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Abstract: Corrosion of iron in NaCl solution is significantly reduced by poly(3-hexylthiophene)
(P3HT)/poly(styrene-co-hydroxystyrene)(PS-co-PHS) blended coating layers, especially at elevated
temperature. The interaction between sulfur (in P3HT) and hydroxyl group (in PS-co-PHS) leads to
enhanced miscibility between P3HT and PS-co-PHS and results in improved thermal stability upon
thermal treatment. Adhesion force between iron and the coating layer is increased with increasing
hydroxystyrene ratio as revealing by the adhesion test (ASTM 3359). Anticorrosion properties
from electrochemical experiments indicate great improvement over the P3HT/PS blend. Protection
efficiency (PE) of P3HT/PS-co-PHS blend on iron increases and corrosion rate (mils per year, MPY)
decreases upon thermal treatment, making P3HT/PS-co-PHS blend an excellent corrosion inhibitor
and adhesion promoter material to the iron, especially with good thermal stability.
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1. Introduction

Corrosion of metal has been a serious problem in our daily life. It causes billions of dollars of
economic losses every year [1]. In order to diminish the damage caused by corrosion, scientists have
conducted many experiments to lessen the risk of corrosion on metals such as cathodic, anodic and
adsorption protection [2]. A lot of research effort has focused upon the development of advanced
organic coating materials as corrosion barriers (or corrosion inhibitors) in the last few decades [2–6]
and much improvement has been observed on different metals. Generally speaking, the application
of organic coatings as anticorrosion materials can be divided into the following categories. The first
category is the usage of gas permeation membranes to lower the oxygen and moisture penetration
rate and retard the occurrence of a corrosion reaction [7–13]. The most commonly used materials are
polymer blends containing layered materials such as montmorillonite (MMT) and reduced graphene
oxide (RGO). Intercalated MMT or RGO in polymers decrease the gas and moisture penetration rate
because their high aspect ratio and layer structure, which lowers the corrosion rate. The second category
is the introduction of specific interaction from the organic coating layer to metal to enhance bonding
between organic coating and metal [5,14–16]. This prevents penetration of corrosive materials to the
surface of metal and gives rise to higher anticorrosion stability. The last category is the application of
conjugated polymers to corrosion protection on metals [6,17]. Conjugated polymers induce passivation
layers on top of metals so that metal oxide interlayers between conjugated polymers and metals
form and protect the metal from corrosion reaction. MacDiarmid [18] applied polyaniline (PANI)
on top of stainless steel and found the formation of a passivation layer between the stainless steel
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and PANI. Epstein [19] showed the formation of Fe3O2 and Fe3O4 at the interface of emeraldine base
PANI and iron by coating an emeraldine base polyaniline on top of iron. Both have demonstrated the
anticorrosion effect of conjugated polymers on metals.

Although conjugated polymers can act as corrosion barriers, penetration of corrosive anions (such
as Cl−) through the free volume within polymers and the interface between conjugated polymers and
metals can also still deteriorate the metal [5]. Therefore, an effective approach that can simultaneously
prevent the moisture penetration through the conjugated polymers and enhance the bonding between
anticorrosion coating layer and metal becomes very important.

Among all different kinds of conjugated polymers for anticorrosion study, PANI has been
commonly selected as the model polymer because of its ease of preparation and also its good
anticorrosion properties after suitable modification with other materials [18–22]. However, PANI
tends to absorb moisture easily because of its amine nature and this leads to a long-term stability
issue. Researchers found conjugated polymers containing sulfur such as poly(3-alkylthiophenes)
(P3AT) exhibit excellent anticorrosion properties on metals [23–27]. Generally, the corrosion protection
efficiency (PE) of polythiophenes on metals are over 90%. Guo [23] uses the DFT calculation to
study this empirical rule and finds the electron donating ability and the energy of the π molecular
orbital are related to this adsorption behavior. Although P3ATs are with good anticorrosion
properties, they are expensive and have poor mechanical properties [27]. Therefore, an efficient
preparation of P3AT composites to cost down and also to further enhance anticorrosion properties,
especially at elevated temperature becomes very important. Blends of P3HT with polystyrene (PS)
or poly(methyl methacrylate) (PMMA) have been used to study the anticorrosion phenomenon on
steel. Experimental results demonstrate improved anticorrosion properties at 100 ◦C [26,27]. However,
anticorrosion properties start to deteriorate at elevated temperature because of the cracking of the
blends. It seems that phase separation plays an important role in this consequence. Yong [22] studies
the corrosion inhibiting behavior of epoxidized natural rubber blends on carbon steel and finds extent
of phase separation between epoxy and natural rubber components are correlated to the anticorrosion
efficiency. Higher compatibility polymer composites usually give rise to better anticorrosion efficiency.
Schauer [20] studies the corrosion behavior of PANI/epoxy on iron using Iron/PANI/epoxy layered
structure and finds that phase separation between PANI and epoxy layer ending up with intercoat
delamination that lowers the protection efficiency of the organic coating on iron. In order to achieve
stronger bonding between the organic coatings and metals, researchers have synthesized coating
materials with different functionalities such as phosphoric acid [14,15], hydroxyl group [16], and
polyionic liquid [5]. Interfacial bonding between the organic coating layer and the metal is, therefore,
increased and anticorrosion property is improved.

From the literature study, it becomes very crucial that an organic coating with the following
properties can act as corrosion inhibitor layer on metals: low moisture penetration; good adsorption to
the metal surface; quick metal oxide formation as passivation layer.

In this work, P3HT is chosen as the key corrosion inhibitor to protect iron from corrosion.
To minimize usage of P3HT and increase bonding strength between P3HT and the iron substrate,
PS-co-PHS copolymers with different hydroxystyrene contents are synthesized. Hydroxyl group in
copolymer can further enhance bonding between P3HT/PS-co-PHS blends. The hydroxyl group
interacts with sulfur atom in P3HT and enhances the compatibility between P3HT and PS-co-PHS
copolymers, which may also improve the thermal stability of these coating blends.

