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Abstract: Two-dimensional (2D) materials, such as graphene and hexagonal boron nitride, are new
kinds of materials that can serve as substrates for surface enhanced Raman spectroscopy (SERS).
When combined with traditional metallic plasmonic structures, the hybrid 2D materials/metal SERS
platform brings extra benefits, including higher SERS enhancement factors, oxidation protection of
the metal surface, and protection of molecules from photo-induced damages. This review paper gives
an overview of recent progress in the 2D materials-coated plasmonic structure in SERS application,
focusing on the fabrication of the hybrid 2D materials/metal SERS platform and its applications for
Raman enhancement.
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1. Introduction

Raman spectroscopy is an optical analysis technique providing characteristic spectral information
of anlaytes and has a wide variety of applications in chemistry, biology, and medicine [1–4] because
of its capability of providing fingerprints of molecule vibration. One major drawback of Raman
spectroscopy is the low yield of Raman scattering, leading to weak Raman signals in most cases, and
thus ordinary Raman spectroscopy can hardly provide discernable signals of a trace amount of analytes.
Surface-enhanced Raman spectroscopy (SERS) makes up this deficiency via plasmon resonance from
metallic nanostructures. Molecules adsorbed on the nanostructured metallic surface experience a
large amplification of the electromagnetic (EM) field due to local surface plasmon resonance, which
leads to an orders of magnitude increase in Raman yield and greatly enhanced Raman signal. SERS
is capable of ultra-sensitive detection (single molecule detection) and allows for label-free detection
with a high degree of specificity [5–9]. To achieve high SERS enhancement factors, many efforts have
been devoted to developing various metallic (mainly Au and Ag) nanostructures to enhance the
local EM field [10–16]. In addition to the bare metal SERS structure, a hybrid structure comprised of
metal/inorganic materials [14,17–20] is also employed as a SERS sensor.

Two-dimensional (2D) materials, such as graphene and hexagonal boron nitride (h-BN), have
unique electronic and optical properties, and attract widespread interest in potential applications in
electronic devices, sensors, and energy generation [21–25]. In addition, 2D materials have been explored to
enhance Raman signals [26–32]. Since the discovery of graphene’s Raman enhancement capability [33],
extensive research has been conducted to reveal the enhancing mechanism of two-dimensional
materials, as well as their application in Raman enhancement substrates [11,13,30,34–36]. Unlike
traditional SERS substrates, 2D materials provide a non-metallic surface with which to enhance the
Raman signal. Recently, combining 2D materials with metallic plasmonic structures to form a hybrid
SERS platform has become an emerging research field. The 2D materials-coated SERS platform
offers synergetic Raman enhancement from both 2D materials and plasmon resonance, and additional
advantages such as protection of metal from oxidation and protection of molecules from photo-induced
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damages. This paper will first give a brief introduction of the Raman enhancing mechanism of 2D
materials and then discuss the recent process of 2D materials-coated plasmonic structures for SERS
application, including their fabrication, sensitivity, and stability.

2. Raman Enhancement of 2D Materials

This section will briefly introduce the Raman enhancement mechanism of 2D materials,
including graphene, h-BN, and molybdenum disulfide (MoS2). Unlike EM enhancement mechanism
of most metallic SERS substrates, Raman enhancement of 2D materials is due to chemical
enhancement mechanism [26,33,37,38]. Chemical enhancement factor on metallic surface is usually low
(~10–100) [39] compared with EM enhancement factor (~106–1011) [5,40,41]. From a broad perspective,
chemical enhancement can be considered as modification of the Raman polarizability tensor of molecule
upon its adsorption, which in turn enhances or quenches Raman signals of vibrational modes [42,43].
In normal Raman scattering process, molecules are excited by external light to a high-energy level (an
intermediate virtual state), and then molecules relax to ground state and emit Raman scattered photons.
If the energy of the intermediate virtual state happens to be the same as one of the real electronic levels
in the molecule, this scattering process is called resonance Raman scattering, which will have higher
scattering efficiency and enhanced Raman signal. Charge-transfer model is often employed to explain
chemical enhancement mechanism when molecules are adsorbed on metallic surface. One scenario of
charge-transfer mechanisms is that molecules and metal form a surface complex by chemical bonding,
which may cause a substantial change in the intrinsic polarizability of the molecule. This new surface
complex creates a new electronic state, which is in resonance with the laser and shows enhanced
Raman signal. This charge transfer model is the so-called excited state charge transfer model [44].
2D materials provide a superior platform to study the chemical enhancement mechanism, because
they have no dangling bonds in vertical direction and have atomically flat surface, and thus offer a
pure system for the study of chemical enhancement effect.

