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Abstract: AlCrSiN film with a composition of 29.1Al-17.1Cr-2.1Si-51.7N in at. % was deposited on
a steel substrate by cathodic arc ion plating at a thickness of 1.8 µm. It consisted of nanocrystalline
hcp-AlN and fcc-CrN, where a small amount of Si was dissolved. Corrosion tests were carried
out at 800 ◦C for 5–200 h in Ar-1%SO2 gas. The major corrosion reaction was oxidation owing to
the high oxygen affinity of Al and Cr in the film. The formed oxide scale consisted primarily of
(Al,Cr)2O3, within which Fe, Si, and S were dissolved. Even after corrosion for 200 h, the thickness
of the scale was about 0.7–1.2 µm, indicating that the film had good corrosion resistance in the
SO2-containing atmosphere.
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1. Introduction

Aluminum nitride films have good oxidation resistance due to the formation of Al2O3 scale [1].
Their properties can be enhanced by alloying with the transition metal Cr. AlCrN films have been
applied on dies, molds, and cutting tools [2] for their high hardness [3], thermal stability [4], good
resistance to wear [5], and oxidation [6–9]. AlCrN films were oxidized to Al2O3 and Cr2O3 [6], or
(Cr,Al)2O3 [9], which suppressed oxygen diffusion. The addition of Si to the AlCrN films refines the
grain [10,11], decreases crystallinity [11], increases hardness [12,13], and improves the resistance to
wear [10] and oxidation [13–15]. AlCrSiN films have been deposited on cemented carbides [11,13,16],
Si [11,12,15], and steel [10–12,17] by cathodic arc evaporation [11,16,17], cathodic arc ion plating [10],
and magnetron sputtering [13,15]. The high-temperature oxidation of AlCrSiN films in air results in
the formation of thin, dense oxide layers consisting primarily of Cr2O3 [17], (Cr2O3, Al2O3) [14], and
(Cr2O3, Cr2O5, Al2O3) [13]. However, the corrosion behavior of AlCrSiN films in various corrosive
environments needs be investigated for broad applications. In this study, the high-temperature
corrosion of AlCrSiN film in a SO2-containing atmosphere was performed, with an emphasis on
TEM/EDS analyses. Resistance to sulfur-containing atmospheres is vital for utilizing AlCrSiN as
the protective coating in petrochemical plants, coal-gasification units, turbines, and heat exchangers.
Sulfur in SO2 can induce serious corrosion by forming non-protective, highly non-stoichiometric
sulfide scales [18]. In this study, corrosion tests were carried out on AlCrSiN film at 800 ◦C for 5–200 h
in Ar-1%SO2 gas. The microstructure, corrosion products, and corrosion mechanism of the AlCrSiN
film are discussed.
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2. Experimental Section

AlCrSiN film was deposited on a steel substrate (AISI M2 high speed steel; Fe-6W-5Mo-4Cr-2V
in wt %) by cathodic arc ion plating using Cr and Al88Si12 cathodes. It was deposited for 5 h at a
nitrogen pressure of 1 Pa, a temperature of 400 ◦C, a bias voltage of −150 V, an arc current of 55 A,
and a cathode-to-substrate distance of 7 cm. The rotation speed of the sample holder was 3 rpm,
and an AlCrN interlayer was deposited between the film and the substrate for 20 min. The coated
samples were corroded at 800 ◦C for 5–200 h in the flowing Ar-1%SO2 gas inside the quartz reaction
tube, which was heated inside a tube furnace. Following corrosion, the coated samples were inspected
using a scanning electron microscope (SEM), Auger electron spectrometer (AES), X-ray photoelectron
spectrometer (XPS), and transmission electron microscope (TEM operated at 200 keV) equipped with
an energy dispersive spectrometer (EDS with 5 nm spot size). The TEM samples were prepared by
milling using a focused ion beam system after carbon coating.