2. Materials and Methods

2.1. Materials

All chemicals except styrene and Azobisisobutyronitrile (AIBN) were used without further
purification. Styrene was purified by distillation under reduced pressure from commercial styrene
(ACROS Co., Morris Plains, NJ, USA). AIBN was purified by recrystallization from methanol (98%,
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TCI Co., Taipei, Taiwan). 1,4-Dioxane (spectrum grade) was purchased from Tedia Co. (Fairfield, OH,
USA). Hydrazine monohydrate and 4-acetoxystyrene were purchased from ACROS Co. Polystyrene
(PS, Mn = 155,000) was purchased from Scientific Polymer Products Inc. (Ontario, NY, USA). o-Xylene
was purchased from Grand Chemicals Co. (Mysore, India). P3HT (Mn =25,700, Mw = 50,100,
Regioregularity = 97%) was purchased from Rieke Metals Inc. (Lincoln, NE, USA).

2.1.1. Synthesis of Poly(styrene-co-acetoxystyrene)

Both 5% and 10% acetoxystyrene and styrene copolymers, poly(styrene-co-acetoxystyrene)(PS-co
-5PAS and PS-co-10PAS), were synthesized in the same procedures except for a difference in the styrene
and acetoxystyrene ratio. AIBN (20 mg), 4-acetoxystyrene (0.5 g; 1.32 g) and styrene (9.32 g; 8.7 g)
were added to a round-bottomed flask containing 1,4-dioxane (16 mL) and reacted at 80 ◦C for 72 h.
After cooling to room temperature, it was diluted with 100 mL toluene and precipitated into methanol
many times. The copolymer was dried under reduced pressure at 50 ◦C. PS-co-5PAS (7.8 g, 79%) and
PS-co-10PAS (8.0 g, 80%) were collected.

2.1.2. Synthesis of Poly(styrene-co-hydroxystyrene)

PS-co-5PAS (1.6 g) (or PS-co-10PAS) and hydrazine hydrate (3 mL) were dissolved in 1,4-dioxane
(27 mL) in a round-bottomed flask. The mixture was reacted for 12 h at room temperature under N2(g)
and was precipitated into methanol and then filtrated. The polymers were reprecipitated twice from
methanol. After filtered, the residue was washed by methanol and dried under reduced pressure.
PS-co-5PHS (1.28 g, 80%) and PS-co-10PHS (1.25 g, 78%) were collected.

2.2. Polymer Characterization

1H NMR (300 MHz) spectra were recorded overnight (more than 10 h) on a Bruker AC-300
MHz (Bruker Corp., Billerica, MA, USA). Molecular weight of polymers was measured by a Viscotek
DM400/LR40 (Malvern Panalytical, Malvern, UK) Gel Permeation Chromatography (GPC) using
standard polystyrene as reference.

2.3. Optical Microscopy Measurement

Optical microscope photos were taken using an Olympus BH-2 Microscopy with a 40× object lens
(Olympus, Tokyo, Japan). Glass substrates are cleaned in an ultrasonic bath using detergent, deionized
water, acetone, and isopropanol sequentially. Solutions of P3HT blended with PS or PS-co-PHS
(PS-co-5PHS and PS-co-10PHS) at 1:1 ratio in o-xylene were spin-coated on glass using a Conch Corp.
spin-coater (Conch Corp., Taipei, Taiwan) at 500 rpm for 50 s and 1000 rpm for 100 s. They were dried
at 25, 100 and 200 ◦C for 1 h in air before measurement.

2.4. Corrosion Test

Electrochemical measurements were conducted on a CHI 680C Cyclic Voltammetry (CH
Instruments, Austin, TX, USA). Iron substrates were ground with 150, 400, 600 and 800 grade
sandpapers before coating. Iron substrates are cleaned in ultrasonic bath with hexanes after grinding.
Polymer solutions in o-xylene were spin-coated onto iron substrate and dried at 25, 100, and 200 ◦C for
one hour before measurement. The thickness measurement is conducted with an Elcometer type 456
gauge meter (Elcometer Co., Manchester, UK). The contact angle is measured with a FACE contact
angle meter model XP1502 (Tantec Inc., Schaumburg, IL, USA). All corrosion tests are performed in a
3.5% NaCl solution (food grade) and all samples are immersed in a corrosive medium for 30 min.

3. Results and Discussion

Experimental procedures for the synthesis of PS-co-5PHS and PS-co-10PHS are outlined in
Scheme 1 and physical properties are listed in Table 1.
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Scheme 1. Synthetic routes of the PS-co-5PHS and PS-co-10PHS.

Table 1. Physical properties of PS, PS-co-5PHS, and PS-co-10PHS.

Polymer Mn (Da) Mw (Da) PDI Td (◦C) Tg (◦C)

PS 155k 253k 1.6 417.6 101.9
PS-co-5PHS 185k 273k 1.5 384.8 104.7

PS-co-10PHS 121k 203k 1.7 373.8 109.1

Mn: number average molecular weight; Mw: weight average molecular weight; PDI: polydispersity
index = Mw/Mn; Td: decomposition temperature; Tg: glass transition temperature.

Characteristic peak of acetyl group appears at 2.27 ppm (Figure 1) in NMR measurement shows the
successful synthesis of PS-co-PAS copolymers. Molar ratio of styrene to acetoxystyrene in PS-co-5PAS
and PS-co-10PAS are calculated by peak area from NMR spectra and the ratio are around 95:5 and
90:10, respectively. After reaction with hydrazine, characteristic peak of acetyl group disappears and a
broad peak representing the hydroxyl group shows up at 4.45 ppm indicating successful synthesis of
PS-co-5PHS and PS-co-10PHS.

