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Abstract: A scanning atmospheric-pressure plasma jet (APPJ) is essential for high-throughput large-area
and roll-to-roll processes. In this study, we evaluate scan-mode APPJ for processing reduced graphene
oxides (rGOs) that are used as the electrodes of quasi-solid-state gel-electrolyte supercapacitors.
rGO nanoflakes are mixed with ethyl cellulose (EC) and terpineol to form pastes for screen-printing.
After screen-printing the pastes on carbon cloth, a DC-pulse nitrogen APPJ is used to process the pastes
in the scan mode. The maximal temperature attained is ~550 ◦C with a thermal influence duration of
~ 10 s per scan. The pastes are scanned by APPJ for 0, 1, 3 and 5 times. X-ray photoelectron spectroscopy
(XPS) indicates the reduction of C-O binding content as the number of scan increases, suggesting the
oxidation/decomposition of EC. The areal capacitance increases and then decreases as the number of
scan increases; the best achieved areal capacitance is 15.93 mF/cm2 with one APPJ scan, in comparison
to 4.38 mF/cm2 without APPJ processing. The capacitance retention rate of the supercapacitor with the
best performance is ~93% after a 1000-cycle cyclic voltammetry (CV) test. The optimal number of APPJ
scans should enable the proper removal of inactive EC and improved wettability while minimizing the
damage caused to rGOs by nitrogen APPJ processing.

Keywords: atmospheric pressure plasma; reduced graphene oxide; supercapacitor

1. Introduction

Atmospheric-pressure plasma (APP) is a technology that can be operated at regular pressure without
using vacuum pumps and a vacuum chamber; therefore, it is considered a cost-effective technology [1–4].
Several techniques have been developed to overcome problems such as high breakdown voltage,
continuous arcing and instability, making APPs ready for industrial applications [5,6]. These techniques
include the use of pointed electrodes (corona discharges), application of a dielectric material to cover
at least one of the electrodes (dielectric barrier discharge, DBD), applications of miniaturized plasma
to enlarge the surface-to-volume ratio for enhanced heat dissipation (microplasma), use of high-speed
flows for efficient convective heat dissipation (atmospheric-pressure plasma jet, APPJ) and discharge
pulsing and AC signal excitation of plasma [4]. Usually, one or several of these techniques combined is
used for generating and stabilizing APPs. Coplanar DBD is frequently used for large-area roll-to-roll
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process at relatively low gas temperature [7]. When APPJ is used for large-area processing, multiple
jets with a scanning stage are typically essential for high-throughput large-area roll-to-roll processes.

Various excitation methods for APPs lead to various combinations of electron density and gas
temperature. The feature of generating reactive free radical species and UV radiation at biotolerable
temperatures has attracted interest for biomedical applications such as sterilization, bacteria inactivation
and cancer treatment [3,8–11]. Some APPs possess slightly higher electron density and moderate gas
temperature of the order of hundreds of degrees Celsius. In such APPs, the synergetic effects of reactive
species and heat trigger high plasma-chemical reactivity, thus affording ultrafast materials processing
capability [12–20]. For example, a DC-pulse nitrogen APPJ shows high reactivity with carbonaceous
materials and the processing times for carbon nanotubes (CNTs) and reduced graphene oxides (rGOs)
are within 30 s [12,15,18–22]. Carbon-based materials react violently with the reactive species of nitrogen
plasma at the APPJ self-sustained temperature, as evidenced by optical emission spectroscopy (OES)
observations of CN-emission systems. A microplasma jet has been used for patterning a CNT layer [23];
in this case, ozone generated by the microplasma jet is considered the major oxidation reactant. Reactive
oxygen atoms in APPJ are considered the main etchant for polyimide [24,25]. Other applications in food
processing and agriculture [26–28] and surface modification with adhesion enhancement [29] also show
high potential [29–32].