Graphene is the first 2D material used to enhance Raman signals of molecules [33]. Raman
enhancement of pristine graphene is ascribed to the ground state charge transfer mechanism [28,37]
instead of the aforementioned excited state charge transfer mechanism. In ground state charge transfer
process, analyte molecules do not form chemical bond with SERS substrate necessarily, and charge
transfer happens when the substrate and the molecules are in the ground state. The charge transfer
between molecules and graphene is a physical interaction instead of chemical bonding formation,
and thus causes minor change in analytes’ electronic distribution. Ground-state charge transfer can
easily happen between graphene and molecules adsorbed on its surface because of graphene’s two
unique features: abundant π electrons on its surface and continuous energy band. Figure 1a shows the
proposed ground state charge-transfer process between a dye molecule and graphene. In this process,
the graphene electrons involvement in the Raman scattered process can enhance the electron−phonon
coupling and thus induce the enhancement of the Raman signals [37]. It has been found that graphene
Raman enhancement is vibration-mode dependent. The vibrational mode involving the lone pair or
π electrons, which has stronger coupling with graphene, has highest Raman enhancement [29,45].
A more in-depth explanation of graphene-based surface enhancement scattering (GERS) has been
given in [37].

h-BN and MoS2 are other two kinds of 2D materials with different electronic and optical properties
from graphene. h-BN is highly polarized and insulating with a large band gap of 5.9 eV [46].
CuPc molecule Raman signal is found to be enhanced by h-BN substrate. One proposed Raman
enhancement mechanism of h-BN is the interface dipole interaction with analyte molecules, which
causes symmetry-related perturbation in the CuPc molecule [26]. In addition, the Raman enhancement
factor does not depend on the h-BN layer thickness, because the distribution of the intensity is uniform
no matter how thick the h-BN flake is. Atomic layer thin MoS2 is semiconductor and also has a
polar bond [47]. For MoS2, both the charge transfer and interface dipole interaction contribute to
the Raman enhancement, but both contributions are much weaker compared with graphene and
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h-BN, respectively. The Raman enhancement of MoS2 is not as obvious as that of graphene and h-BN,
as shown in Figure 1b.

Figure 1. (a) Schematic of the Raman scattered process of graphene-enhanced Raman spectroscopy.
Reproduced from [37] with permission; Copyright ACS 2012. (b) Raman spectra of the CuPc molecule
on the blank SiO2/Si substrate, on graphene, on h-BN, and on MoS2 substrates. The numbers marked
on the peaks are the peak frequencies of the Raman signals from the CuPc molecule. Reproduced
from [26] with permission; Copyright ACS 2014.

3. Two Dimensional Materials-Coated Plasmonic Nanostructures

Traditional SERS analysis relies on metallic nanostructures that can generate strong local EM
field. When combining 2D materials with metallic structure, the hybrid SERS substrate can provide
even higher SERS enhancement factor due to the synergic effect of electromagnetic and chemical
enhancement. 2D materials, like graphene and h-BN, could offer chemically inert and biocompatible
surfaces [48–50], which is favorable in bio-detection. With 2D materials as shielding layer on
metallic surface, metallic SERS platforms such as Ag could be protected from oxidation and have
longer shelf life, which can improve the stability and repeatability of SERS analysis. The following
discussion will focus on the fabrication, sensitivity, and stability of 2D materials/plasmonic structure
for SERS application.

3.1. Fabrication

2D materials/plasmonic structures require incorporation of 2D materials and metallic plasmonic
structures that can provide high local electric field upon laser excitation. Common fabrication methods
of 2D materials include mechanical exfoliation, chemical exfoliation, and chemical vapor deposition
(CVD). Summary of 2D materials synthesis [51–53] and metallic SERS substrate [54–56] fabrication
can be found elsewhere. This section will focus on the incorporation of 2D materials with metallic
plasmonic structure.

