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Abstract: A model for spinodal decomposition must account for interface effects that 

include gradient and strain energy terms. The measurement of diffusion in the Cu-Ni(Fe) 

alloy for the special case of nanolaminate structured coatings is considered wherein the 

composition fluctuation is one-dimensional along <111>. An analytic approach is taken to 

model the kinetics of the transformation process that provides quantification of the strain 

energy dependence on the composition wavelength, as well as the intrinsic diffusivities and 

higher-order gradient-energy coefficients. The variation of the wave amplification factor R 

with wavenumber is modeled first to incorporate the boundary condition for growth at 

infinite wavelength. These results are used next to determine the gradient energy coefficients 

Kμ by modeling the interdiffusion coefficient ĎB variation with wavenumber, where a unique 

determination of the diffusion coefficient Ď is made. The value of the strain energy 

component that originates from interface strains associated with the epitaxial growth 

between layers is then determined by assessing the variation of wavelength-dependent 

amplification factors. A peak value of 9.4 × 107 J·m−3 for the strain energy is computed for 

Cu-Ni(Fe) nanolaminate coatings with 2–4 nm composition wavelengths. 
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1. Introduction 

The diffusional transformation of spinodal decomposition [1–10] proceeds by the growth of a periodic 

composition fluctuation as the α-phase matrix decomposes at temperatures within the spinodal into α' 
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and αʺ phases, without a change in the crystal structure. The evolution continues of the linear Cahn-Hilliard 

model for spinodal decomposition. The effect of nonlinear relaxation dynamics [11] is considered with 

respect to the interaction of phase boundaries and their motion. The case for multilayered structures is 

investigated wherein it can be modeled that the motion of an interface is affected by interactions with 

second nearest interfaces, leading towards the tendency of doubling the composition wavelength over 

time. Mossbauer measurements [12] evidence the continued decomposition of Cu-Ni(Fe) at room temperature. 

The relevance of lattice coherency effects are seen in material behaviors of Cu-Ni(Fe) alloys including 

mechanical and magnetic. Numerous spinodal decomposition studies use the processing of bulk alloys. 

Mechanical alloying [13] provides a route to produce nanostructured powder precursors as well. The 

effect of coherency strains is evident in the yield strength [14,15] of age-hardened alloys where 

maximum strength was achieved for lower aging temperatures. An advantage of spinodal decomposition 

for mechanical hardening [16] is that excellent dimensional stability can be maintained since no 

crystallographic changes take place. A giant magnetoresistance behavior was introduced [17] by aging 

a bulk alloy through processing via spinodal decomposition with uniaxial deformation to produce local 

superlattice-type nanostructures. Coatings [18] on low-carbon steels have been evaluated for improved 

corrosion behavior. In multilayered form, a more recent investigation [19] of ferromagnetic nanostructured 

multilayers considers the effect of growth conditions to superparamagnetic contributions to 

magnetoresistance behavior that result from composition-rich regions. 

This study considers the effects of strain energy from a one-dimensional modulation in nanolaminate 

structures on the kinetics of the spinodal decomposition process. 

2. Background 

The free energy f at a temperature Ti is considered for an alloy system composed of elements A and 

B. The compositions cα' and cαʺ indicate the lower and upper bounds, respectively, for the composition 

cB of element B within the miscibility gap. The local minima in the free energy curve, i.e., at f = ∂f/∂c = 0, 

provide the locus of points at temperatures Ti that form the miscibility gap. 

