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Abstract: Herein, we studied the effect of MgO coating thickness on the performance of printable
perovskite solar cells (PSCs) by varying the electrodeposition time of Mg(OH)2 on the fluorine-doped
tin oxide (FTO)/TiO2 electrode. Electrodeposited Mg(OH)2 in the electrode was confirmed by energy
dispersive X-ray (EDX) analysis and scanning electron microscopic (SEM) images. The performance
of printable PSC structures on different deposition times of Mg(OH)2 was evaluated on the basis of
their photocurrent density-voltage characteristics. The overall results confirmed that the insulating
MgO coating has an adverse effect on the photovoltaic performance of the solid state printable PSCs.
However, a marginal improvement in the device efficiency was obtained for the device made with
the 30 s electrodeposited TiO2 electrode. We believe that this undesirable effect on the photovoltaic
performance of the printable PSCs is due to the higher coverage of TiO2 by the insulating MgO layer
attained by the electrodeposition technique.
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1. Introduction

Perovskite solar cell (PSC) technology has made tremendous progress over the last few years,
with a significant increase in power conversion efficiency with recent devices reaching over 22% [1].
Initially, perovskite (CH3NH3PbI3) was used as a sensitizer to replace organic dye molecules in
dye-sensitized solar cells by Miyasaka et al. [2]. However, corrosion of the CH3NH3PbI3 by the I−/I3

−

electrolyte hindered the interest of this new sensitizer until realizing the possibility of replacing the
electrolyte with a solid organic hole transport material (HTM), spiro MeOTAD [3]. Since then, both
mesoscopic and planar heterojunction PSCs have been fabricated with different architectures and
preparation methods [4–7]. Recently, huge interest was given to printable PSCs with carbon counter
electrodes as they demonstrate enormous potential for achieving high efficiency, long lifetime and low
manufacturing costs which may lead to future commercialization [7–9].
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In PSCs, often a thin compact TiO2 layer (~50 nm) is formed in order to prevent back electron
transport from fluorine-doped tin oxide (FTO) to either perovskite or HTM. However, unevenness,
surface defects and the presence of pin holes in this layer are often responsible for reducing the cell
performance. Therefore, over the last years, many attempts have been made to enhance the overall cell
performance of PSCs by retarding the back transfer of photo-generated electrons through the FTO/TiO2

interface by surface modification of TiO2 using insulating metal oxides [10–12] and hydroxides [13,14]
or high band gap semiconductors [15,16] that form a blocking layer between the perovskite sensitizer
and TiO2 layer to block the back electron flow towards the HTM. For instance, TiO2 modification with
a monolayer of silane [17] and ZnO with 3-aminopropanioc acid self-assembled monolayer [18] have
been found to enhance the device efficiency by retarding the back electron transfer processes of PSCs.
Wang et al. [19] found that magnesium oxide and magnesium hydroxide, formed at the surface of TiO2,
suppress the recombination, achieving an improvement of Voc and hence photo-conversion efficiency
(PCE). Similarly, Jung et al. [10] coat an ultrathin MgO layer on TiO2 and found an improvement in the
fill factor and Voc of the device, which they believe to be due to the retarded charge recombination
at the interface between MgO and CH3NH3PbI3. Conversely, Ke et al. [20] and Liu et al. [21] have
shown that a higher Voc can be obtained for planar PSCs without a compact TiO2 layer, suggesting
that the recombination pathways in PSCs are still unclear and more investigation with different device
configurations is required for better understanding.

Compared to other widely used coating techniques such as spin coating and screen printing,
the electrodeposition is considered to be a versatile technique for producing surface coatings, owing
to its precise controllability, better adherence to substrate, rapid deposition rate with a higher
uniformity, room temperature operation and relatively low cost [22–24]. In this study, we grew
a conformal Mg(OH)2 coating by the electrodeposition method on the surface of FTO/TiO2 and
investigated the effect of this insulating oxide on their photovoltaic device performance. Our results
confirmed that there is an adverse effect on the device performance with the MgO coating obtained by
electrodeposition of Mg(OH)2 on the printable PSCs.