One simple way to incorporate 2D materials with metallic nanostructure is to transfer CVD grown
2D materials on metal surface. Graphene and MoS2 have been proven to be capable of overlapping on
Au nanostructures and generating strong Raman signals of graphene and MoS2 [57]. Zhu et al. [58]
fabricated graphene-covered gold nanovoid arrays using CVD grown monolayer graphene and
investigated the SERS performance of graphene/plasmonic structure. Figure 2 shows the graphene
transfer process and the SEM images of graphene-covered gold nanovoid arrays. In this study,
graphene was actually suspended on Au nanovoid arrays instead of being conformally coated on
Au surface. To achieve 2D material conformally coated SERS substrates, metallic structures need to
have certain morphology. For instance, nanopyramid and nanocone structure can be conformally
coated with 2D materials, although some ripples are unavoidable. Figure 3 shows graphene-coated Au
nanopyramid [30] and MoS2-coated SiO2 nanocone [59], in which 2D materials are transferred with
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the assistance of poly(methyl methacrylate) (PMMA). Metallic plasmonic structure with conformally
coated 2D materials can be better isolated from air and thus has longer stability.

Figure 2. (a) Schematic illustrations of the graphene transfer process. (b) SEM image of a large-area
nanovoid array integrated with the transferred monolayer graphene. The dark region is covered
by graphene. The inset shows a SEM image of the cross-section of graphene-covered nanovoids.
Reproduced from [58] with permission; Copyright ACS 2013.

Figure 3. (a) Graphene-coated Au nanopyramid structure. Scale bare is 200 nm. Reproduced from [30]
with permission; Copyright ACS 2015. (b) Tilted false-colour SEM image of the 2D strained MoS2

crystal defined by the nanocone array. Scale bar is 500 nm. Reproduced from [59] with permission;
Copyright Springer 2015.

PMMA-assisted transfer method has advantage of being able to coat 2D materials for plasmonic
structures with various morphologies. However, the drawback is that PMMA residue left on the
surface of 2D materials [60] may generate noisy Raman peaks and prevent analyte molecules directly
adsorbed on the surface of 2D materials. Therefore, special care needs to be paid to avoid large amount
of PMMA residue. Another concern of this transfer method is that the capillary force during the drying
process of 2D materials may tear apart the 2D materials and expose the metallic surface to ambient
environment. Xu et al. [27] developed a novel flexible graphene/plasmonic structure with PMMA as a
carrying substrate for SERS application. In this study, PMMA was used to support a flat graphene
surface instead of a sacrificing transfer layer. Figure 4 shows the fabrication process of the flexible
graphene SERS tape.

Another way to incorporate 2D materials with metallic nanostructure is to use chemically
exfoliated 2D materials to coat metallic nanoparticles. Kim et al. [61] developed a method with
which to sandwich Ag nanoparticles between layers of reduced graphene oxide (rGO) and graphene
oxide (GO) in order to prevent Ag nanoparticle from oxidation and boost Raman signals of analytes.
Compared with CVD grown 2D materials, chemically exfoliated 2D materials are cost effective and
easily to functionalize [61–64]. Figure 5 shows the preparation of SERS substrates with chemically
exfoliated graphene.
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Figure 4. Schematic steps of the preparation route flexible G-SERS tape prepared from CVD-grown
monolayer graphene. Reproduced from [27] with permission; Copyright PNAS 2012.

Figure 5. Fabrication Process of GO/PAA-AgNP/PAA-RGO films for application as SERS platform.
Reproduced from [61] with permission; Copyright ACS 2012.

Besides ex-situ transferring of 2D materials onto metal surface, in-situ growing 2D materials,
like graphene and MoS2, on metal surface is another attractive approach for incorporating 2D
materials with plasmonic structure. Liu et al. [65] developed a CVD process to grow graphene
shell with controllable thickness on the surface of metal NPs. Figure 6 shows the fabrication process
of graphene-encapsulated metal nanoparticles. In situ-grown 2D materials on metal surface do not
require 2D materials transfer process and have little chance to have polymer residue left on the surface
of 2D materials. CVD in-situ grown 2D materials is a promising method for conformally coating 2D
materials on metallic surface. However, due to the high temperature of CVD process, pre-designed
metallic nanostructure may change its morphology during high temperature process and lose the
pre-designed high local EM field. Low temperature plasma-enhanced CVD method [66–68] could be a
potential choice for in-situ growth of 2D materials on metal surface.

Figure 6. Production process for the Metal@Graphene to serve as a SERS-active substrate. Reproduced
from [65] with permission; Copyright ACS 2014.

