Next Article in Journal
Study on the Properties of 1319 nm Ultra-High Reflector Deposited by Electron Beam Evaporation Assisted by an Energetic RF Ion Source
Previous Article in Journal
Effect of Hexagonal Phase Content on Wear Behaviour of AlTiN Arc PVD Coatings
Previous Article in Special Issue
Experimental Evaluation and Modeling of the Damping Properties of Multi-Layer Coated Composites
Article Menu

Article Versions

Export Article

Open AccessArticle
Coatings 2018, 8(2), 73; doi:10.3390/coatings8020073

Damping Oriented Design of Thin-Walled Mechanical Components by Means of Multi-Layer Coating Technology

Department of Industrial Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
*
Author to whom correspondence should be addressed.
Received: 29 December 2017 / Revised: 31 January 2018 / Accepted: 9 February 2018 / Published: 13 February 2018
(This article belongs to the Special Issue Manufacturing and Surface Engineering)
Download PDF [867 KB, uploaded 13 February 2018]

Abstract

The damping behaviour of multi-layer composite mechanical components, shown by recent research and application papers, is analyzed. A local dissipation mechanism, acting at the interface between any two different layers of the composite component, is taken into account, and a beam model, to be used for validating the known experimental results, is proposed. Multi-layer prismatic beams, consisting of a metal substrate and of some thin coated layers exhibiting variable stiffness and adherence properties, are considered in order to make it possible to study and validate this assumption. A dynamical model, based on a simple beam geometry but taking into account the previously introduced local dissipation mechanism and distributed viscoelastic constraints, is proposed. Some different application examples of specific multi-layer beams are considered, and some numerical examples concerning the beam free and forced response are described. The influence of the multilayer system parameters on the damping behaviour of the free and forced response of the composite beam is investigated by means of the definition of some damping estimators. Some effective multi-coating configurations, giving a relevant increase of the damping estimators of the coated structure with respect to the same uncoated structure, are obtained from the model simulation, and the results are critically discussed.
Keywords: damping; multi-layer beam; FGM; locally distributed viscosity damping; multi-layer beam; FGM; locally distributed viscosity
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Catania, G.; Strozzi, M. Damping Oriented Design of Thin-Walled Mechanical Components by Means of Multi-Layer Coating Technology. Coatings 2018, 8, 73.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Coatings EISSN 2079-6412 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top