The phase transformation process of spinodal decomposition [1–10] proceeds via uphill diffusion 

when the second-order derivative of the Helmholtz free energy f with respect to composition c is less 

than zero, i.e., fʺ = ∂2f/∂c2 < 0. The locus of points for those compositions at temperatures that are 

between the bounds defined by fʺ = 0 is the chemical spinodal. There is no barrier for decomposition for 

temperatures within the spinodal Ti < Ts. Decomposition for one-dimensional diffusion is found [20] 

where satellite reflections are observed about the Bragg peaks in X-ray diffraction patterns for a heat 

treated Cu-Ni-Fe alloy. An initial explanation considers an interfacial energy term [1] between adjacent 

atomic planes. The additional consideration of a gradient energy term [3,4] provides the identification 

of a critical wavenumber βc to the composition fluctuation where the wavenumber-dependent 

interdiffusivity ĎB equals zero. The decomposition stops and decay occurs beyond a critical wavenumber, 

i.e., β > βc, where maximum growth occurs at a wavenumber βm (classically, equal to βc/ 2 ). 

The presence of coherency effects [5] from a strained lattice will further depress the transformation 

temperature of the chemical spinodal Ts to a coherent spinodal Ts*. The decrease of the spinodal 

temperature, i.e., Ts – Ts*, can be significant [21] for some alloy systems such as Au-Ni with a large 

lattice misfit, whereas it is potentially smaller for bulk alloy systems such as Cu-Ni(Fe) that have a 
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smaller misfit strain. Along with a composition gradient energy, the presence of interfaces provides a 

strain energy term that evidences maximum growth of a characteristic composition wavelength along 

elastically soft directions. Consequently, an applied stress [8] during aging affects the evolving 

morphology of the composition fluctuation. 

The linear theory of diffusion for spinodal decomposition [1–5,8,21–24] provides for the accommodation 

of energy associated with new evolving surfaces and interface strain for the composition fluctuations. 

The wavenumber dependent interdiffusivity ĎB is linearly proportional to the square of the wavenumber 

β2 where the amplification factor R of growth to the composition wave equals −β2·ĎB. The values of βc 

and βm will change with the depression of the coherent spinodal temperature for the aging process. 

The consideration of additional gradient-energy terms Kμ as (e.g., from the effects of distant interface 

interactions) is used in a further modified formulation [25] of diffusion. In concept, this allows for fitting 

a higher-order, non-quadratic relationship between the interdiffusivity ĎB and wavenumber, i.e., as can 

be directionally quantified using the dispersion relationship B. This has been accomplished by 

simultaneous determination [25,26] of Kμ and Ď. However, uncertainty is introduced without direct use 

of the long-wavelength boundary condition. 

A condition arises during decomposition that the presence of strain energy will always decrease the 

amplification factor R. The effect is to increase the magnitude of interdiffusivity ĎB outside the spinodal, 

but decrease its magnitude within the spinodal. This requires use of higher-order terms in a polynomial 

expansion that should meet the requirement for establishing an upper bound to the amplification factor 

variation with the dispersion relation and, consequently, a lower bound for the value of measured 

diffusion behavior. 

The magnitude of the 2η2·Y (the elastic modulus Y) strain energy depends upon the accommodation 

of strain η within the crystal structure, and its variation with the dispersion relation. As the wavenumber, 

i.e., dispersion relation, decreases towards zero the strain through the nanolaminate structure will decay 

in magnitude. This represents the conditions for a bulk-diffusion couple. Maximum strain is often seen 

experimentally in metallic superlattices as Cu-Ni(Fe) at relatively small composition wavelengths of  

2–3 nm that correspond with a decrease in wavenumber to 3–2 nm−1. Therefore, a variation in the 2η2·Y 

term with composition wavelength is anticipated. 

3. Experimental Section 

Nanolaminate structures consist of an alternating sequence of constituent components that form a 

composition fluctuation. Nanolaminate thin films of Cu0.53/Ni0.40Fe0.07 are prepared [26] by alternating 

the vapor flux between Cu and Ni-Fe sources onto a heated substrate. The deposition chamber is 

evacuated to a base pressure of 20 Pa (0.2 μTorr) with use of a liquid-nitrogen cooled Meissner trap. 