Supercapacitors are high-power-density energy-storage devices that can be operated under
a fast charging-discharging condition [33,34]. Two typical mechanisms are involved in charge
storage: pseudocapacitance and electrical double-layer capacitance (EDLC). Pseudocapacitance arises from
Faradaic reaction of electrode surface materials such as metal oxides and conductive polymers [35,36].
EDLC involves ion adsorption at the electrolyte-electrode interface; this typically occurs in carbon-based
materials such as activated carbon black, CNTs and graphenes [18–20,37–39]. Since Geim et al. [40]
separated graphite into graphene in 2004, the properties of graphene has been investigated extensively.
Many applications are designed based on graphene’s outstanding properties such as high mechanical
strength, high thermal conductivity and excellent electrical conductivity. Graphene has been applied
in various fields such as solar cells [21], fuel cells [41], supercapacitors [18,19] and electrochemical
sensors [42]. Supercapacitors with high areal capacitance also have been realized using hierarchical carbon
tubular nanostructures [43]. Composite materials consisting of materials with pseudocapacitance and
EDLC have also been extensively investigated [33,44]. Microplasma jet etching has been used for defining
patterns on coplanar CNT micro-supercapacitors without masks [23]. Scanning atmospheric-pressure glow
discharge plasma has been proposed as an eco-friendly and cost-effective strategy for the instantaneous
(within 2 s) reduction of graphene oxide (GO) paper for supercapacitor application [45]. Stationary
DC-pulse nitrogen APPJs have been used for preparing CNT and rGO electrodes for supercapacitors
with processing time within 30 s [18–20]. Corona negative glow has been applied for the instantaneous
reduction of GO paper [45]; scanning atmospheric plasma also has been used for ultrafast reduction of
GO and fabrication of highly conductive graphene films and patterns [46]. Because the APPJ zone of
influence is localized, multiple jets with a scanning stage are required for high-throughput large-area
processing. In this study, we experimentally investigate rGO supercapacitors fabricated by using a
scan-mode DC-pulse nitrogen APPJ. The results of this study confirm the feasibility of one scan APPJ
process for supercapacitor fabrication. This opens up an opportunity for applying this technology to
continuous roll-to-roll processes with higher temperature tolerant flexible substrates such as stainless
steel, carbon cloth and willow glass.

2. Materials and Methods

2.1. rGO Pastes Preparation

0.1 g of rGO nanoflakes (purity 99%, thickness: <5 nm, sheet diameter: 0.1-5 µm, Golden
Innovation Business Co., Ltd., New Taipei City, Taiwan), 0.245 g of terpineol (anhydrous, #86480,
Fluka, St. Louis, MO, USA), 0.4698 g of ethanol, 1.4 g of 10 wt % ethyl cellulose (EC) (5–15 mPa·s,
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#46070, Fluka) ethanolic solution, 1.8 g of 10 wt % EC (30–50 mPa·s, #46080, Fluka) ethanolic solution
were mixed and stirred at 450 rpm for one day using a magnetic stirrer (PC-420D, Corning Inc.,
Corning, NY, USA), following which 4 mL of the mixture was extracted and concentrated at 55 ◦C for
5 min by using a rotovap (N-1200AVF, Taipei City, Taiwan).