2. Materials and Methods

Fluorine-doped tin oxide (FTO) glass substrates were etched with a laser before being cleaned
ultrasonically with detergent, deionized water and ethanol successively. Then, some of the substrates
were coated with a TiO2 compact layer by aerosol spray pyrolysis at 500 ◦C using a precursor containing
300 µL of titanium diisopropoxide bis (acetylacetonate). The treated film was annealed at 500 ◦C for
30 min inside an oven. Then, the mesoporous TiO2 layer was deposited by screen printing using a
TiO2 paste [3 g of F-6 powder (Showatitanium, Toyama, Japan) with 0.5 mL of acetic acid, 15 mL
of ethyl cellulose (45–55 mPa·s, TCI, 10 wt % in EtOH) and 50 g of α-terpineol]. After the coating,
the film was dried at 125 ◦C for 5 min and sintered at 500 ◦C for 30 min using an oven. The Mg(OH)2

coatings were electrodeposited on the FTO/TiO2 or FTO substrates in an aqueous electrolyte solution
composed of Mg(CH3COO)2·4H2O having a concentration of 0.01 M. The electrodeposition was
carried out in the three-electrode configuration using the TiO2-coated FTO or FTO substrate as the
working electrode with the cathode area of 1 cm2, Ag/AgCl electrode, and Pt as the reference and
counter electrodes, respectively. The electrodeposition was conducted at a constant current of 0.6 mA
(Chronopotentiometry) using a Potentiostat/Galvanostat. After the deposition, the films were removed
from the electrolyte solution, washed with distilled water and allowed to dry at room temperature.
The electrodeposition time was varied for 10 s, 30 s, 1 min, 2 min, 4 min, 6 min, 10 min and 20 min
and the deposited Mg(OH)2 is converted to MgO during the post-annealing of successive layers.
In devices A and B, a ZrO2 space layer was printed on the film using a ZrO2 paste [3 g of ZrO2

powder (40–50 nm, Alfa Aesar, Lancashire, UK) with 0.5 mL of acetic acid, 15 mL of ethyl cellulose
(45–55 mPa·s, TCI, 10 wt % in EtOH) and 50 g of α-terpineol]. The film was annealed at 400 ◦C for
30 min inside an oven after drying at 125 ◦C for 5 min on a hot plate. Then, a NiO mesoporous
layer was coated on respective devices using a NiO paste consisting of 3 g of NiO powder (20 nm,
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Iolitec Ionic Liquids Technologies GmbH, Heilbronn, Germany) with 0.5 mL of acetic acid, 15 mL of
ethyl cellulose (45–55 mPa·s, TCI, 10 wt % in EtOH) and 50 g of α-terpineol. After the pre-drying at
125 ◦C, the NiO layer was sintered at 500 ◦C for 30 min using an oven. Finally, a carbon black/graphite
layer was coated on the top of the ZrO2 or NiO layer by the screen printing method using a pot milled
carbon black/graphite paste [1 g of Printex L6 carbon (Evonik Industries, Frankfurt, Germany), 1 g of
graphite, 4 g of graphite flakes (~325 mesh, Alfa Aeser, Haverhill, MA, USA), 5 g of TiO2 (P25), 20 g of
α-terpineol and 30 g of ethyl cellulose (10 wt % in EtOH) and sintered at 400 ◦C for 30 min inside an
oven. The synthesis of CH3NH3PbI3 (MAPbI3) and deposition on the devices was carried out by the
two-step deposition method onto the carbon black/graphite layer (using 1.2 M PbI2 in DMF solution and
CH3NH3I solution (10 mg/mL)]. Upon drying at 70 ◦C for 30 min, the films darkened in colour, indicating
the formation of MAPbI3 in the solar cell. All of the processes were performed under ambient conditions.