The source metals are >0.99995 pure and are thermally evaporated from 7 cm3 crucibles at 0.1–1 nms−1 

evaporation rates to produce a 0.5–0.9 m film thickness. The source-to-substrate separation of 30 cm 

enables thickness control with use of 6 MHz gold-coated quartz crystal microbalances to produce a 

coating composition to within 1 at.%. The nanolaminates coatings are deposited onto 4 cm × 8 cm 

sheets of both cleaved mica and polished Si wafers (with the native oxide intact). A 20–40 nm thick 

buffer layer of pure Cu is deposited initially to introduce (111) film growth. The substrate is an oxygen-free 

Cu plate that is heated with a quartz lamp for a growth temperature of 350  5 °C. The deposition process 
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produces a dense columnar structure with a single habit plane of dense packed growth. The growth of 

(111) is typical for face-center-cubic metal alloys such as Cu-Ni(Fe). The alternating layers of Cu and 

Ni(Fe) grow epitaxial with one another. 

The growth or decay in amplitude Q of an A/B composition fluctuation with wavelength (λA/B) for 

layer pairs of components A and B is accomplished again [26] using anneal treatments within a  

turbo-molecular pumped, quartz tube at temperatures of 320, 345, and 400 °C. Samples are annealed to 

reduce the amplitude of the composition fluctuation from which growth or decay of the composition 

wave is assessed. A series of X-ray diffraction patterns are taken in the θ/2θ mode, as shown in Figures 

1 and 2 using a Rigaku Miniflex II diffractometer (Rigaku Americas Corp., The Woodlands, TX, USA) 

equipped with a graphite monochromator. A monochromatic Cu kα radiation is used to measure the 

amplitude and wavelength of the composition fluctuation where a 25 kV-10 mA current was applied to 

the Cu anode. For a sample rotation θ, the X-ray detector is rotated 2θ. Each increment Δ2θ of rotation 

is 0.02° with a 5–10 s dwell time. The integrated intensity of each reflection is computed from digitized 

X-ray reflectivity spectra using the diffraction peak de-convolution software provided with the Rigaku 

Miniflex II diffractometer. Satellite peaks (±) about the superlattice peak of the (111) Bragg reflection 

correspond with the short-range order for the composition modulation in the nanolaminate growth 

direction. A change in the satellite intensity (I) will occur as the sample is annealed at time (t) intervals that 

range from 20 to 1000 min. The calculation of the composition profile is made wherein the satellite peak 

intensity I± is proportional with the wave amplitude. Homogenization of the structure and decay in the 

composition wave amplitude result for anneal treatments above the spinodal temperature, whereas 

growth occurs within the chemical spinodal. 

4. Method of Analysis 

A review is presented of the formulations [1–10] for spinodal decomposition that relate to use of the 

X-ray diffraction method for experimental measurement [21–34] of the time-temperature dependent 

changes in the composition wave. In particular, reference to formulations and the equations are shown 

which comprise the basis to compute the higher-order gradient energy coefficients, the diffusion 

coefficients, and the strain energy variation with nanolaminate spacing. The Background contains 

equations [25–28,32,33] that are now adapted for analysis of spinodal decomposition in the Cu-Ni(Fe) 

alloy system, and as modified to determine strain energy effects in the Current Approach. 

4.1. Modified Diffusion Formulation 

The stability of a nanolaminate interface with respect to diffusion along the A/B fluctuation at time t 

can be considered using the discrete theory in terms of a static concentration wave [32]. The composition 

wavelength λA/B of the fluctuation between A-rich and B-rich regions, i.e., layer pair spacing for 

nanostructures, is equated to the wavenumber β as 2π/λA/B. The microscopic theory of diffusion [10,25,29] 

is used to quantify the interdiffusivity coefficient ĎB of each nanolaminate as dependent on its 

composition wavelength at temperature Ti. The macroscopic diffusion coefficient Ď for the alloy system 

corresponds with an infinite composition wavelength. The relative decay in satellite intensity I±(t) for 

the composition fluctuation is normalized to the Bragg peak intensity, and this value is used to  

determine [22–26,33] the amplification factor R as 
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ln{[I± (t)]/[I±(0)]} = 2R·t (1) 