2.2. Supercapacitor Fabrication

rGO pastes were deposited onto carbon cloth with a feature dimension of 1.5 cm × 2 cm by
screen-printing. Next, a DC-pulse nitrogen APPJ (Industrial Technology Research Institute, Hsinchu
County, Taiwan) was used to sinter the printed rGO pastes with a stage scan rate of 0.75 cm/s. Samples
were sintered by APPJ for 0/1/3/5 scan times. Figure 1 shows a schematic of the DC-pulse APPJ
setup with a motorized scanning stage. The APPJ operation parameters were 30 slm (standard liter
per minute) of nitrogen gas flow, operation voltage of 275 V, pulse duration of 7 µs and repetition rate
of 25 kHz. The applied voltage was increased to >10 kV by using a transformer. A quartz tube with
a length of 2.7 cm and inner diameter of 3 cm was installed downstream of the APPJ to reduce the
quenching effect of ambient air. This arrangement of the quartz tube can extend and expand the plasma
plume with an increased plasma influencing zone [47]. The detailed characterization of this DC-pulse
APPJ has been described elsewhere [47–50]. At each pulse power period, the plasma undergoes a
glow-to-arc transition. The main factors influencing the characteristics of this transition are the gas
flow rate, applied voltage and duty cycle. The plasma reactivity is controlled by the power input to
the plasma as well as the decay process of the reactive species upon formation. The reactivity increases
with an increase in the applied voltage and the gas flow rate; the jet temperature increases with an
increase in the applied voltage and with a decrease in the flow rate. Figure 1b shows the evolution
of the substrate temperature during five APPJ scans. The APPJ influencing duration was ~10 s per
scan. The maximal temperature attained was ~500–550 ◦C. The substrate temperature was measured
using a K-type thermocouple (National Instrument, Austin, TX, USA) attached to the substrate and
was recorded on a computer. The rGO pastes containing ethyl cellulose as binders. According to
thermogravimetric analysis (TGA), the ethyl cellulose decomposes at ~312 ◦C [51]. DC-pulse nitrogen
APPJ with plasma-heated substrate temperature of ~500–550 ◦C can ensure the rapid burnout of the
organic binders. Figure 1c shows the image of scan-mode nitrogen APPJ during operation.
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Figure 1. (a) DC-pulse APPJ setup with a motorized scanning stage; (b) Temperature evolution of the
substrate with five scans; (c) Image of scan-mode nitrogen APPJ during operation.
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After APPJ processing, the carbon cloth with screen-printed rGOs was attached to polyethylene
terephthalate (PET) substrate. A gel electrolyte was prepared by mixing 15 mL 1-M H2SO4 aqueous
solution with 1.5 g of PVA and stirring at 80 ◦C for 4 h by using a magnetic stirrer. A polyvinyl alcohol
(PVA) and H2SO4 blended gel was spread onto the rGO-coated carbon cloth and dried naturally.
This coating procedure was repeated three times. Finally, two separate gel-coated electrodes were
pressed together on the gel-sides to form a sandwich-structure supercapacitor.

2.3. Characterization of rGO-Coated Carboncloth and Supercapacitors

The optical emissions from the plasma during APPJ processing were monitored using a
spectrometer (USB4000, Ocean Optics, Largo, FL, USA). The APPJ-sintered rGOs on carbon cloth were
examined by scanning electron microscopy (SEM, JSM-7800F Prime, JEOL, Tokyo, Japan) and X-ray
photoelectron spectroscopy (XPS, Thermo K-Alpha, VGS, Waltham, MA, USA) with Al Kα source.
XPSPEAK 4.1 software was used for the analyses of binding energy spectra. The water contact angle
was measured using a goniometer (Model 100SB, Sindetake, Taipei City, Taiwan) with a droplet volume
of 3.5 µL. Cyclic voltammetry (CV), galvanostatic charging-discharging (GCD) and CV cycling stability
tests were performed using an electrochemical workstation (Zahner Zennium, Kronach, Germany).

3. Results and Discussion

3.1. OES of Plasma during APPJ Processing

Figure 2a shows the OES of plasma during scan-mode APPJ processing. CN emissions can
be clearly observed as the APPJ is scanned over the screen-printed pastes, suggesting the reaction
between reactive nitrogen species in plasma and carbon-based materials. As the number of APPJ
scans increases, the CN emission intensity decreases, indicating the decreased amount of carbonaceous
materials. Reactive nitrogen plasma species react violently with both EC and rGOs. This reaction
is even more vigorous with EC than with rGOs [12,22], as evidenced by XPS results shown later.
The gaseous reactants containing –CN bonds underwent excitation-relaxation processes to emit intense
CN violet emissions. Figure 2b shows the OES of plasma during the stationary APPJ processing of
the rGO pastes on carbon cloth. The CN emission intensity clearly decreased as the APPJ processing
time increased. These results are consistent with previous results of APPJ processing of rGOs pastes
on a fluorine-doped tin oxide substrate [12,21,22], except that the residual CN emission intensity is
stronger in the present study. This is because the carbon cloth contains carbon fibers and some reaction
between reactive nitrogen plasma species and the carbon fibers still occurred after rGO and EC were
consumed. Nitrogen plasmas have high reactivity [52] because of excited nitrogen molecules (N2 1st
positive (B3Πg→A3∑+