Photovoltaic measurements were conducted using an AM 1.5 solar simulator equipped with
a xenon lamp (Yamashita Denso, Tokyo, Japan). The power of the simulated light was calibrated to
100 mW·cm−2 by a reference Si photodiode (Bunkou Keiki, Tokyo, Japan). J–V curves were obtained
by applying an external bias to the cell and the generated photocurrent was measured with a B2901A,
Agilent voltage current source (Santa Clara, CA, USA). The active area of the cells was fixed at 0.04 cm2.
The SEM images were obtained by JOEL-JSM-6510 scanning electron microscopes (JEOL, Tokyo, Japan)
and EDX measured using a TE3030, Hitachi machine (Tokyo, Japan).

3. Results and Discussion

In order to investigate the effect of MgO on the photovoltaic performance of printable PSCs,
we have deposited a MgO layer on FTO/TiO2 (devices B and C) or FTO (device D) by varying
the Mg(OH)2 electrodeposition time on different mesoscopic structures (Figure 1). The deposited
Mg(OH)2 is converted to MgO upon post-annealing of successive layers. The devices made with
a standard four-layer structure of TiO2/ZrO2/NiO/Carbon (MAPbI3) are depicted as A and the
devices with the same architecture with MgO coating on TiO2 are illustrated as device B. Device C is
employed with the intention of fabricating a thin insulation layer of MgO on TiO2 and FTO (with the
deposition time) before coating the hole-transporting NiO layer. Device D is designed according to the
meso-super-structured solar cell structure where the MgO layer is acting as a scaffold for MAPbI3 in
the device.
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Figure 1. Different printable perovskite solar cell structures. (A) FTO/TiO2/ZrO2/NiO/Carbon (MAPbI3);
(B) FTO/TiO2<MgO>/ZrO2/NiO/Carbon (MAPbI3); (C) FTO/TiO2<MgO>/NiO/Carbon (MAPbI3)
and (D) FTO/MgO/NiO/Carbon (MAPbI3).
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During the electrodeposition of Mg(OH)2 in the devices B, C and D, the below electrochemical
reactions could take place at the cathode surface [13],

NO−3 + H2O + 2e− → NO−2 + 2OH− (1)

2H2O + 2e− → 2OH− + H2 (2)

As a result of these reactions (i.e., with the formation of OH−), a steep increase of local pH (~9) in
the electrodeposition solution near to the cathode could occur, leading to the formation of Mg(OH)2

due to the poor solubility of Mg(OH)2 (Ksp of Mg(OH)2 is 1.2 × 10−11 mol3·dm−9 at 25 ◦C) [25,26].
This flocculated Mg(OH)2 in the solution can be hetero-coagulated on TiO2 and FTO electrostatically
due to their opposite surface charges. (Isoelectric points of TiO2 ~6.2 FTO ~6 and Mg(OH)2 ~12) [13].
Once the electrodeposition is started, it is more likely that the low resistive exposed FTO surface (i.e.,
pinholes) and the TiO2 surface in the vicinity are coated with Mg(OH)2. However, with the increasing
deposition time, the alkaline pH boundary extends further away from the interior surface which could
lead to the TiO2 nanoparticles being covered by Mg(OH)2.