3.2. Sensitivity

Among various 2D materials, graphene is the most widely explored one for incorporation with
plasmonic structure. Graphene/metal hybrid SERS platform shows superior SERS performance
compared with bare metal SERS substrates. Because of chemical interaction between graphene and
target molecules, certain SERS modes are enhanced or prohibited. Although the chemical enhancement
factor of 2D materials is not as high as metallic nanostructure, several tens’ of times of Raman signal
enhancement could be essential when detecting molecules at single molecular level. Several times
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enhancement determines whether the Raman peaks can be seen or not. Comparisons of enhancement
factors of different types of SERS sensors are summarized in Table 1. It can be seen that pristine
2D materials generally have lower enhancement factors than metallic SERS substrates or hybrid
SERS substrates containing metal. However, a more meaningful comparison between different SERS
platforms would require the same analytes and the same detection approach (laser wavelength, laser
power, accumulation time, etc.).

Table 1. Comparisons of typical types of SERS substrates.

SERS Substrate Type Substrate Materials Enhancement Factor Analytes Ref.

Metal
Au nanotriangles 1.2 × 105 Benzenethiol [69]

Ag nanocubes 1.25 × 105 1,4-benzenedithiol [70]
Ag nanoparticles 1014–1015 Rhodamine 6G [71]

Metal/inorganic
hybrid structure

SiO2-coated silver
nanocubes 1.2 × 106 Rhodamine 6G [72]

Au nanoparticle-coated
ZnO nanoneedles 1.2 × 107 Rhodamine 6G [19]

Au-coated ZnO nanorods 106 Rhodamine 6G [73]

2D materials/Metal
hybrid structure

Monolayer
graphene-coated Au

nanopyramids
1010 Rhodamine 6G and

lysozyme [29]

Monolayer
graphene-coated Au

nanovoids
103 Rhodamine 6G [58]

Few layer graphene-coated
Au nanoparticles 9.2–19.4 Cobalt phthalocyanine [65]

2D materials

Monolayer graphene 2–17 Phthalocyanine [33]
Monolayer MoS2 5 × 104–3.8 × 105 4-mercaptopyridine [31]

h-BN 6.9–41 Copper phthalocyanine [26]
Monolayer WSe2 0.18–4.7 Copper phthalocyanine [32]

Monolayer graphene on
top of monolayer WS2

3.8–78.2 Copper phthalocyanine [32]

Wang et al. [29] developed a graphene/Au nanopyramid hybrid SERS platform, which shows
single-molecule detection capability for analytes like R6G and lysozyme. In this study, SERS
performance of graphene/Au nanopyramid hybrid substrate and bare Au nanopyramid substrate were
compared. Table 2 [29] summarizes the average SERS signal enhancement of graphene/Au hybrid
substrates over bare Au SERS substrate. As shown in Table 2, additional graphene layer contributes
extra few times of Raman enhancement for R6G peak intensity compared with bare Au nanpyramid
substrates, which demonstrates the synergic effect of electromagnetic and chemical enhancement
from graphene. Even for molecules with small Raman cross-section, like dopamine and serotonin,
graphene/Au hybrid platform can still achieve detection limit of 10−9 M in simulated body fluid [30].
With graphene/Au nanopyramid hybrid SERS substrates, serotonin molecule Raman peak hot spots
and graphene peak hot spots actually coincide, as seen from the Raman intensity mapping of analytes
peak with that of the graphene G peak (Figure 7). The results indicate that the intrinsic Raman signal
of 2D materials in 2D materials/metal hybrid SERS platform can serve as a gauge of the near-field
EM-field intensity to locate hot spots. This unique feature of hybrid platform offers an advantage
for molecule detection at ultra-low concentrations. Actual hot spots of SERS substrates are rare and
random, even for patterned nanostructure. For extremely diluted solution, the spatial coincidence of
molecules and hotspots is rare, leading to long time of up to hours spent on searching for measurable
signals. With 2D materials’ intrinsic Raman peak intensity as a SERS enhancement factor marker, the
hot spots of the 2D materials/metal hybrid SERS platform could be located in advance and speed up
the later detection of target molecules. For 2D materials used in hybrid SERS platform with patterned
metallic SERS nanostructures, graphene is the ideal choice, because graphene only has a few intrinsic
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Raman peaks, and large-area, high quality graphene is easily achievable. In addition, monolayer
graphene has only 2.3% absorption of the incident laser, and its plasmon resonance frequency is the
tetra Hz regime. Therefore, it has little effect on the EM field of metallic SERS substrates.