To investigate the intermolecular interaction between P3HT and PS-co-PHS, p-cresol and
3-hexylthiophene are used as model compounds in this study. An illustration of the molecular
interaction is shown in Figure 2.
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Figure 2. Illustration of molecular interaction between P3HT and PS-co-PHS.

As shown in Figure 3a, a broad peak between 3.8 and 4.8 ppm (Figure 3a, top) representing the
hydrogen-bonding of the hydroxyl group of p-cresol becomes a sharp peak at 4.68 ppm. This result
indicates the intermolecular interaction between S atom of the 3-hexylthiophene and the hydroxyl
group of the p-cresol restricting the motion of hydroxyl group. The wave number of the hydroxyl group
in p-cresol gradually shifts from 3281 to 3542 cm–1 as the ratio of 3HT increases in the 3HT/p-cresol
blend indicating the increased interaction between hydroxyl group and thiophene unit. This molecular
interaction has a profound effect on the compatibility improvement between PS and P3HT (Figure 4).
P3HT and PS do not have a strong molecular interaction and result in severe phase separation after
the spin-coating process, even at room temperature. As the interaction force between P3HT and PS
increases by the introduction of hydroxyl group to the PS, compatibility was significantly enhanced.
By incorporation of 5% hydroxyl group to PS (PS-co-5PHS), compatibility between PS and P3HT has
already improved a great deal. However, phase separation appears gradually at elevated temperature.
By incorporation of 10% hydroxyl group to the PS (PS-co-10PHS), thermal stability of the blend is
greatly improved. Only a minor phase separation occurs at 200 ◦C.
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PS-co-10PHS blends after spin-coating on glass and annealed at 25, 100 and 200 ◦C.
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Incorporation of hydroxyl group to the PS not only improves compatibility and thermal stability
of the P3HT/PS blends, but also increases the bonding strength between P3HT/PS blend and the
iron substrate (Figure S1). As shown in Table 2, P3HT shows poor adhesion to the iron and fails
in the adhesion test. Poor adhesion to the substrate allows corrosive materials such as Cl− ion to
penetrate to the interface or surface of substrate and deteriorate the interface. For P3HT/PS blends, all
samples fail in the adhesion test no matter whether they are thermally treated or not. As hydroxyl
group is incorporated into PS, adhesion force is significantly improved. Both P3HT/PS-co-5PHS and
P3HT/PS-co-10PHS show no coating materials transferring to the tape at room temperature (25 ◦C).
The PS-co-PHS acts as primer to enhance the bonding strength of P3HT to the iron. Adhesion test of
the high temperature (100 and 200 ◦C) treated samples also show no polymers transferring to the tape,
indicating good bonding strength of the P3HT/PS-co-PHS blends to the iron after thermal treatment.

Table 2. Adhesion tests (ASTM 3359) and contact angle measurements of water on P3HT and its blends
at room temperature (25 ◦C), 100 ◦C, and 200 ◦C treatment.

Coating Layer 100 Grid Test Contact Angle (o)

P3HT, 25 ◦C
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temperature (100 and 200 °C) treated samples also show no polymers transferring to the tape, 

indicating good bonding strength of the P3HT/PS-co-PHS blends to the iron after thermal treatment. 

The enhanced bonding between the organic coating layer and iron surface leads to significant 

effect on the anticorrosion behavior of the P3HT/PS-co-PHS blends. As seen in Figure 5, the Icorr of 

P3HT/PS blend increases at elevated thermal treatment temperature. Icorr increases from 0.71 μA/cm2 

at 25 °C to 9.40 μA/cm2 at 200 °C (Table 3) indicating corrosion protection of the polymer blend 

coating layer to the iron surface is getting worse at elevated temperature. However, Icorr decreases as 

content of hydroxyl group increases in the PS-co-PHS copolymers. Icorr decreases from 0.71 μA/cm2 

for the P3HT/PS to 0.25 μA/cm2 for the P3HT/PS-co-10PHS at 25 °C. These data match the results 

shown in the adhesion test. The bonding strength of the P3HT/PS blend does increase with the 

incorporation of hydroxyl group. As mentioned above, P3HT/PS blend does not have good bonding 

to the iron surface so protection efficiency (PE) decreases dramatically after thermal treatment (Table 3). 

However, both P3HT/PS-co-5PHS and P3HT/PS-co-10PHS show very consistent anticorrosion 

properties at elevated temperature because of the improved adhesion force and thermal stability.  

Icorr are both decreased for these two hydroxyl groups containing blends at elevated temperature.  

For the P3HT/PS-co-5PHS sample, it decreases from 0.41 μA/cm2 for untreated sample (25 °C) to 

0.13 μA/cm2 for the 200 °C treated one. For the P3HT/PS-co-10PHS sample, Icorr decreases from 

0.25 μA/cm2 for untreated sample (25 °C) to 0.04 μA/cm2 for the 200 °C treated sample. Rcorr (MPY) 

100.6

P3HT + PS, 25 ◦C
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Table 2. Adhesion tests (ASTM 3359) and contact angle measurements of water on P3HT and its 

blends at room temperature (25 °C), 100 °C, and 200 °C treatment. 