The surface topographic FEG-SEM images of electrodeposited Mg(OH)2 for 2 min and 10 min
deposition times on FTO glass substrate are shown in Figure 2a,b respectively. The images showed
that the substrates are completely covered by electrodeposited flower-like Mg(OH)2 spheres [13,27].
Figure 2c,d shows the cross-sectional images of devices C and D respectively. As shown in Figure 2c,
the thickness of the TiO2<MgO>/ZrO2/NiO (MAPbI3) is around 2 µm whereas the carbon counter
electrode is estimated to be around 25 µm. The MgO layer in the device cannot be seen clearly as
it is too thin to be visible in the cross-sectional images. However, EDX (Figure 2e) mapping of the
cross-sectional image of device D, confirms the presence of Mg, Ni and carbon in the electrode.
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Figure 2. Surface topographical images of electrodeposited Mg(OH)2 on the FTO substrate for (a) 2 min
and (b) 10 min (inset shows the higher magnification), cross-sectional images of PSCs device B (c)
and device D (d) and EDX mapping images of the MgO layer (e), NiO layer (f) and Carbon (g) in the
device D.
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The influence of the MgO layer and its thickness (by varying the Mg(OH)2 electrodeposition
time) on the photovoltaic performance of these different printable PSC structures was evaluated by
their I–V characteristics. Figure 3 illustrates the variations observed in the I–V characteristics of the
TiO2/ZrO2/NiO/Carbon(MAPbI3) structured device (device A) against the Mg(OH)2 deposition time
(device B). The device A yielded a Voc of 0.78 V, a short-circuit current density (Jsc) of 9.30 mA·cm−2 and
a fill factor of 0.44, which correspond to a PCE of 3.19%. The I–V plots and the average photovoltaic
parameters in Table 1 of devices show that the device’s performance is clearly influenced by the
systematic growth of Mg(OH)2 on TiO2. The cell prepared with the 30 s Mg(OH)2 electrodeposited
electrode showed a Voc of 0.75 V, Jsc of 8.48 mA·cm−2, fill factor of 0.52 and PCE of 3.26%. It is
noticeable that the Jsc has systematically decreased as the Mg(OH)2 coating time varied from 1 to
10 min, suggesting the blocking of porous TiO2. It is more likely that the coverage of Mg(OH)2 on TiO2

prevents MAPbI3 on TiO2 which was evident by the small reduction of photocurrent density up to
30 s. The trend was continued as the electrodeposition time further increased. The device with 10 min
of Mg(OH)2 coating showed the lowest Jsc of 0.61 mA·cm−2, with a trivial improvement in the Voc

(0.79 V) and fill factor (0.53) compared to device A.

Coatings 2017, 7, 36 

5 

TiO2/ZrO2/NiO/Carbon(MAPbI3) structured device (device A) against the Mg(OH)2 deposition time 

(device B). The device A yielded a Voc of 0.78 V, a short-circuit current density (Jsc) of 9.30 mA·cm−2 

and a fill factor of 0.44, which correspond to a PCE of 3.19%. The I–V plots and the average 

photovoltaic parameters in Table 1 of devices show that the device’s performance is clearly 

influenced by the systematic growth of Mg(OH)2 on TiO2. The cell prepared with the 30 s Mg(OH)2 

electrodeposited electrode showed a Voc of 0.75 V, Jsc of 8.48 mA·cm−2, fill factor of 0.52 and PCE of 

3.26%. It is noticeable that the Jsc has systematically decreased as the Mg(OH)2 coating time varied 

from 1 to 10 min, suggesting the blocking of porous TiO2. It is more likely that the coverage of 

Mg(OH)2 on TiO2 prevents MAPbI3 on TiO2 which was evident by the small reduction of photocurrent 

density up to 30 s. The trend was continued as the electrodeposition time further increased. The 

device with 10 min of Mg(OH)2 coating showed the lowest Jsc of 0.61 mA·cm−2, with a trivial 

improvement in the Voc (0.79 V) and fill factor (0.53) compared to device A. 

 

Figure 3. J–V characteristics of printable PSCs (device A) with different electrodeposition times of 

Mg(OH)2 (device B). 

Table 1. Summary of the average solar cell parameters of device A and B against the electrodeposition 

times of Mg(OH)2. 

Time Jsc (mA·cm−2) Voc (V) Fill Factor PCE (%) 

