibrium
thermodynamics approaches for the tribooxidation description are discussed. Polyvalent metals and
multilayer coatings provide a wider set of protective oxide nanofilms.
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1. Introduction

The present series of researches were aimed at increasing the wear resistance of tools operating at
severe tribological conditions of high speed dry cutting, with temperatures of up to 1000 ◦C, high local
stresses in the “tool-chip” contact area, the interaction of the tool surface with processing material, and
atmosphere. The most common approach to prolong the lifetime of cutting tools is linked with the
application of coatings with ultra-high hardness (DLC coatings [1–4]), low heat conductivity, and high
heat resistance, together with a low friction coefficient: Al2O3 [5–7], ZrO2 [8], oxinitride [9–11], or a
complex multilayer oxide-nitride [12–14].

The studies of wear processes and transformations of surface composition and structure in
the deformed compacted powder material (DCPM) 6W5Mo5Co HSS + 20% TiC + 2% BN [15,16]
at cutting C45 steel (HB 180–200) have demonstrated the formation of secondary non-equilibrium
non-stoichiometric amorphous oxide films on the tools surface: TiC and BN were transformed to
simple and complex oxides on the wear hollow surface as a result of tribooxidation. These processes
were developed at a depth less than 0.5 µm. Figure 1a demonstrates the thin films of TiOx that were
generated by the simultaneous oxidation and deformation of TiC particles. The atomic coordination
in these oxides that was revealed by Extended Electrons Energy Losses Fine Structure Spectroscopy
(EELFS) [17] is presented in Figure 1b. One can clearly see the lack of long range order in the atomic
coordination, which evidences the amorphous structure of oxide films.
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Figure 1. (a) The formation of non-equilibrium Ti oxides on the wear surface of DCPM through the 

oxidation of TiC particles (SEM); (b) atomic coordination in the oxide film (EELFS). 
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Figure 1. (a) The formation of non-equilibrium Ti oxides on the wear surface of DCPM through the
oxidation of TiC particles (SEM); (b) atomic coordination in the oxide film (EELFS).

The system “cutting tool-processing material-environment” can be treated as an open one with
intensive energy and matter exchange within the environment. The processes on the cutting tools’
surface are very far from equilibrium conditions due to high speeds and high contact loads, so we can
use some non-equilibrium thermodynamics approaches as guidelines for the development of coatings
that are able to improve their protective properties during operation.

So, energy and matter fluxes of high power during cutting allow us to use another protection
way: active wear resistance requiring high hardness and heat resistance of coatings with a moderate
thickness (less than 15 µm). Such coatings should be able to generate protective secondary compounds
(mainly oxides) on the surface with better tribological properties compared to the coating itself.
This paper demonstrates the complication of the composition and the structure of the coatings for
increased cutting speeds and hardness of processing materials that generalize the series of our studies.

2. Materials and Methods

The hard-wearing resistant coatings on the tools’ surface for high speed cutting were fabricated by
a physical vapor deposition (PVD) process. This method has several advantages compared to chemical
vapor deposition (CVD) coating application technology. Firstly, PVD is realized at lower process
temperatures (<500 ◦C), while 1000–1200 ◦C is typical for CVD. These low temperatures preserve the
structure of high speed steel (HSS) substrate [18,19]. Secondly, PVD coatings better fit the shape of
the tools’ cutting edge. This method provides useful compressive stresses in coatings and excludes
the reaction with a substrate. Arc-PVD technology provides a wide range of opportunities for the
formation of single- and multilayered composite coatings with nanoscale structures based on single
phase and multiphase nitrides, oxides, and borides, doped by the elements of IV–VI refractory metals,
including alloys with various elements (Al, Si, Cu, etc.) to improve its structure and properties [20].

The details of the coatings deposition and cutting test conditions were presented in our papers
which discussed the correspondent coatings [21–26].

Electron spectroscopy methods are well suited to investigations of transformation in very thin
surface layers because their typical analysis depth is 5–10 atomic layers. The determination of the
chemical composition, electronic, and atomic structure of the tool worn surface was performed
using ESCALAB Mk2 (VG) electron spectroscopy laboratory using the following techniques: X-ray
photoelectron spectroscopy (XPS), Al Kα monochromatic source, hν = 1486.6 eV, spot 2 × 8 mm2,
FWHM on Au 4f7/2 line = 0.6 eV; Auger spectroscopy (AES) including Auger microscopy,
E0 = 0.5–4 keV, LEG-200 source, spot diameter ≥ 200 nm, magnification to ×20,000, image resolution up
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to 4096 × 4096 pixels; High resolution electron energy losses spectroscopy (HREELS), EMU-50 source
(VG, UK), E0 = 0.5–100 eV; FWHM = 17 meV; Electrons energy losses fine structure analysis (EELFS)
for the determination of the atomic coordination on the surface [17]; secondary ions mass spectroscopy
(SIMS), SQ-300 quadrupole mass analyzer (VG, UK), Ar+ source AG-6 with E0 = 0.5–5 keV, spot
diameter ≥ 10 µm, and mass range 0–300 amu (atomic mass unit) Carbon 1 s photoelectron peak with
binding energy 285.0 eV was used as an internal reference to precisely determine the energy positions
of the other spectral lines. Prior to the analysis, the samples were sputter cleaned using Ar+ ions in the
preparation chamber of the spectrometer at a pressure of 10−5 Pa, an accelerating voltage of 5 kV, and
a current of 20 µA. The spectrometer settings were selected in a way to provide maximal resolution,
together with a good “signal/noise” ratio.