Coating Layer 100 Grid Test Contact Angle (o) 
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98.9 
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P3HT + PS-co-5PHS, 25 °C  102.6 

P3HT + PS-co-5PHS, 100 °C  102.6 

P3HT + PS-co-5PHS, 200 °C  98.6 

P3HT + PS-co-10PHS, 25 °C  104.5 

P3HT + PS-co-10PHS, 100 °C  102.9 

P3HT + PS-co-10PHS, 200 °C  99.4 

Incorporation of hydroxyl group to the PS not only improves compatibility and thermal stability 

of the P3HT/PS blends, but also increases the bonding strength between P3HT/PS blend and the iron 

substrate (Figure S1). As shown in Table 2, P3HT shows poor adhesion to the iron and fails in the 

adhesion test. Poor adhesion to the substrate allows corrosive materials such as Cl− ion to penetrate 

to the interface or surface of substrate and deteriorate the interface. For P3HT/PS blends, all samples 

fail in the adhesion test no matter whether they are thermally treated or not. As hydroxyl group is 

incorporated into PS, adhesion force is significantly improved. Both P3HT/PS-co-5PHS and P3HT/PS-

co-10PHS show no coating materials transferring to the tape at room temperature (25 °C). The PS-co-

PHS acts as primer to enhance the bonding strength of P3HT to the iron. Adhesion test of the high 

temperature (100 and 200 °C) treated samples also show no polymers transferring to the tape, 

indicating good bonding strength of the P3HT/PS-co-PHS blends to the iron after thermal treatment. 

The enhanced bonding between the organic coating layer and iron surface leads to significant 

effect on the anticorrosion behavior of the P3HT/PS-co-PHS blends. As seen in Figure 5, the Icorr of 

P3HT/PS blend increases at elevated thermal treatment temperature. Icorr increases from 0.71 μA/cm2 

at 25 °C to 9.40 μA/cm2 at 200 °C (Table 3) indicating corrosion protection of the polymer blend 

coating layer to the iron surface is getting worse at elevated temperature. However, Icorr decreases as 

content of hydroxyl group increases in the PS-co-PHS copolymers. Icorr decreases from 0.71 μA/cm2 

for the P3HT/PS to 0.25 μA/cm2 for the P3HT/PS-co-10PHS at 25 °C. These data match the results 

shown in the adhesion test. The bonding strength of the P3HT/PS blend does increase with the 

incorporation of hydroxyl group. As mentioned above, P3HT/PS blend does not have good bonding 

to the iron surface so protection efficiency (PE) decreases dramatically after thermal treatment (Table 3). 

However, both P3HT/PS-co-5PHS and P3HT/PS-co-10PHS show very consistent anticorrosion 

properties at elevated temperature because of the improved adhesion force and thermal stability.  

Icorr are both decreased for these two hydroxyl groups containing blends at elevated temperature.  

For the P3HT/PS-co-5PHS sample, it decreases from 0.41 μA/cm2 for untreated sample (25 °C) to 

0.13 μA/cm2 for the 200 °C treated one. For the P3HT/PS-co-10PHS sample, Icorr decreases from 

0.25 μA/cm2 for untreated sample (25 °C) to 0.04 μA/cm2 for the 200 °C treated sample. Rcorr (MPY) 

98.9

(P3HT + PS), 100 ◦C
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Table 2. Adhesion tests (ASTM 3359) and contact angle measurements of water on P3HT and its 

blends at room temperature (25 °C), 100 °C, and 200 °C treatment. 

Coating Layer 100 Grid Test Contact Angle (o) 

P3HT, 25 °C 
 

100.6 

P3HT + PS, 25 °C 
 

98.9 

(P3HT + PS), 100 °C 
 

101.0 

(P3HT + PS), 200 °C  98.4 

P3HT + PS-co-5PHS, 25 °C  102.6 

P3HT + PS-co-5PHS, 100 °C  102.6 

P3HT + PS-co-5PHS, 200 °C  98.6 

P3HT + PS-co-10PHS, 25 °C  104.5 

P3HT + PS-co-10PHS, 100 °C  102.9 

P3HT + PS-co-10PHS, 200 °C  99.4 

Incorporation of hydroxyl group to the PS not only improves compatibility and thermal stability 

of the P3HT/PS blends, but also increases the bonding strength between P3HT/PS blend and the iron 

substrate (Figure S1). As shown in Table 2, P3HT shows poor adhesion to the iron and fails in the 

adhesion test. Poor adhesion to the substrate allows corrosive materials such as Cl− ion to penetrate 

to the interface or surface of substrate and deteriorate the interface. For P3HT/PS blends, all samples 

fail in the adhesion test no matter whether they are thermally treated or not. As hydroxyl group is 

incorporated into PS, adhesion force is significantly improved. Both P3HT/PS-co-5PHS and P3HT/PS-

co-10PHS show no coating materials transferring to the tape at room temperature (25 °C). The PS-co-

PHS acts as primer to enhance the bonding strength of P3HT to the iron. Adhesion test of the high 

temperature (100 and 200 °C) treated samples also show no polymers transferring to the tape, 

indicating good bonding strength of the P3HT/PS-co-PHS blends to the iron after thermal treatment. 

The enhanced bonding between the organic coating layer and iron surface leads to significant 

effect on the anticorrosion behavior of the P3HT/PS-co-PHS blends. As seen in Figure 5, the Icorr of 

P3HT/PS blend increases at elevated thermal treatment temperature. Icorr increases from 0.71 μA/cm2 

at 25 °C to 9.40 μA/cm2 at 200 °C (Table 3) indicating corrosion protection of the polymer blend 

coating layer to the iron surface is getting worse at elevated temperature. However, Icorr decreases as 

content of hydroxyl group increases in the PS-co-PHS copolymers. Icorr decreases from 0.71 μA/cm2 

for the P3HT/PS to 0.25 μA/cm2 for the P3HT/PS-co-10PHS at 25 °C. These data match the results 

shown in the adhesion test. The bonding strength of the P3HT/PS blend does increase with the 

incorporation of hydroxyl group. As mentioned above, P3HT/PS blend does not have good bonding 

to the iron surface so protection efficiency (PE) decreases dramatically after thermal treatment (Table 3). 