0 9.30 ± 0.23 0.78 ± 0.01 0.44 ± 0.01 3.19 ± 0.14 

30 s 8.48 ± 0.38 0.75 ± 0.01 0.52 ± 0.01 3.26 ± 0.15 

1 min 6.32 ± 0.68 0.48 ± 0.04 0.36 ± 0.01 1.10 ± 0.20 

2 min 2.26 ± 0.17 0.20 ± 0.02 0.26 ± 0.01 0.12 ± 0.02 

4 min 1.69 ± 0.19 0.47 ± 0.03 0.34 ± 0.02 0.27 ± 0.06 

6 min 1.32 ± 0.16 0.22 ± 0.03 0.26 ± 0.01 0.07 ± 0.02 

10 min 0.61 ± 0.03 0.79 ± 0.01 0.53 ± 0.01 0.26 ± 0.01 

In device C, Mg(OH)2 was electrodeposited after coating the mesoporous TiO2 layer without a 

compact TiO2 layer and the MgO layer was replaced with TiO2 and ZrO2 layers in the device D. As 

shown in Figure 4a and Table 2, device C demonstrated poor device performance compared to the 

device A. This is probably due to the higher recombination rate at the TiO2/NiO interface despite the 

MgO layer on TiO2. The bare device demonstrated a Jsc of 4.99 mA·cm−2, a Voc of 0.10 V and a FF of 

0.26, leading to a PCE of 0.14%.The device made with a coating of Mg(OH)2 for 30 s on the FTO/TiO2 

electrode showed a PCE of 0.05%, with a significant decrease in both the Jsc (from 4.99 to 3.75 mA·cm−2) 

and Voc (from 0.10 to 0.06 V). Although an improvement in PCE was observed when the 

electrodeposition time increases from 2 to 4 min, the device efficiency is still inferior to the 

performance of the bare solar cell (Table 2). 

Figure 3. J–V characteristics of printable PSCs (device A) with different electrodeposition times of
Mg(OH)2 (device B).

Table 1. Summary of the average solar cell parameters of devices A and B against the electrodeposition
times of Mg(OH)2.

Time Jsc (mA·cm−2) Voc (V) Fill Factor PCE (%)

0 9.30 ± 0.23 0.78 ± 0.01 0.44 ± 0.01 3.19 ± 0.14
30 s 8.48 ± 0.38 0.75 ± 0.01 0.52 ± 0.01 3.26 ± 0.15

1 min 6.32 ± 0.68 0.48 ± 0.04 0.36 ± 0.01 1.10 ± 0.20
2 min 2.26 ± 0.17 0.20 ± 0.02 0.26 ± 0.01 0.12 ± 0.02
4 min 1.69 ± 0.19 0.47 ± 0.03 0.34 ± 0.02 0.27 ± 0.06
6 min 1.32 ± 0.16 0.22 ± 0.03 0.26 ± 0.01 0.07 ± 0.02

10 min 0.61 ± 0.03 0.79 ± 0.01 0.53 ± 0.01 0.26 ± 0.01

In device C, Mg(OH)2 was electrodeposited after coating the mesoporous TiO2 layer without
a compact TiO2 layer and the MgO layer was replaced with TiO2 and ZrO2 layers in the device D.
As shown in Figure 4a and Table 2, device C demonstrated poor device performance compared to
the device A. This is probably due to the higher recombination rate at the TiO2/NiO interface despite
the MgO layer on TiO2. The bare device demonstrated a Jsc of 4.99 mA·cm−2, a Voc of 0.10 V and
a FF of 0.26, leading to a PCE of 0.14%.The device made with a coating of Mg(OH)2 for 30 s on the
FTO/TiO2 electrode showed a PCE of 0.05%, with a significant decrease in both the Jsc (from 4.99
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to 3.75 mA·cm−2) and Voc (from 0.10 to 0.06 V). Although an improvement in PCE was observed
when the electrodeposition time increases from 2 to 4 min, the device efficiency is still inferior to the
performance of the bare solar cell (Table 2).Coatings 2017, 7, 36 
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Device C 