Figure 7. (a) Raman spectra of Serotonin molecules on graphene hybrid structure with 3 different
concentrations (10−4, 10−8, and 10−10 M); (b,c) Raman intensity mapping of graphene G band (green)
and Raman intensity mapping of serotonin peak at 1546 cm−1 (red) of the same area, scale bar: 10 µm;
(d) Schematic of graphene/Au nanopyramid SERS substrate. Reproduced from [30] with permission;
Copyright ACS 2015.

Table 2. Vibration mode dependent enhancement and assignment of Raman peaks in SERS spectra for
R6G [29].

SERS Peaks (cm−1) Peak Assignment Average Enhancement (IGraphene/Au tip/IAu tip)

613 δ(C–C–C)ip 10
775 δ(C–H)op 5
1187 δ(C–H)ip 2
1311 ν(C–C)+, ν(C–N) 6
1360 ν(C–C)+, ν(C–N) 6
1506 ν(C–C) 4
1577 ν(C–O–C) 8

Note: IGraphene/Au tip is the R6G Raman intensity obtained on graphene/Au nanopyramid; IAu tip is the R6G Raman
intensity obtained on bare Au nanopyramid.

Besides graphene, h-BN also served as coating layer on plasmonic structure for SERS application.
Kim et al. [74] reported h-BN layer-wrapped Au nanoparticles as SERS substrate. h-BN coated Au
SERS substrate can provide sensitive detection of aromatic hydrocarbon (PAC) molecules, such as
B(α)P. PAC molecule Raman detection is very difficult using conventional metallic SERS, because the
weak interaction between polycyclic aromatic hydrocarbon (PAC) molecules and the metal surface
prohibits their adsorption on the metal surface. With h-BN wrapped Au SERS substrates, noticeable
and characteristic bands of B(α)P can be detected (Figure 8a), because the π−π interaction between
B(α)P and h-BN enlarges the surface adsorption coverage (Figure 8b).
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Figure 8. (a) SERS spectra benzo(α)pyrene on h-BN/Au/SiO2 and Au/SiO2 substrates; (b) schematic
mechanism to explain SERS of benzo(α)pyrene on h-BN/Au/SiO2 and Au/SiO2 substrates. Reproduced
from [74] with permission; Copyright ACS 2016.

3.3. Stability

Ag nano-structure is known to have excellent SERS performance with wider plasmonic spectral
window than other metallic structure made of Au or Al. However, one major weakness of Ag
nanostructure is that it is easily oxidized in ambient environment. The degradation of Ag will lower the
SERS performance and cause uncertainty of analysis. In addition, photo induced damage on analyte
molecules is a well know side effect of metallic SERS substrates. This section will discuss recent process
of using 2D materials as shielding layer to protect SERS metal substrates from oxidation and protect
analyte molecules from photo-induced damages.

2D materials, like graphene and h-BN, are able to protect metal to be oxidized [75,76]. This feature
of 2D materials can also be used in SERS substrate development [65,77]. When single layer graphene
combines with Ag nanostructure, the hybrid SERS platform provides both better SERS performance and
excellent stability in a harsh environment (sulfur) and at high temperatures (300 ◦C) [78]. Liu et al. [77]
combined CVD grown graphene with silver SERS substrates and demonstrated that with the graphene
as protecting layer, the hybrid graphene/Ag SERS substrate could achieve large-area uniformity
and long-term stability. Li et al. [79] compared the oxidation protection effect between CVD grown
graphene and rGO coated Ag nanoparticles. They found out that CVD-grown monolayer graphene
served as a better protecting layer than rGO to effectively suppress the oxidation of Ag nanoparticles.
As seen from Figure 9, CVD-grown, graphene-coated Ag SERS substrate can provide stable R6G SERS
signals up to 28 days with ambient aerobic exposure, while rapidly decreasing Raman signals are seen
from rGO-coated and bare Ag nanoparticles. Worse performance of rGO-protected Ag nanoparticle
is due to (1) the wide size distribution of rGO results an incoherent thin film and (2) the fact that
cracks and holes on rGO film act as a channel to allow air reach Ag surface, leading to the oxidation of
Ag nanoparticles.
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Figure 9. (a) The normalized intensity of the R6G Raman peak at 1364 cm−1 collected using, respectively,
the unprotected (black), rGO-protected (green), and CVD graphene-protected (purple) Ag nanoparticles
as substrates, versus the time of aerobic exposure; (b) the normalized intensity of the R6G Raman peak
at 1509 cm−1 collected using, respectively, the unprotected (black), rGO-protected (green), and CVD
graphene-protected (purple) Ag nanoparticles as substrates, versus the time of aerobic exposure;
(c) SEM image of the CVD graphene-protected Ag nanoparticles after their 28-day use as the SERS
substrate for the measurement of R6G; (d,e) SEM image of the unprotected Ag nanoparticles after their
28-day use as the SERS substrate for the measurement of R6G. Reproduced from [79] with permission;
Copyright Elsevier 2013.