However, both P3HT/PS-co-5PHS and P3HT/PS-co-10PHS show very consistent anticorrosion 

properties at elevated temperature because of the improved adhesion force and thermal stability.  

Icorr are both decreased for these two hydroxyl groups containing blends at elevated temperature.  

For the P3HT/PS-co-5PHS sample, it decreases from 0.41 μA/cm2 for untreated sample (25 °C) to 

0.13 μA/cm2 for the 200 °C treated one. For the P3HT/PS-co-10PHS sample, Icorr decreases from 

0.25 μA/cm2 for untreated sample (25 °C) to 0.04 μA/cm2 for the 200 °C treated sample. Rcorr (MPY) 

101.0

(P3HT + PS), 200 ◦C
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Table 2. Adhesion tests (ASTM 3359) and contact angle measurements of water on P3HT and its 

blends at room temperature (25 °C), 100 °C, and 200 °C treatment. 

Coating Layer 100 Grid Test Contact Angle (o) 

P3HT, 25 °C 
 

100.6 

P3HT + PS, 25 °C 
 

98.9 

(P3HT + PS), 100 °C 
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P3HT + PS-co-5PHS, 25 °C  102.6 
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P3HT + PS-co-10PHS, 25 °C  104.5 

P3HT + PS-co-10PHS, 100 °C  102.9 

P3HT + PS-co-10PHS, 200 °C  99.4 

Incorporation of hydroxyl group to the PS not only improves compatibility and thermal stability 

of the P3HT/PS blends, but also increases the bonding strength between P3HT/PS blend and the iron 

substrate (Figure S1). As shown in Table 2, P3HT shows poor adhesion to the iron and fails in the 

adhesion test. Poor adhesion to the substrate allows corrosive materials such as Cl− ion to penetrate 

to the interface or surface of substrate and deteriorate the interface. For P3HT/PS blends, all samples 

fail in the adhesion test no matter whether they are thermally treated or not. As hydroxyl group is 

incorporated into PS, adhesion force is significantly improved. Both P3HT/PS-co-5PHS and P3HT/PS-

co-10PHS show no coating materials transferring to the tape at room temperature (25 °C). The PS-co-

PHS acts as primer to enhance the bonding strength of P3HT to the iron. Adhesion test of the high 

temperature (100 and 200 °C) treated samples also show no polymers transferring to the tape, 

indicating good bonding strength of the P3HT/PS-co-PHS blends to the iron after thermal treatment. 

The enhanced bonding between the organic coating layer and iron surface leads to significant 

effect on the anticorrosion behavior of the P3HT/PS-co-PHS blends. As seen in Figure 5, the Icorr of 

P3HT/PS blend increases at elevated thermal treatment temperature. Icorr increases from 0.71 μA/cm2 

at 25 °C to 9.40 μA/cm2 at 200 °C (Table 3) indicating corrosion protection of the polymer blend 

coating layer to the iron surface is getting worse at elevated temperature. However, Icorr decreases as 

content of hydroxyl group increases in the PS-co-PHS copolymers. Icorr decreases from 0.71 μA/cm2 

for the P3HT/PS to 0.25 μA/cm2 for the P3HT/PS-co-10PHS at 25 °C. These data match the results 

shown in the adhesion test. The bonding strength of the P3HT/PS blend does increase with the 

incorporation of hydroxyl group. As mentioned above, P3HT/PS blend does not have good bonding 

to the iron surface so protection efficiency (PE) decreases dramatically after thermal treatment (Table 3). 

However, both P3HT/PS-co-5PHS and P3HT/PS-co-10PHS show very consistent anticorrosion 

properties at elevated temperature because of the improved adhesion force and thermal stability.  

Icorr are both decreased for these two hydroxyl groups containing blends at elevated temperature.  

For the P3HT/PS-co-5PHS sample, it decreases from 0.41 μA/cm2 for untreated sample (25 °C) to 

0.13 μA/cm2 for the 200 °C treated one. For the P3HT/PS-co-10PHS sample, Icorr decreases from 

0.25 μA/cm2 for untreated sample (25 °C) to 0.04 μA/cm2 for the 200 °C treated sample. Rcorr (MPY) 

98.4

P3HT + PS-co-5PHS, 25 ◦C
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Table 2. Adhesion tests (ASTM 3359) and contact angle measurements of water on P3HT and its 

blends at room temperature (25 °C), 100 °C, and 200 °C treatment. 

Coating Layer 100 Grid Test Contact Angle (o) 

P3HT, 25 °C 
 

100.6 

P3HT + PS, 25 °C 
 

98.9 

(P3HT + PS), 100 °C 
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(P3HT + PS), 200 °C  98.4 

P3HT + PS-co-5PHS, 25 °C  102.6 

P3HT + PS-co-5PHS, 100 °C  102.6 

P3HT + PS-co-5PHS, 200 °C  98.6 

P3HT + PS-co-10PHS, 25 °C  104.5 

P3HT + PS-co-10PHS, 100 °C  102.9 

P3HT + PS-co-10PHS, 200 °C  99.4 

Incorporation of hydroxyl group to the PS not only improves compatibility and thermal stability 

of the P3HT/PS blends, but also increases the bonding strength between P3HT/PS blend and the iron 

substrate (Figure S1). As shown in Table 2, P3HT shows poor adhesion to the iron and fails in the 

adhesion test. Poor adhesion to the substrate allows corrosive materials such as Cl− ion to penetrate 

to the interface or surface of substrate and deteriorate the interface. For P3HT/PS blends, all samples 

fail in the adhesion test no matter whether they are thermally treated or not. As hydroxyl group is 

incorporated into PS, adhesion force is significantly improved. Both P3HT/PS-co-5PHS and P3HT/PS-

co-10PHS show no coating materials transferring to the tape at room temperature (25 °C). The PS-co-

PHS acts as primer to enhance the bonding strength of P3HT to the iron. Adhesion test of the high 

temperature (100 and 200 °C) treated samples also show no polymers transferring to the tape, 

indicating good bonding strength of the P3HT/PS-co-PHS blends to the iron after thermal treatment. 