u) and N2 2nd positive (C3Πu→B3Πg; the intensities of these two transitions
are small compared with those of CN emission system) [48]. These excited state molecules possess
energy over 6 eV above the ground state. Upon collision with the treated materials, the quenching of
these molecules provides extra energy. The existence of excited nitrogen molecules together with the
high jet temperature make the ultra-short processing time possible.
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Figure 2. OES of plasma during (a) scan-mode and (b) stationary APPJ processing.

3.2. SEM Images of APPJ-Processed rGOs on Carbon Cloth

Figure 3 shows SEM images of the APPJ-processed rGOs on carbon cloth. In images with
1000×magnification, carbon fibers can be clearly observed with screen-printed rGOs filled in the spaces
between fibers. This increases the overall surface area of the electrode used for a supercapacitor. In samples
processed with five APPJ scans, some fibers clearly broke owing to the reaction of the nitrogen APPJ
at the self-sustained plasma temperature. Images with 5000× and 30,000× magnifications show that
the screen-printed rGOs are flake-like after APPJ processing. In samples processed with five APPJ
scans, some nano-holes can clearly be seen in the rGO flakes in the image with 30,000×magnification.
This indicates that the nitrogen APPJ reacts with and damages the rGOs. This may result in deteriorated
supercapacitor performance as the APPJ scan time increases, as shown later in this paper.
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3.3. Water Contact Angle Measurement of APPJ-Processed rGOs on Carbon Cloth

Figure 4 shows the water contact angle measurement results of the APPJ-processed rGOs on
carbon cloth. The as-deposited rGOs showed high water contact angle of ~105◦. After one APPJ scan,
the rGOs on carbon cloth became highly hydrophilic and the water droplet completely penetrated
the nanopores by capillary force. The exact contact angle is therefore unable to determine for
APPJ-processed rGOs on carbon cloth. This could be attributed to the introduction of hydrophilic
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surface functional groups –OH and –COOH by the nitrogen APPJ. The nitrogen doping can also
improve the hydrophilicity of the carbon-based materials [53]. This is evidenced by the XPS results
as discussed below. Improved wettability could enhance the contact between the electrolyte and the
electrode, thereby enhancing the supercapacitor performance.
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3.4. XPS Results of APPJ-Processed rGOs on Carbon Cloth