3. Results and Discussion

The tendency of the sophistication of elemental composition and the architecture of coatings
for high speed dry cutting is connected with the increased cutting speeds and the need to process
hard-to-cut materials, such as quenched steels, Al and Ti alloys, Ni-Al alloys, etc. These severe cutting
conditions require complex protective coatings with high hardness and fracture toughness, low thermal
conductivity and friction coefficients, adhesion compatibility with matrix, and minimal formation of
build-up. The same requirements should also be applied to secondary oxide over-coatings that are
generated on the coatings’ surface.

3.1. Single Layer Adaptive Coatings

Further development of TiN-based coatings was directed based on the complication of their
chemical composition. TiAlN nitride coatings were tested on hard-to-cut material (H13 steel, 50 HRC;
TiAl6V4; Waspalloy) machining [21–23], with the expectation of better mechanical and tribological
properties of alumina compared to the non-equilibrium TiOx.

The XPS studies of the wear surface of the coatings (Figure 2) demonstrate the simultaneous
formation of Ti and Al oxides.
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Figure 2. The fine structure of XPS lines from the wear hollow on the TiAlN coating surface: (a) Ti
2p1/2–2p3/2 line; (b) Al 2s line.

Soft titanium oxides were dynamically removed from the wear surface, while alumina remained
on the surface, protecting the underlayers of the coating from thermal and mechanical damages.
Alumina has good protective properties, possessing high hardness, low coefficients of friction,
and thermal conductivity. The finite elements method (FEM) of modeling the temperature fields
distribution at cutting, which is presented in Figure 3, demonstrates that Al2O3 tribofilm reduces
the thermal influence depth which decreases the heating of the coating and the whole cutting tool.
The properties of the components used in the model are listed in Table S1. It is necessary to emphasize
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that alumina has a negative temperature dependence of the thermal conductivity coefficient, protecting
the initial coating from heat damage.Coatings 2018, 8, x FOR PEER REVIEW  4 of 8 
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Figure 3. FEM analysis of temperature distribution in “cutting tool–chip” systems with Ti and Al
secondary oxides on the surface. 1—K10 carbide tool; 2—(TiAl)N coating; 3—medium carbon steel;
4—chip; 5—tribooxide.

So, such promising tribological properties of secondary alumina films are stipulating increased Al
content in the TiAlN coating. On the other hand, a high content of aluminum changes the structure
of a complex nitride from a cubic (hard) to a hexagonal (soft) one. It is required to bind excess
aluminum in the complex nitride coating. The addition of Cr to the TiAlN coating composition was
used to stabilize the cubic lattice. Our results presented in [22] demonstrate that the Cr in the complex
nitride is significantly changing its phase composition. CrAl7 nanoclusters are formed in the matrix
of non-equilibrium (TiCrAl)N. The increased solubility of AlN leads to the growth of the coating’s
resistibility to oxidation, and the formation of the Al2O3 films with sapphire-like structure develop on
the wear surface, together with the TiO2 and a mixture of Cr3+ and Cr4+ oxides (Figure 4). As a hard
compound, Cr2O3 also plays a positive role in a wear resistant oxide film. These tribo-oxides have
some lubricious properties and could improve the wear behavior, acting in synergy with the protective
alumina-based films. We can summarize that the tribofilms that formed during the wear of TiAlN and
(TiCrAl)N coatings, consist of protective sapphire-like tribooxides, polyvalent lubricious tribooxides of
Al and Cr, and some amount of non-protective (at elevated temperatures) rutile-like tribofilms.
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It is necessary to emphasize that the above-mentioned oxides do not exist as separate phases, but
that these Ti–O, Cr–O, Al–O chemical bonds are found in the non-equilibrium solid solution.
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The optimal Cr amount in the (TixAlyCrz)N coating with low (0.05 < x < y, x/y < 1) Ti content
could be described as:

z = (1/7 ÷ 1/5) × (x − y), (1)

Such a relationship between Ti, Cr, and Al content provides the formation of a hard cubic phase
in the coating, instead of a softer hexagonal one.

The further improvement of the coatings for high speed dry cutting led to experiments with
nanocrystalline adaptive Ti0.2Al0.55Cr0.2Si0.03Y0.02N PVD coating [23]. According to XPS and EELFS
data, the mullite-like structure of the oxide films, which have very good protective properties, was
detected on the surface.

3.2. Multilayer Adaptive Coatings with Polyvalent Metals (NbN, WN)

It is possible to control the tribooxidation process by increasing the degrees of freedom of an open
thermodynamic system. Basing on this assumption, the wear-resistant coatings were formed on the
basis of polyvalent metal nitrides: chromium, niobium, and tungsten. These polyvalent metals provide
a large range of different tribooxides. Some of them could perform a protective function, while others
with a lower strength of interatomic bonds are removed from the wear zone.