The enhanced bonding between the organic coating layer and iron surface leads to significant 

effect on the anticorrosion behavior of the P3HT/PS-co-PHS blends. As seen in Figure 5, the Icorr of 

P3HT/PS blend increases at elevated thermal treatment temperature. Icorr increases from 0.71 μA/cm2 

at 25 °C to 9.40 μA/cm2 at 200 °C (Table 3) indicating corrosion protection of the polymer blend 

coating layer to the iron surface is getting worse at elevated temperature. However, Icorr decreases as 

content of hydroxyl group increases in the PS-co-PHS copolymers. Icorr decreases from 0.71 μA/cm2 

for the P3HT/PS to 0.25 μA/cm2 for the P3HT/PS-co-10PHS at 25 °C. These data match the results 

shown in the adhesion test. The bonding strength of the P3HT/PS blend does increase with the 

incorporation of hydroxyl group. As mentioned above, P3HT/PS blend does not have good bonding 

to the iron surface so protection efficiency (PE) decreases dramatically after thermal treatment (Table 3). 

However, both P3HT/PS-co-5PHS and P3HT/PS-co-10PHS show very consistent anticorrosion 

properties at elevated temperature because of the improved adhesion force and thermal stability.  

Icorr are both decreased for these two hydroxyl groups containing blends at elevated temperature.  

For the P3HT/PS-co-5PHS sample, it decreases from 0.41 μA/cm2 for untreated sample (25 °C) to 

0.13 μA/cm2 for the 200 °C treated one. For the P3HT/PS-co-10PHS sample, Icorr decreases from 

0.25 μA/cm2 for untreated sample (25 °C) to 0.04 μA/cm2 for the 200 °C treated sample. Rcorr (MPY) 

102.6

P3HT + PS-co-5PHS, 100 ◦C
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Table 2. Adhesion tests (ASTM 3359) and contact angle measurements of water on P3HT and its 

blends at room temperature (25 °C), 100 °C, and 200 °C treatment. 

Coating Layer 100 Grid Test Contact Angle (o) 

P3HT, 25 °C 
 

100.6 

P3HT + PS, 25 °C 
 

98.9 

(P3HT + PS), 100 °C 
 

101.0 

(P3HT + PS), 200 °C  98.4 

P3HT + PS-co-5PHS, 25 °C  102.6 

P3HT + PS-co-5PHS, 100 °C  102.6 

P3HT + PS-co-5PHS, 200 °C  98.6 

P3HT + PS-co-10PHS, 25 °C  104.5 

P3HT + PS-co-10PHS, 100 °C  102.9 

P3HT + PS-co-10PHS, 200 °C  99.4 

Incorporation of hydroxyl group to the PS not only improves compatibility and thermal stability 

of the P3HT/PS blends, but also increases the bonding strength between P3HT/PS blend and the iron 

substrate (Figure S1). As shown in Table 2, P3HT shows poor adhesion to the iron and fails in the 

adhesion test. Poor adhesion to the substrate allows corrosive materials such as Cl− ion to penetrate 

to the interface or surface of substrate and deteriorate the interface. For P3HT/PS blends, all samples 

fail in the adhesion test no matter whether they are thermally treated or not. As hydroxyl group is 

incorporated into PS, adhesion force is significantly improved. Both P3HT/PS-co-5PHS and P3HT/PS-

co-10PHS show no coating materials transferring to the tape at room temperature (25 °C). The PS-co-

PHS acts as primer to enhance the bonding strength of P3HT to the iron. Adhesion test of the high 

temperature (100 and 200 °C) treated samples also show no polymers transferring to the tape, 

indicating good bonding strength of the P3HT/PS-co-PHS blends to the iron after thermal treatment. 

The enhanced bonding between the organic coating layer and iron surface leads to significant 

effect on the anticorrosion behavior of the P3HT/PS-co-PHS blends. As seen in Figure 5, the Icorr of 

P3HT/PS blend increases at elevated thermal treatment temperature. Icorr increases from 0.71 μA/cm2 

at 25 °C to 9.40 μA/cm2 at 200 °C (Table 3) indicating corrosion protection of the polymer blend 

coating layer to the iron surface is getting worse at elevated temperature. However, Icorr decreases as 

content of hydroxyl group increases in the PS-co-PHS copolymers. Icorr decreases from 0.71 μA/cm2 

for the P3HT/PS to 0.25 μA/cm2 for the P3HT/PS-co-10PHS at 25 °C. These data match the results 

shown in the adhesion test. The bonding strength of the P3HT/PS blend does increase with the 

incorporation of hydroxyl group. As mentioned above, P3HT/PS blend does not have good bonding 

to the iron surface so protection efficiency (PE) decreases dramatically after thermal treatment (Table 3). 

However, both P3HT/PS-co-5PHS and P3HT/PS-co-10PHS show very consistent anticorrosion 

properties at elevated temperature because of the improved adhesion force and thermal stability.  

Icorr are both decreased for these two hydroxyl groups containing blends at elevated temperature.  

For the P3HT/PS-co-5PHS sample, it decreases from 0.41 μA/cm2 for untreated sample (25 °C) to 

0.13 μA/cm2 for the 200 °C treated one. For the P3HT/PS-co-10PHS sample, Icorr decreases from 

0.25 μA/cm2 for untreated sample (25 °C) to 0.04 μA/cm2 for the 200 °C treated sample. Rcorr (MPY) 

102.6

P3HT + PS-co-5PHS, 200 ◦C
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Table 2. Adhesion tests (ASTM 3359) and contact angle measurements of water on P3HT and its 

blends at room temperature (25 °C), 100 °C, and 200 °C treatment. 