Figure 5 shows the XPS spectra of C 1s, N 1s and O 1s. Table 1 lists the bonding content ratios.
Figure 5a shows the C 1s XPS spectra with deconvoluted peaks located at 284.5 eV (C–C), 286.3 eV
(C–O) and 288.5 eV (C=O) [54]. The C–C content is mainly contributed by rGOs and the carbon
fibers of the carbon cloth and the C–O content, by EC. The sample with zero APPJ scans showed
high C–O content of 51.40%, which decreased to 31.30% after one APPJ scan. After 5 APPJ scans,
the C–O content was further reduced to 18.64%. This indicates that EC decomposes rapidly and
reacts violently with the reactive nitrogen plasma species at the APPJ self-sustained temperature.
The removal of EC can create a nanoporous structure that facilitates the contact between the electrolyte
and the rGO electrodes. Figure 5b shows the N 1s XPS spectra with deconvoluted peaks located
at 398.3 eV (pyridinic-N), 399.9 eV (pyrrolic-N) and 400.9 eV (graphitic-N) [55]. No nitrogen signal
was detected for samples with zero and one APPJ scans. The nitrogen signal started to appear after
three APPJ scans, indicating nitrogen doping into rGOs and/or carbon fibers. Nitrogen doping
in carbonaceous materials is considered to benefit the supercapacitor performance [55]. Our APPJ
processes can create holes on rGOs [12,18,19,21,22,56]. Nitrogen-doped rGOs with holes have been
demonstrated enhanced supercapacitor performance [53,57]. Samples with three APPJ scans showed
the content of pyridinic-N content of 54.18%; after 5 scans, this increased to 62.62%. This observation
agrees with theoretical calculations which suggest that N-doped graphene with pyridinic-like holes
is more thermodynamically stable [57]. However, the enhancement of supercapacitive behavior by
nitrogen-doped graphenes is not observed in our CV results (as discussed later in Section 3.6). Redox
peaks associated with the pseudocapacitance of nitrogen doped graphenes are not shown in our CV
results even at the lowest potential scan rate of 2 mV/s. In addition, nitrogen doping occurs in samples
after three and five APPJ scans; however, the sample with one APPJ scan shows the best capacitance.
This discrepancy may be attributed to the fact that our experimental and sample conditions may
quite differ from the assumptions made based on the theoretical calculations. Figure 5c shows the
O 1s spectra with deconvoluted peaks located at 531.1 eV (O=C), 532.3 eV (C–OH) and 533.3 eV
(–COOH) [55]. After three APPJ scans, the O 1s spectrum shows a clear shape change with increased
O=C content. With a further increase in the number of APPJ scans, the O=C content decreased. Overall,
the O=C content increased and then decreased as the number of APPJ scans increased. This trend is
consistent with the data analyzed from the C 1s spectra.
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Table 1. Bonding contents analyzed from XPS spectra shown in Figure 5.

Bonding Configuration
Bonding Content

Zero APPJ Scans One APPJ Scan Three APPJ Scans Five APPJ Scans

C 1s – – – –
C–C (284.5 eV) 45.00% 59.24% 70.08% 70.66%
C–O (286.3 eV) 51.40% 31.30% 18.81% 18.64%
C=O (288.5 eV) 3.60% 9.46% 11.11% 10.70%

N 1s – – – –
Pyridinic-N (398.3 eV) – – 54.18% 62.62%
Pyrrolic-N (399.9 eV) – – 38.65% 25.76%

Graphitic-N (400.9 eV) – – 7.17% 11.62%

O 1s – – – –
O=C (531.1 eV) 8.00% 16.00% 33.03% 24.24%

C–OH (532.3 eV) 73.50% 67.20% 23.23% 36.30%
–COOH (533.3 eV) 18.50% 16.80% 43.74% 39.46%

3.5. GCD Results of Gel-Electrolyte Supercapacitor

The real capacitance can be calculated from the GCD results based on the following equation [20].

Careal =
I∆t

A∆V
(1)

where ∆V is the voltage window; I, the constant current during GCD operation; ∆t, the discharging
time; and A, the apparent area of the electrode.

Figure 6 shows the GCD results of rGO-coated carbon cloth supercapacitors under various
numbers of APPJ scans. Without APPJ treatment, the charging-discharging curve is highly irregular,
possibly owing to the existence of too much inactive EC in the electrode. After APPJ processing,
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the charging-discharging curve became much smoother and showed a triangular shape, indicating
rapid charging-discharging. At a constant current of 1000 µA, the areal capacitance values are 6.95,
4.32 and 3.31 mF/cm2 for supercapacitors with one, three and five APPJ scans, respectively. Without
APPJ processing (zero scans), the curve is too irregular to calculate the capacitance value.
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3.6. CV Results of Gel-Electrolyte Supercapacitor

The areal capacitance can be calculated from the CV results based on the following equation [19].

Careal =
1

A · v(Vb −Va)

Vb∫
Va

I(V)dV (2)

where Careal is the specific capacitance, A is the apparent area of the electrode, v is the potential
scan rate, Vb − Va is the potential scan window and I(V) and V are the response current and voltage
under CV operation, respectively.