The measured intensity Im of the Bragg peak and satellite reflections are normalized to compute 

corrected values Ic with respect to the 2θ peak positions. Details of the X-ray intensity formulations are 

provided in Appendix. The amplification factor R is related to the generalized ĎB through the dispersion 

relationship B2(β) according to the expression 

R = −B2(β)·ĎB (2) 

The B2(h) expression [32] derived for face-centered-cubic [100] or [111] growth is 

B2(h) = 2{1 − cos(2πh)}/d(hkl)
2 (3) 

The interplanar spacing is d(hkl) and h equals d(hkl)/λA/B. The use of a curvilinear fit to the variation of 

ĎB with B2(h) yields the value of Ď at B2(h) = 0. That is, a nanolaminate with an infinite composition 

wavelength is the equivalent of a macroscopic diffusion couple. A generalized expression for ĎB is 

presented in terms of its energetic components to account for potential nonlinear effects. The Ď 

coefficient is related to ĎB through [25,26] the Fourier transform Fe(h) of the elastic strain energy for 

the distorted lattice, the second derivative fʺ of the Helmholtz free energy (per atom volume Nv), and the 

gradient-energy coefficients Kμ as 

ĎB = Ď·{1 + Fe(h)/fʺ + (2/fʺ)·Σ[Kμ·B2μ(h)]} (4) 

For a face-center cubic system, Nv equals 4/a3 for an alloy lattice parameter a. The order of the 

polynomial is µ, and the diffusion coefficient Ď is related [21] to the mobility M according to the expression 

Ď = (M/Nv)·fʺ (5) 

The fʺ and Kμ terms in Equation (4) are identical with expressions [3,4,29–32] that appear in both the 

continuous and discrete theories of spinodal decomposition. The expression for the diffusion coefficient 

used in Equation (5) includes only the Helmholtz free energy term fʺ because the presence of strain 

energy is not a prerequisite, but it varies with each nanolaminate sample—An original criterion of the 

modified diffusion equation [21] for spinodal decomposition. A direct series expansion of the ĎB with 

B2(h) relationship is now used to fit the experimental data as 

ĎB = Ď·[1 + Σ K'μ·B2μ(h)] (6) 

Accordingly, from Equations (5) and (6), the coefficients K'μ are used to compute the gradient energy 

coefficients Kμ, where K'μ is now equal to 2Kμ/fʺ. Equation (6) will be used in this analysis to determine 

the diffusion coefficient Ď, and finalize the values for both the K'μ and Kμ gradient energy coefficients. 

The B(h) value is equal to β in the long wavelength approximation. The Fe(h) quantity is equated [21] 

with strain energy and is, therefore, a function of B(h). The strain energy term equals 2η2·Y, where η is 

the compositionally dependent variation of strain that equals (1/a)·(∂a/∂c), and Y is the <hkl>  

orientation-dependent biaxial modulus. 

The diffusivity is zero at the coherent spinodal (Ts*). From the linear theory using Equation (4) where 

only one gradient energy coefficient is considered, the following condition is found. 

fʺ + 2η2·Y + 2K·B2 = 0 (7) 
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The gradient energy coefficient K can be determined from Equation (7) with respect to the critical 

wavenumber where there is no growth or decay. Where the wavenumber B equals zero, i.e., for a 

macroscopic diffusion couple where the wavelength goes to infinity, Equation (7) reduces to 

fʺ + 2η2·Y = 0 (8) 

This relationship indicates that the fʺ = 0 condition for the chemical spinodal is changed with a 

suppression to the condition of fʺ = –2η2·Y for the coherent spinodal. From an experimental estimate of 

the chemical spinodal temperature Ts, the value of fʺ for any temperature can then be computed [21] 

using Boltzmann’s constant kB as 

fʺ = Nv·kB·(T – Ts)/[c·(1 − c)] (9) 

The amount that the coherent spinodal temperature is suppressed below the chemical spinodal, i.e., 

Ts – Ts*, can be determined using the Equation (8) equivalence where the temperature T is now equated as Ts*. 