Coating Layer 100 Grid Test Contact Angle (o) 

P3HT, 25 °C 
 

100.6 

P3HT + PS, 25 °C 
 

98.9 

(P3HT + PS), 100 °C 
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P3HT + PS-co-10PHS, 25 °C  104.5 

P3HT + PS-co-10PHS, 100 °C  102.9 

P3HT + PS-co-10PHS, 200 °C  99.4 

Incorporation of hydroxyl group to the PS not only improves compatibility and thermal stability 

of the P3HT/PS blends, but also increases the bonding strength between P3HT/PS blend and the iron 

substrate (Figure S1). As shown in Table 2, P3HT shows poor adhesion to the iron and fails in the 

adhesion test. Poor adhesion to the substrate allows corrosive materials such as Cl− ion to penetrate 

to the interface or surface of substrate and deteriorate the interface. For P3HT/PS blends, all samples 

fail in the adhesion test no matter whether they are thermally treated or not. As hydroxyl group is 

incorporated into PS, adhesion force is significantly improved. Both P3HT/PS-co-5PHS and P3HT/PS-

co-10PHS show no coating materials transferring to the tape at room temperature (25 °C). The PS-co-

PHS acts as primer to enhance the bonding strength of P3HT to the iron. Adhesion test of the high 

temperature (100 and 200 °C) treated samples also show no polymers transferring to the tape, 

indicating good bonding strength of the P3HT/PS-co-PHS blends to the iron after thermal treatment. 

The enhanced bonding between the organic coating layer and iron surface leads to significant 

effect on the anticorrosion behavior of the P3HT/PS-co-PHS blends. As seen in Figure 5, the Icorr of 

P3HT/PS blend increases at elevated thermal treatment temperature. Icorr increases from 0.71 μA/cm2 

at 25 °C to 9.40 μA/cm2 at 200 °C (Table 3) indicating corrosion protection of the polymer blend 

coating layer to the iron surface is getting worse at elevated temperature. However, Icorr decreases as 

content of hydroxyl group increases in the PS-co-PHS copolymers. Icorr decreases from 0.71 μA/cm2 

for the P3HT/PS to 0.25 μA/cm2 for the P3HT/PS-co-10PHS at 25 °C. These data match the results 

shown in the adhesion test. The bonding strength of the P3HT/PS blend does increase with the 

incorporation of hydroxyl group. As mentioned above, P3HT/PS blend does not have good bonding 

to the iron surface so protection efficiency (PE) decreases dramatically after thermal treatment (Table 3). 

However, both P3HT/PS-co-5PHS and P3HT/PS-co-10PHS show very consistent anticorrosion 

properties at elevated temperature because of the improved adhesion force and thermal stability.  

Icorr are both decreased for these two hydroxyl groups containing blends at elevated temperature.  

For the P3HT/PS-co-5PHS sample, it decreases from 0.41 μA/cm2 for untreated sample (25 °C) to 

0.13 μA/cm2 for the 200 °C treated one. For the P3HT/PS-co-10PHS sample, Icorr decreases from 

0.25 μA/cm2 for untreated sample (25 °C) to 0.04 μA/cm2 for the 200 °C treated sample. Rcorr (MPY) 

98.6

P3HT + PS-co-10PHS, 25 ◦C
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Table 2. Adhesion tests (ASTM 3359) and contact angle measurements of water on P3HT and its 

blends at room temperature (25 °C), 100 °C, and 200 °C treatment. 

Coating Layer 100 Grid Test Contact Angle (o) 

P3HT, 25 °C 
 

100.6 

P3HT + PS, 25 °C 
 

98.9 

(P3HT + PS), 100 °C 
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(P3HT + PS), 200 °C  98.4 

P3HT + PS-co-5PHS, 25 °C  102.6 
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P3HT + PS-co-10PHS, 100 °C  102.9 
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Incorporation of hydroxyl group to the PS not only improves compatibility and thermal stability 

of the P3HT/PS blends, but also increases the bonding strength between P3HT/PS blend and the iron 

substrate (Figure S1). As shown in Table 2, P3HT shows poor adhesion to the iron and fails in the 

adhesion test. Poor adhesion to the substrate allows corrosive materials such as Cl− ion to penetrate 

to the interface or surface of substrate and deteriorate the interface. For P3HT/PS blends, all samples 

fail in the adhesion test no matter whether they are thermally treated or not. As hydroxyl group is 

incorporated into PS, adhesion force is significantly improved. Both P3HT/PS-co-5PHS and P3HT/PS-

co-10PHS show no coating materials transferring to the tape at room temperature (25 °C). The PS-co-

PHS acts as primer to enhance the bonding strength of P3HT to the iron. Adhesion test of the high 

temperature (100 and 200 °C) treated samples also show no polymers transferring to the tape, 

indicating good bonding strength of the P3HT/PS-co-PHS blends to the iron after thermal treatment. 

The enhanced bonding between the organic coating layer and iron surface leads to significant 

effect on the anticorrosion behavior of the P3HT/PS-co-PHS blends. As seen in Figure 5, the Icorr of 

P3HT/PS blend increases at elevated thermal treatment temperature. Icorr increases from 0.71 μA/cm2 

at 25 °C to 9.40 μA/cm2 at 200 °C (Table 3) indicating corrosion protection of the polymer blend 

coating layer to the iron surface is getting worse at elevated temperature. However, Icorr decreases as 

content of hydroxyl group increases in the PS-co-PHS copolymers. Icorr decreases from 0.71 μA/cm2 

for the P3HT/PS to 0.25 μA/cm2 for the P3HT/PS-co-10PHS at 25 °C. These data match the results 

shown in the adhesion test. The bonding strength of the P3HT/PS blend does increase with the 

incorporation of hydroxyl group. As mentioned above, P3HT/PS blend does not have good bonding 

to the iron surface so protection efficiency (PE) decreases dramatically after thermal treatment (Table 3). 