0 4.99 ± 0.56 0.10 ± 0.01 0.26 ± 0.01 0.14 ± 0.03 

0.5 3.75 ± 0.51 0.06 ± 0.01 0.26 ± 0.01 0.05 ± 0.01 

1 1.67 ± 0.09 0.02 ± 0.01 0.25 ± 0.01 0.009 ± 0.002 

2 0.53 ± 0.03 0.021 ± 0.002 0.25 ± 0.01 0.0029 ± 0.0002 

4 3.45 ± 0.22 0.019 ± 0.002 0.243 ± 0.006 0.02 ± 0.01 

6 1.74 ± 0.03 0.071 ± 0.001 0.26 ± 0.01 0.032 ± 0.001 

10 1.55 ± 0.04 0.058 ± 0.001 0.251 ± 0.002 0.023 ± 0.001 

Device D 

10 0.31 ± 0.01 0.097 ± 0.001 0.27 ± 0.01 0.0079 ± 0.0001 

20 0.32 ± 0.01 0.12 ± 0.01 0.27 ± 0.01 0.0099 ± 0.0002 

Figure 4. J–V characteristics of printable PSCs of device C (a) and device D (b) with different
electrodeposition times of Mg(OH)2.

Following the meso-super-structured solar cell proposed by Snaith et al. [3], we fabricated device
D with FTO/Mg(OH)2/NiO/Carbon(MAPbI3) configuration. In this structure, MgO acts as a scaffold
for MAPbI3. The I–V characteristics of the devices with different electrodeposition times of Mg(OH)2

are shown in Figure 4b. It was clear that up to 10 min electrodeposition time of Mg(OH)2, the diode
characteristic did not appear due to the shorting resulted by the low thickness of the MgO layer.
However, the diode characteristic emerged above the 10 min electrodeposition time of Mg(OH)2.
The device made with the 20 min deposited MgO layer showed a Jsc of 0.32 mA·cm−2, a Voc of 0.12 V,
a fill factor of 0.27 and a PCE of 0.01% (Table 2). However, the higher thickness of MgO does not
improve the photocurrent density of the device as expected, which could be due to the higher sheet
resistance that results from the thick insulating MgO layer at the higher deposition times.

Overall, the results confirmed that the MgO coating on FTO/TiO2 (devices B and C) or FTO
(device D) in printable PSCs does not show much benefit in improving the PCE compared to the bare
devices, which could be due to the higher coverage of TiO2 by the insulating MgO layer attained by
the electrodeposition of Mg(OH)2.

Table 2. Summary of the average solar cell parameters of devices C and D against the electrodeposition
time of Mg(OH)2.

Time (min) Jsc (mA·cm−2) Voc (V) Fill Factor PCE (%)

Device C

0 4.99 ± 0.56 0.10 ± 0.01 0.26 ± 0.01 0.14 ± 0.03
0.5 3.75 ± 0.51 0.06 ± 0.01 0.26 ± 0.01 0.05 ± 0.01
1 1.67 ± 0.09 0.02 ± 0.01 0.25 ± 0.01 0.009 ± 0.002
2 0.53 ± 0.03 0.021 ± 0.002 0.25 ± 0.01 0.0029 ± 0.0002
4 3.45 ± 0.22 0.019 ± 0.002 0.243 ± 0.006 0.02 ± 0.01
6 1.74 ± 0.03 0.071 ± 0.001 0.26 ± 0.01 0.032 ± 0.001

10 1.55 ± 0.04 0.058 ± 0.001 0.251 ± 0.002 0.023 ± 0.001

Device D

10 0.31 ± 0.01 0.097 ± 0.001 0.27 ± 0.01 0.0079 ± 0.0001
20 0.32 ± 0.01 0.12 ± 0.01 0.27 ± 0.01 0.0099 ± 0.0002
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4. Conclusions

In summary, we studied the effect of MgO coating on the photovoltaic performance of printable
PSCs. Electrodeposition of Mg(OH)2 was conducted on the surface of mesoporous TiO2 on FTO in
devices A, B and C and FTO in device D. The effect of electrodeposition time on the performance of
printable PSCs was evaluated on the basis of their key cell parameters. The overall results confirmed
that the insulating MgO coating has an adverse effect on the photovoltaic performance of the solid
state printable PSCs. We believe that this adverse effect on the photovoltaic performance of the
printable PSCs is due to the higher coverage of TiO2 by the insulating MgO layer attained by the
electrodeposition of Mg(OH)2.
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