4.2. Current Approach 

In order to uniquely determine the diffusion coefficient Ď and the unknown effect of strain energy on 

diffusion, the higher-order gradient-energy coefficients are now included in the expansion of the 

modified linear theory as seen in Equations (4) and (6). To reiterate, the suppression of the coherent 

spinodal described in Equations (7)–(9) will vary from sample to sample since the wavenumber-dependent 

Fourier transform Fe(h) of the elastic strain energy is equal to 2[η(h)]2·Y(h). Simulated curves are used 

to establish baseline behavior without inclusion of the strain energy term. This approach is taken since 

it has been well established for nanolaminate structures that both the strain η and modulus Y components 

can vary with the wavenumber, i.e., these are not constant values. In this approach, the difference 

between the measured data and simulated values will be used to quantify the effect of strain energy. 

The value of the temperature-dependent diffusion coefficient Ď, representative of diffusion behavior 

for the long-wavelength equivalent, has been extrapolated previously [25–28] from the behavior of 

composition fluctuations with shorter wavelengths, i.e., longer wavenumbers, by fitting the variation of 

the interdiffusion coefficient ĎB with B2. Without a known boundary condition, modeling of the gradient 

energy coefficient K'μ terms and the diffusion coefficient Ď from the ĎB variation with B2 behavior has 

introduced some uncertainty. Since all diffusion coefficients are derived from the direct measurement of 

the amplification factor R as seen in Equation (2), the computation of the gradient energy coefficients 

using the microscopic theory of diffusion will now be approached by, first, using the R variation with B 

rather than the ĎB variation with B2. The value of R value approaches zero for the infinite wavelength 

case, i.e., B = 0, providing a boundary condition that will be used in the interpolative analysis of data to follow. 

The sign conventions are reviewed to distinguish the effects of the strain energy during diffusion. 

Growth of the composition fluctuation when T < Ts requires that the diffusivity is negative (ĎB < 0) for 

uphill diffusion, and the amplification factor is positive (R > 0). Similarly, decay of the composition 

fluctuation when T > Ts requires that the interdiffusivity is positive (ĎB > 0) for downhill diffusion, and 

the amplification factor is negative (R < 0). Accordingly, from Equations (2), (4) and (5), growth of the 

composition wave amplitude within the spinodal occurs when fʺ < 0 and K > 0, whereas decay outside 

the spinodal occurs when fʺ > 0 and K < 0. 
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For growth of the fluctuation, and to be consistent with the sign requirements of the model  

formulation reviewed in the Background, the variation of R with B is simulated using a new higher-order 

polynomial expansion, 

Rs = Σ k'μ·Bμ(h) (10) 

From Equations (2) and (4), it follows that the difference ΔR between the simulated value of the 

amplification factor Rs and the experimental value Re, i.e., ΔR = Rs – Re, will be positive for all 

temperatures and attributable as a sole consequence of strain energy. It has been shown [21] that the 

strain energy accelerates diffusion outside the spinodal, but hinders it within the spinodal. So, the 

simulated variation of R with B must now envelope all experimental data as an upper bound. In addition, 

for decay it is already seen from Equation (10) that ∂R/∂B < 0 as evaluated at B = 0, and for growth that 

∂R/∂B > 0. These ∂R/∂B requirements guide the fitting procedure to determine the order μ of the 

polynomial to appropriately provide the correct (±) sign of the first k'μ term from Equation (10), i.e., k'1 < 0 

for decay and k'1 > 0 for growth. The k'μ terms as determined from Equation (10) are then used to compute 

the simulated values for interdiffusivity ĎBs that correspond with Equation (2) as 

ĎBs = −Rs/B2(h) (11) 