Figure 7a shows the CV results of gel-electrolyte supercapacitors with rGO pastes on carbon cloth
processed by scan-mode APPJ. Figure 7b shows a comparison of the areal capacitance calculated based
on the CV results shown in Figure 7a. With one APPJ scan, the areal capacitance reached its maximum
values. The same trend is seen for three different potential scan rates. APPJ processing clearly
improves the capacitance from 4.38 (zero APPJ scan) to 15.93 mF/cm2 (one APPJ scan), as evaluated
at a potential scan rate of 2 mV/s. Further increasing the number of APPJ scan decreased the areal
capacitance. This could be attributed to the proper removal of EC while retaining sufficient amount
of rGOs. The improved wettability can also lead to better contact between the electrolyte and the
electrode, resulting in higher capacitance. Although nitrogen APPJ reactive species react vigorously
with both EC and rGOs, EC shows a higher reaction rate [12,22]. Therefore, the proper control of
APPJ scan times could be the key to remove a sufficient amount of inactive non-conductive EC,
which thereby creates a nanoporous structure to increase the surface area for adsorbed ions in the
electrolyte; this could improve the capacitance. Over-calcination by APPJ could severely damage
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rGOs, leading to decreased capacitance. Similar results have been observed with liquid electrolyte
rGO supercapacitors processed by stationary nitrogen APPJ, in which the APPJ processing time is
somewhat equivalent to the role of number of APPJ scans in the present study [18]. The removal
of sufficient non-conductive EC also smoothens the charge conduction path, as evidenced by the
GCD results in which the charging-discharging curve is not smooth without any APPJ processing
(Figure 6). For each supercapacitor, the measured areal capacitance increased as the CV potential
scan rate decreased. This observation is attributed to the readier access to the electrolyte ions in the
nanopores in response to slower variation of the applied electrical field, that is, slower potential scan
rate, in the CV measurement. Although no much difference has been noted by water contact angle
measurement and SEM for APPJ-processed rGOs on carbon cloth, significant different contents of
surface functional groups have been noted by XPS. The difference in contents of surface functional
groups can lead to various surface conditions, resulting in different capacitance values.
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Figure 8 shows the CV results of gel-electrolyte supercapacitors made with scan-mode
APPJ-processed carbon cloth (without rGO coatings). Table 2 lists the areal capacitance values. The areal
capacitance values are all <1 mF/cm2. This indicates that the rGO coating with APPJ processing improves
the capacitance values. The major contribution to areal capacitance (for supercapacitors with rGOs
coatings) results from the coated rGOs.
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Table 2. Areal capacitance of gel-electrolyte supercapacitors made with scan-mode APPJ processed
carbon cloth (without rGO coatings).

Potential Scan Rate Zero APPJ Scans One APPJ Scan Three APPJ Scans Five APPJ Scans

2 mV/s 0.63 mF/cm2 0.58 mF/cm2 0.65 mF/cm2 0.83 mF/cm2

20 mV/s 0.47 mF/cm2 0.46 mF/cm2 0.53 mF/cm2 0.68 mF/cm2
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3.7. CV Cycling Stability Test Results of Gel-Electrolyte Supercapacitor

We evaluated the stability of the supercapacitor that showed the best performance (one APPJ scan).
Figure 9 shows the cycling stability test results for supercapacitor with one APPJ scan. The capacitance
retention rate is ~93% after a 1000-cycle CV test.
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4. Conclusions

We perform a feasibility test of scan-mode DC-pulse nitrogen APPJ for gel-electrolyte rGO
supercapacitor fabrication. The results suggest the possibility of applying this technique to high-throughput
large-area and roll-to-roll processes with higher temperature tolerant substrates such as stainless steel,
carbon cloth and willow glass. With a thermal influence duration of ~10 s per scan, the supercapacitor
showed best performance with one APPJ scan; this is the most time- and energy-saving fabrication
condition. XPS indicates the reduction of the C–O bonding content as the number of APPJ scan increases,
indicating the oxidation/decomposition of EC. Using the optimal number of APPJ scan enables proper
removal of inactive EC and improved wettability while minimizing the damage caused to rGOs by
nitrogen APPJ processing.
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