However, both P3HT/PS-co-5PHS and P3HT/PS-co-10PHS show very consistent anticorrosion 

properties at elevated temperature because of the improved adhesion force and thermal stability.  

Icorr are both decreased for these two hydroxyl groups containing blends at elevated temperature.  

For the P3HT/PS-co-5PHS sample, it decreases from 0.41 μA/cm2 for untreated sample (25 °C) to 

0.13 μA/cm2 for the 200 °C treated one. For the P3HT/PS-co-10PHS sample, Icorr decreases from 

0.25 μA/cm2 for untreated sample (25 °C) to 0.04 μA/cm2 for the 200 °C treated sample. Rcorr (MPY) 

104.5

P3HT + PS-co-10PHS, 100 ◦C
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The enhanced bonding between the organic coating layer and iron surface leads to significant
effect on the anticorrosion behavior of the P3HT/PS-co-PHS blends. As seen in Figure 5, the Icorr of
P3HT/PS blend increases at elevated thermal treatment temperature. Icorr increases from 0.71 µA/cm2

at 25 ◦C to 9.40 µA/cm2 at 200 ◦C (Table 3) indicating corrosion protection of the polymer blend coating
layer to the iron surface is getting worse at elevated temperature. However, Icorr decreases as content
of hydroxyl group increases in the PS-co-PHS copolymers. Icorr decreases from 0.71 µA/cm2 for the
P3HT/PS to 0.25 µA/cm2 for the P3HT/PS-co-10PHS at 25 ◦C. These data match the results shown in
the adhesion test. The bonding strength of the P3HT/PS blend does increase with the incorporation of
hydroxyl group. As mentioned above, P3HT/PS blend does not have good bonding to the iron surface
so protection efficiency (PE) decreases dramatically after thermal treatment (Table 3). However, both
P3HT/PS-co-5PHS and P3HT/PS-co-10PHS show very consistent anticorrosion properties at elevated
temperature because of the improved adhesion force and thermal stability. Icorr are both decreased
for these two hydroxyl groups containing blends at elevated temperature. For the P3HT/PS-co-5PHS
sample, it decreases from 0.41 µA/cm2 for untreated sample (25 ◦C) to 0.13 µA/cm2 for the 200 ◦C
treated one. For the P3HT/PS-co-10PHS sample, Icorr decreases from 0.25 µA/cm2 for untreated
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sample (25 ◦C) to 0.04 µA/cm2 for the 200 ◦C treated sample. Rcorr (MPY) shows similar trend to the
Icorr and PE value are all above 96%. Rp decreases at elevated temperature for the P3HT/PS blend, but
these values increase after thermal treatment for the P3HT/PS-co-PHS blends, indicating enhanced
protection efficiency of the PS-co-PHS blends to the iron substrate and lowing the corrosion rate (MPY).Coatings 2018, 8, x FOR PEER REVIEW  8 of 11 
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Figure 5. Tafel plots of (a) P3HT/PS, (b) P3HT/PS-co-5PHS and (c) P3HT/PS-co-10PHS at 25, 100, and
200 ◦C.

Table 3. Electrochemical properties of P3HT + PS, P3HT + PS-co-5PHS, and P3HT + PS-co-10PHS
coated iron substrates in 3.5% NaCl solution.

Coating Layer a Rp (kΩ cm2) Icorr (µA/cm−2) Rcorr (MPY c) PE b (%) Thickness (µm)

bare-Fe 4.20 −15.38 7.02 – –
P3HT, 25 ◦C 44.1 −1.03 0.47 97.8 10.0

P3HT + PS, 25 ◦C 51.2 −0.71 0.32 95.4 8.47
(P3HT + PS), 100 ◦C 15.0 −2.37 1.08 84.6 9.52
(P3HT + PS), 200 ◦C 2.20 −9.40 4.30 38.9 5.10

P3HT + PS-co-5PHS, 25 ◦C 100 −0.41 0.19 97.3 12.04
P3HT + PS-co-5PHS, 100 ◦C 321 −0.48 0.22 96.8 16.30
P3HT + PS-co-5PHS, 200 ◦C 249 −0.13 0.06 99.1 16.70
P3HT + PS-co-10PHS, 25 ◦C 1357 −0.25 0.11 98.4 13.63

P3HT + PS-co-10PHS, 100 ◦C 2275 −0.16 0.07 99.0 13.98
P3HT + PS-co-10PHS, 200 ◦C 926 −0.04 0.02 99.7 10.89

a: blend ratio is 1:1; b: corrosion protection efficiency; c: mils per year (corrosion rate).
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Electrochemical impedance spectroscopy (EIS) results of the above samples are shown in Figure 6.
The charge transfer resistance (Rct, radius of the semi-circle) of the polymer coated iron substrate
in 3.5% NaCl solution increases with incorporation of hydroxyl group to the PS. Additionally, all
thermally treated samples have a higher charge transfer resistance than those without thermal
treatment. The inconsistency in the straight line region during the measurement may attributed
to the compatibility variation for the P3HT/PS and P3HT/Ps-co-PHS blends, especially at elevated
temperature. Polymer blends tend to phase separate upon thermal treatment depending on the
strength of intermolecular force. The morphology becomes inhomogeneous once the phase separation
occurs in the P3HT/PS and P3HT/Ps-co-PHS blends. Therefore, it is likely to obtain inconsistence in
the solvent diffusion region (Warburg impedance) where the straight line is originated from.
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