The simulated ĎBs values are then curve fit using Equation (6) to evaluate the K'μ values 

corresponding to the fit of the R variation with B. Since K'μ is equal to 2Kμ/fʺ from Equations (5) and (6), 

it follows that a condition for growth is K'1 >0 (since fʺ <0, Ď <0 and K1 >0 within the spinodal), whereas 

the condition for decay is K'1 <0 (since fʺ >0, Ď >0 and K1 <0 outside the spinodal). From Equations (4)–(6), 

it follows that the difference ΔĎB between the experimental value of the interdiffusion coefficient ĎBe 

and the simulated value ĎBs, i.e., ΔĎB = ĎBe – ĎBs, will be positive for all temperatures and is a sole 

consequence of strain energy. Again, strain energy [21] accelerates diffusion outside the spinodal and 

hinders it within the spinodal. So, the simulated variation of the magnitude of the interdiffusivity |ĎB| 

with B must envelope all experimental data as a lower bound. The predetermined K'μ values that follow 

from evaluating Equation (6), as consistent with the Equation (10) data fit, are used to determine the one 

remaining, unknown diffusion parameter, i.e., Ď, at each temperature. 

The determination of the K'μ values by curve fitting both the amplification factor and interdiffusivity 

variation with wavenumber, allows for the computation of the strain energy term consistent with 

previous [21] derivation. The strain energy is determined in the solution by equating the difference 

between Equations (4) and (11) as 

Fe(h) = 2η(h)2·Y(h) = ΔĎB·[fʺ(h)/Ď] (12) 

A plot of the strain energy term 2η2·Y can then be made to evaluate its variation with composition 

wavelength λ. 

5. Results and Discussion 

The growth of structures with longer wavelengths, i.e., smaller wavenumbers, occurs in the α-phase 

for temperatures within the spinodal to produce phase separated regions of α' and αʺ with dissimilar 

lattice spacing. The consequence for a bulk α-phase alloy will be a tendency to split the Bragg X-ray 

reflection, decrease its intensity, and broaden its shoulder as is consistent with the growth of long 



Coatings 2015, 5 253 

 

 

wavelength components. However, for nanolaminate structures, there is an initial composition 

wavelength along a specific crystallographic direction. With annealing, the Cu/Ni(Fe) superlattice Bragg 

peak may first narrow in width due to the effects of nanocrystalline grain growth, and split due to phase 

separation where a 2θCu peak may appear, as seen in Figures 1 and 2 for 2.1 and 8.9 nm wavelength 

samples annealed at 400 °C for 40 min. The satellite peaks that correspond with the composition 

fluctuation are indicated in the subscript of the 2θi peak position in Figures 1 and 2.  

 

Figure 1. The intensity I± of the Bragg and satellite peak variation with 2θ position for the 

Cu/Ni(Fe) nanolaminate coating with a 8.9 nm wavelength λ before (dashed line) and after 

(solid line) a 40 min at 400 °C anneal treatment. 

 

Figure 2. The intensity I± of the Bragg and satellite peak variation with 2θ position for the 

Cu/Ni(Fe) nanolaminate coating with a 2.1 nm wavelength λ before (dashed line) and after 

(solid line) a 40 min at 400 °C anneal treatment. 

The relaxation of lattice strain (when present) can shift the Bragg peak position as seen for the 2.1 nm 

nanolaminate sample of Figure 2. In addition, enhanced diffusivity for an artificial composition wave 



Coatings 2015, 5 254 

 

 

during the early stages of annealing [24–26] causes an initial, nonlinear decay of satellite peak intensity 

with time. 