3. Results and Discussion

Figure 1 shows the TEM/SAED/EDS results of the as-deposited AlCrSiN film, the composition
of which was 29.1Al-17.1Cr-2.1Si-51.7N in at. % according to the electron probe microanalysis (EPMA).
The AlCrSiN film was 1.8 µm thick, single-layered (Figure 1a), and consisted of nanocrystalline hcp-AlN
and fcc-CrN (Figure 1b). It is known that the crystal structure of CrAlN films changes from B1-fcc to
B4-hcp above the AlN concentration of 65–75 at. % [6], and the addition of Si to CrAlN films facilitates
the formation of hcp-AlN [16]. In this study, the nucleation of hcp-AlN seemed to be accelerated by Si.
In Figure 1c, the AlN-rich area was brighter than the CrN-rich area because Al has a lower scattering
factor than Cr. Si dissolved rather uniformly in the film, as shown in Figure 1d. Here, the presence of
nitrogen in the film was ignored, because TEM/EDS could not accurately quantify the light element.
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Figure 1. As-deposited AlCrSiN film. (a) TEM cross-sectional image; (b) selected area electron
diffraction (SAED) pattern of the film; (c) enlarged TEM image of the film; (d) EDS concentration
profiles along A-B shown in (c).

Gold was deposited on the AlCrSiN film using a sputter, and corroded at 800 ◦C for 5 h in order to
understand the corrosion mechanism of the AlCrSiN film at the early corrosion stage. In Figure 2, the
highest point of Au indicates the original film surface. During corrosion, nitrogen diffused outwardly
from the film, while oxygen and sulfur diffused inwardly. Oxygen diffused dominantly and deeply,
while sulfur was present only at the outermost surface. The ingress of sulfur through compact oxides
could be limited, because the solubility of sulfur in most oxides is very limited [19]. It is worth noting
that oxides are thermodynamically more stable than the corresponding sulfides. Since Al is more active
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than Cr, Al oxidized predominantly underneath the Au film. Silicon was weakly and non-uniformly
present in the film.
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Figure 2. AES depth profiles of the AlCrSiN film after corrosion at 800 ◦C for 5 h in Ar-1%SO2 gas. The
penetration rate is 19 nm/min for the reference SiO2.

Figure 3 shows the TEM/EDS results of the AlCrSiN film after corrosion at 800 ◦C for 10 h.
The scale was 0.2 µm thick, reflecting the good corrosion resistance of the AlCrSiN film (Figure 3a).
Oxide whiskers protruded over angular oxide grains (Figure 3b). According to the TEM/EDS spot
analysis, the scale consisted of (Al,Cr)2O3 grains with dissolved Fe and Si ions (Figure 3c). Chromia and
α-Al2O3 are miscible because they have the same corundum structure. The amount of Si shown in
Figure 3c is inaccurate, because the spurious Si signal can come out from the EDS detector owing to the
internal fluorescence. Iron diffused outward from the substrate through the nanocrystalline film toward
the surface according to the concentration gradient. Since oxidation occurred preferentially owing to
the thermodynamic stability of the oxides, sulfur was absent in Figure 3c. The XPS analysis, however,
identified 2.6 at. %S at the surface of the (Al,Cr)2O3 scale. Such a discrepancy in the chemical composition
of the oxide scale at the surface was attributed to the different detectability of XPS and TEM-EDS.

Coatings 2017, 7, 44 3 of 6 

 

It is worth noting that oxides are thermodynamically more stable than the corresponding sulfides. 

Since Al is more active than Cr, Al oxidized predominantly underneath the Au film. Silicon was 

weakly and non-uniformly present in the film. 

 

Figure 2. AES depth profiles of the AlCrSiN film after corrosion at 800 °C for 5 h in Ar-1%SO2 gas. 

The penetration rate is 19 nm/min for the reference SiO2. 

Figure 3 shows the TEM/EDS results of the AlCrSiN film after corrosion at 800 °C for 10 h. The 

scale was 0.2 μm thick, reflecting the good corrosion resistance of the AlCrSiN film (Figure 3a). Oxide 

whiskers protruded over angular oxide grains (Figure 3b). According to the TEM/EDS spot analysis, 

the scale consisted of (Al,Cr)2O3 grains with dissolved Fe and Si ions (Figure 3c). Chromia and α-

Al2O3 are miscible because they have the same corundum structure. The amount of Si shown in Figure 

3c is inaccurate, because the spurious Si signal can come out from the EDS detector owing to the 

internal fluorescence. Iron diffused outward from the substrate through the nanocrystalline film 

toward the surface according to the concentration gradient. Since oxidation occurred preferentially 

owing to the thermodynamic stability of the oxides, sulfur was absent in Figure 3c. The XPS analysis, 

however, identified 2.6 at. %S at the surface of the (Al,Cr)2O3 scale. Such a discrepancy in the chemical 

composition of the oxide scale at the surface was attributed to the different detectability of XPS and 

TEM-EDS. 