Another benefit to combine 2D materials with metallic nanostructures is that 2D materials
can help protect molecules from photo-induced damage, such as photobleaching [27,65,80,81].
The photobleaching (or photodegradation) of the Raman anlaytes induced by the laser is a well-known
side effect in SERS experiments, especially for dye molecules. When combining graphene with
metallic nanostructure, the hybrid SERS platform is more stable against photo-induced damage
with an even higher enhancement factor. Liu et al. [65] fabricated graphene-encapsulated metal
nanoparticles for molecule detection and found out that AuNP/graphene hybrid substrate could
significantly suppress photobleaching and fluorescence of cobalt phthalocyanine (CoPc) and R6G
molecules. For instance, within the 160 s measurement period, the 1534 cm−1 peak intensity of CoPc
molecules decreases dramatically for Au NPs, while the same peak intensity almost keeps constant for
Au@Graphene, as shown in Figure 10a,b. Zhao et al. [81] also demonstrated that graphene can enhance
the photostability of R6G molecules with graphene coated Ag SERS substrates during continuous
light illumination. Enhanced photostability of molecules provided by graphene during SERS detection
is attributed to π−π interactions between graphene surface and molecules [65,81]. Molecule π−π
interaction with graphene allows the charge transfer between graphene and molecules, providing
additional path for the molecules to relax from the excitation state to the ground state [82]. This process
reduces the number of molecules at excitation states and thus decreases photobleaching rate. Similar
protection effect can be achieved by using h-BN layer as well. Kim et al. [74] reported a h-BN film
wrapped Au substrate showing extraordinary stability against photothermal and oxidative damages
during laser excitation, as shown in Figure 10c,d. This outstanding stability against photothermal
damage of h-BN wrapped Au SERS substrate is attributed to the ultrafast heat dissipation through
the h-BN layer. With 2D materials as a shielding layer, hybrid SERS substrates will provide
long-term stability.



Coatings 2018, 8, 137 10 of 14

Figure 10. Stability of SERS signals of monolayer CoPc LB films on (a) Au and (b) Au@G. Reproduced
from [65] with permission; Copyright ACS 2014. Photothermal and chemical stability of 3 L
h-BN/Au/SiO2 substrate; SERS spectra of R6G on the Au/SiO2 substrate (c) without and (d) with
h-BN protection at different time points (laser power = 0.1 mW, time interval = 15 min). Reproduced
from [74] with permission; Copyright ACS 2016.

4. Conclusions and Perspective

In summary, 2D materials’ Raman enhancement is due to the chemical enhancement mechanism,
which differentiates them from metallic SERS substrates. Coating 2D materials on metallic SERS
substrates introduces extra benefits over bare metal substrates. First, adding 2D materials can further
increase the SERS enhancement factor due to the synergic effect of electromagnetic and chemical
enhancement. Second, the atomic thin film of 2D materials can help map out the hot spots of the
metallic nanostructure without affecting the local EM field of the metallic nanostructure underneath.
For example, a Raman mapping of the graphene G peak over the hybrid SERS substrates could give the
precise position of the hot spots. Finally, adding 2D materials as a shielding layer offers a chemically
inert surface and helps to reduce the fluctuation of the SERS signal caused by the degradation of the
metallic nano-structures, photobleaching, or metal-catalyzed site reactions, and thus improves the
long-term stability and repeatability of the SERS analysis.

Conflicts of Interest: The authors declare no conflict of interest.
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