The addition of Nb and W could occur in nanolaminate multilayer architecture. The nanolaminate
structure has several preferences compared to the single layer coating, with the same thickness:

• Optimal crystalline structure of individual layers which provides the best wear resistance.
• Their oxidation dynamics are equal to a multicomponent single layer system due to very short

diffusion paths and high operation temperatures.
• The microaccumulation of cracks and other damages could be blocked on multiple interfaces.

This useful behavior of multilayer coatings compared to a single layer one was approved during
the data processing of the impact fatigue fracture resistance tests [27].

XPS studies of the wear hollow composition on multilayer nanolaminate coatings
(Ti25Al65Cr10)N/WN and (Ti25Al65Cr10)N/NbN on the steady wear stage [24] are demonstrating
the formation of the sets of W or Nb oxides of various valences (Figure 5a,b, correspondingly), together
with the set of Cr, Ti, and Al oxides, which are similar to those presented in Figure 4. All of these
oxides are localized in a very thin (less than 10 nm) surface layer, because metal -N bonds are observed
on the XPS spectra. Evidently, all of these oxides have different strengths of interatomic bonds, so their
relative quantities are changed during the wear test time. The strongest oxides are enriching the
surface, while the weaker ones are erased by a chip stream. The protective properties of oxide film are
improved in such a way.
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The evolution of the chemical composition and the atomic coordination of the secondary protective
oxides on the surface of nanolaminate (Ti20Al55Cr20Si3Y2)N/(Ti25Al65Cr10)N coating on the various
stages of wear from run-in to catastrophic wear was studied in [27]. The wear behavior of such coatings
were analyzed in [26].

It was reported in [27] that separate islands of non-equilibrium nitrides and oxides are formed
during the initial wear stage. The oxides thickness was about 1.8 nm, and they had an amorphous
structure according to EELFS data (Figure 6a). Only the nearest coordination spheres with distances
up to 0.4 nm form peaks. During this stage, the first portions of secondary oxides are formed at high
contact pressures.
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Figure 6. The evolution of the atomic coordination in the secondary oxide films after different cutting
lengths: (a) 5 m of cutting; (b) 15 m; (c) 30 m; (d) 60 m. Figures (b,c) were published as Figure 5 in [27].

One can see on Figure 6b–d that a mixture of Al and Si oxides with a mullite-like structure is
formed after 15 m of cutting. After a 30 m cutting length, the process of oxide formation provides an
increased variety of oxides on the worn surface. The sapphire-like Al2O3 and Cr2O3, with a high level
of structure defects, were observed. The thickness of the tribofilm was grown from 1.8 to 6 nm.

So, at the end of the run-in stage and during the stable stage, the oxide film covered all of the
“tool-chip” contact area. Due to the very good mechanical and protective properties of the oxide
films, their wear velocity was very low, and the high temperatures of high speed dry cutting made the
recrystallization processes in the oxides available.

Further studies have demonstrated that after 100 m of cutting (near the end of the steady wear
stage), the atomic structure of the tool surface starts to change again: EELFS at a small (less than 1 µm)
beam size reveals areas with an amorphous structure similar to the one presented in Figure 6a, together
with well-ordered areas of alumina (Figure 6d). The long-range order in tribofilms disappears and
their structure becomes amorphous again.

The reason for the formation of the amorphous zones during this stage is associated with the
increased wear velocity due to the accumulation of damages in the coating and local peeling of the
“old” oxides. Fresh amorphous oxides are formed on the open nitride surface, similarly to the nitrides’
oxidation during the beginning of cutting.
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It is necessary to emphasize that the application of the above-mentioned coatings for high
speed dry cutting is limited by the heat resistance of the substrate. So, high speed steels operate
at temperatures below 650 ◦C [28], while WC-based tools allow heating to 1000 ◦C [29,30]. Higher
operating temperatures require ceramic tools [31,32].

4. Conclusions

Nanostructured, and especially nanolaminate coatings that are based on complex nitrides,
demonstrate a very good operability during the high speed dry cutting of well processed materials
such as C45 (1045) steel, as well as hard-to-machine materials (tool steels with hardness 55–60 HRC,
austenite stainless steels, and Ni-Al alloys for jet turbine blades). Such improved wear resistance is
stipulated by the adaptation processes that are associated with the formation of protective tribooxides
as “over-coatings” in the thin surface layers of nitride coatings.

It is necessary to emphasize that these adaptive coatings are optimized for definite processing
materials and cutting modes. As expected, better operating properties in the pre-given conditions
correspond to lower versatility, not only for processing other materials, but also for the deviation of
cutting parameters from predefined values.

Observations of the wear mechanisms on the coatings’ surface allow us to conclude that the
composition of the coating shall contain minimal amounts of elements that are similar to the processing
metal base to minimize the adhesive wear of the coating.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/8/6/223/s1,
Table S1: Physical properties of the components in the FEM model
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