 

Figure 3. AlCrSiN film after corrosion at 800 °C for 10 h in Ar-1%SO2 gas. (a) TEM cross-sectional 

image, (b) enlarged image of rectangular area shown in (a), (c) EDS concentration profiles along the 

spots 1–14. 

Figure 3. AlCrSiN film after corrosion at 800 ◦C for 10 h in Ar-1%SO2 gas. (a) TEM cross-sectional
image, (b) enlarged image of rectangular area shown in (a), (c) EDS concentration profiles along the
spots 1–14.
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Figure 4 shows the TEM/EDS results of the AlCrSiN film after corrosion at 800 ◦C for 50 h.
The scale was still thin because of the formation of the slowly growing oxide scale (Figure 4a). Spots 1–3
and 4–9 corresponded to the (Fe, Si, S)-dissolved (Al,Cr)2O3 scale and the S-free, (Fe, O)-dissolved
AlCrSiN film, respectively (Figure 4b). Nitrogen was absent around the oxide scale. The concentrations
shown in Figure 4b are, however, suspicious, because of the difficulty in quantifying nitrogen, oxygen,
and Si. Nonetheless, sulfur was detected at the outer part of the scale. The inward diffusion of oxygen
through the nanocrystalline film led to the dissolution of rather a large amount of oxygen in the film.
The oxide grains shown in Figure 4a were tens of nanometers in diameter. Dissolution of foreign
ions such as Fe and Si can facilitate the rapid establishment of the protective (Al,Cr)2O3 scale by
increasing the defect concentration through the doping effect. The protruded oxides at spots 1 and
2 were evidently formed by the outward diffusion of Cr, Al, Fe, and Si. Hence, it is seen that the
corrosion proceeded not only by the inward transport of oxygen (see Figure 2) but also by the outward
diffusion of cations from the film and the substrate (see Figures 3 and 4). At the outer part of the scale,
Cr was frequently richer than Al, suggesting that Cr tended to diffuse outwardly faster than Al.
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Figure 4. AlCrSiN film after corrosion at 800 ◦C for 50 h. (a) TEM cross-sectional image; (b) EDS
concentration profiles along the spots 1–10.

The SEM/TEM/EDS results of the AlCrSiN film at the later stage of corrosion are shown in
Figure 5. The surface of the scale was covered with angled, round, and rod-shaped oxide grains
(Figure 5a). Spots 1–4 shown in Figure 5b show a rod-shaped (Al,Cr)2O3 grain dissolved with Fe,
Si, and S (Figure 5c). Al, Cr, Fe, and Si clearly diffused outwards to spots 1–4. The ratio of Al/Cr
in the oxide scale fluctuated depending on the location, as shown in Figure 5c. For example, spots
1–4 are Al-rich, while spots 5 and 6 are Cr-rich. More frequently, Cr-rich oxide scale formed on the
Al-rich oxide scale. Spot 7 indicates that the (Al,Cr)2O3 oxide contained some Si, S, and N. At spot 8,
the nitride film began to oxidize. Spots 9–14 corresponded to the (Fe, O, S)-dissolved AlCrSiN film.
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4. Conclusions

The AlCrSiN film was single-layered, and consisted of nanocrystalline hcp-AlN and fcc-CrN,
which had a small amount of dissolved Si. Its corrosion behavior was studied at 800 ◦C for 5–200 h in
Ar-1% SO2 gas. At the early corrosion stage, Al oxidized preferentially at the surface. As the corrosion
proceeded, the competitive oxidation of Al and Cr led to the formation of (Al,Cr)2O3 grains with or
without dissolved ions of Fe, Si, and S. The (Al,Cr)2O3 scale effectively protected the film. The corrosion
proceeded not only by the inward transport of oxygen and sulfur, but also by the outward diffusion of
Al, Cr, Si, and N from the film as well as Fe from the substrate. Compared to sulfur, oxygen diffused
dominantly and deeply into the film. The surface of the scale was covered with angled, round, and
rod-shaped oxide grains.
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