The amplification factor R variation for the nanolaminates (at each anneal temperature) is computed 

from the integrated peak intensities of the diffraction spectra as shown in Figures 1 and 2 using 

Equation (1). The R-values are plotted in Figure 3 as a function of the dispersion relation B which is 

computed using Equation (3) for a (111) growth of the Cu/Ni(Fe) structure. Decay of the composition 

fluctuation occurs above 345 °C and growth below 320 °C, providing an interpolated estimate for the 

chemical spinodal of 335 °C. There is insufficient temperature-dependent data in this study to detail the 

effects of composition wavelength on the depression of the spinodal due to coherency effects. However, 

a critical wavelength λc of 1.26 nm is found for growth at 320 °C, i.e., the coherent spinodal temperature 

Ts* is 320 °C for a 1.26 nm composition wavelength. This corresponds with the Bc value of 4.78 nm−1 

where Rλ equals zero as determined from the Equation (10) fitting of the R-values in Figure 3. This  

λc-value corresponds with a composition wavelength for maximum growth λm of 1.78 nm at 320 °C, 

where [21] λm equals λc· 2 . 

 

Figure 3. The amplification factor R (106 s−1) variation with the dispersion-relation 

wavenumber B (nm−1) as computed from the decay or growth of the first-order satellite 

intensity I− at peak position of 2θ−1 for Cu/Ni(Fe) nanolaminate samples annealed at 320 °C 

(diamond) as scaled by a factor of 10, at 345 °C (squares), and 400 °C (circles). 

The fʺ values can next be computed, as listed in Table 1, using Equation (9) where Ts equals 335 °C 

for Cu0.53/Ni0.40Fe0.07 using a Nv value of 86.1 atom·nm−3 as computed for 4 atoms in a unit cell volume 

with a 0.3595 nm lattice parameter. A positive fʺ value is consistent with the heat of mixing wherein 

unlike atoms cluster as opposed to having the tendency for long-range ordering for systems with a 

negative heat of mixing. The baseline R behavior for growth or decay is modeled as a function of B using 

a fourth-order polynomial expansion of Equation (10). This is the minimum order of expansion required 

to meet the sign criteria for the modeled k'μ values that is described in the Current Approach Section 4.2. 
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Table 1. Diffusion and gradient energy coefficients for Cu/Ni(Fe) nanolaminates. 

Diffusion and Gradient Energy Coefficients Cu/Ni(Fe) Cu/Ni 

T (°C) 320 345 400 400 
Ď (10−6 nm2·s−1) −1.065 1.208 11.27 4.846 

M (10+16 nm2·J−1·s−1) 0.1285 0.2187 0.3139 0.1350 
fʺ (10−19 J·nm−3) −0.7134 0.4756 3.091 3.078 
K1 (10−20 J·nm−1) 0.3496 −0.9311 −4.494 −2.650 
K2 (10−21 J·nm) −0.2735 1.890 5.752 2.582 
K3 (10−22 J·nm3) 0.1496 −1.702 −3.991 −0.9814
K4 (10−23 J·nm5) −0.0295 0.5397 0.6091 0.1309 

The corresponding ĎB-values that correspond to the measured R-values are computed using 

Equation (2) and are plotted in Figure 4. The baseline ĎB behavior for growth or decay is computed as 

a function of B2 using the k'μ coefficients. The K'μ coefficients are determined by using a fourth-order 

expansion of Equation (6) to fit the baseline ĎB-values. This is the minimum order needed to meet the 

sign criteria for the modeled K'μ values as described in the Current Approach Section 4.2. From this data 

fit that prescribes conversion of k'μ into K'μ coefficients, the remaining unknown, i.e., the intercept value 

for Ď, is uniquely determined. The corresponding Kμ values of Equation (4) are listed in Table 1, where 

it has been noted previously that K'μ equals 2Kμ/fʺ. The mobility M values at each temperature are listed 

in Table 1 as computed using Equation (5). In general, the mobility M will decrease with a decreasing 

value of the Ď/fʺ ratio. 

 

Figure 4. The interdiffusivity ĎB (cm2·s−1) variation with the square of the dispersion 

relation wavenumber B2 (nm−2) as computed from the amplification factor R for Cu/Ni(Fe) 

nanolaminate samples annealed at 320 °C (diamond) as scaled by a factor of 10, at 345 °C 

(squares), and 400 °C (circles). 

The strain energy component, that primarily constitutes [21] the Fourier energy Fe, is computed using 

Equation (12). The energy variation with composition wavelength is plotted in Figure 5. It is clear that 

a strain energy contribution provides a significant effect in some nanolaminates by enhancing the decay 

of the composition fluctuation outside the spinodal and hindering its decay within the spinodal as seen 
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in the results of Figures 3 and 4. The peak (strain) energy computed for the Cu/Ni(Fe) nanolaminates 

has a value of 0.94 × 108 J·m−3. The magnitude for this energetic component as seen in Figure 5 is 

comparable to the values of the Helmholtz free-energy term fʺ that are listed in Table 1. In comparison, 

a smaller 2η2·Y value of 0.43 × 108 J·m−3 can be computed for Cu/Ni(Fe) using a rule-of-mixtures 

formulation with a biaxial modulus Y of 200 GPa and a 2η2 strain term of 2.14 × 10−4 assuming a 1.03% 

interface misfit strain. 

 

Figure 5. The Fourier energy Fe (108 J·m−3) variation with composition wavelength λ (nm) 

as computed from the difference between experimental values and the modeled fit of the 

amplification factor R variation with the dispersion relation wavenumber B (nm−1) for 

nanolaminate samples of: Cu/Ni(Fe) annealed at 320 °C (diamond), 345 °C (squares), and 

400 °C (solid circles); as well as Cu/Ni annealed at 400 °C (open circles). 

6. Analysis and Discussion 

Single and multiple peaks in the interdiffusivity variation with wavenumber are reported [24,25,35] 

for the diffusion results of the Cu/Ni, Cu/Pd, Au/Cu, and Ag/Pd nanolaminate systems. The multiple 

fluctuations observed in both the amplification of Figure 3 and the interdiffusivity of Figure 4 are a 

potential consequence of: a shift towards longer wavelengths that can occur with aging time; and that 

strain energy will still enhance (outside the spinodal) or hinder (within the spinodal) diffusion at the 

shorter wavelengths. As introduced in Section 4.2, some data points in Figures 3 and 4 will vary from 

the simulated curves that are used to fit and establish the baseline behavior without the strain energy 

term. Consequently a variation in the Fourier energy Fe, is an anticipated result, i.e., the strain energy 

dependence on composition wavelength as plotted in Figure 5. It is seen here that the magnitude of Fe 

measured for the Cu/Ni(Fe) nanolaminates decreases somewhat with reduced annealing temperature. In 

addition, computations of Fe for the Cu-Ni nanolaminate system from interdiffusion data reported at  

400 °C [25] are plotted (with open circles) in Figure 5 using the present model approach for determining 

the gradient energy and diffusion coefficients as listed in Table 1. The Cu/Ni data shows a bimodal 

distribution with a peak value of 1.25·108 J·m−3 at a composition wavelength of 2.6 nm. The strain 

energy effects will be lost for very-long composition wavelengths where strained-layer superlattice 
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growth is difficult due to the introduction of threading dislocations, and for very short (<1 nm) 

wavelengths where there is elastic homogenization from interface mixing. Therefore, strain energy will 

vary with the composition wavelength from ~1 to 9 nm. Periodic or irregular variations in strain energy 

may result, as well, for nanolaminate structures that do not have a commensurate structure. A variety of 

X-ray techniques and analysis methods [36–41] are available to assess strain distributions through 

surface regions and strained-layer superlattices. However, a detailed assessment for profiling of elastic 

strains and the variation through the interface is beyond the scope of this present analysis. 

The Arrhenius plot of Ď versus T−1 in Figure 6 is used to compare the |Ď| values of the 

Cu0.53/Ni0.40Fe0.07 nanolaminates to the bulk diffusion measurements of Cu0.877Ni0.107Fe0.016 [42] and 

Cu0.5Ni(0.5−x)Fex where 0.02 < x < 0.08 [43,44] alloys. An activation energy Q of 51 ± 2 kcal/mol  

(215 ± 6 kJ/mol; 1.34 ± 0.06 eV/atom) is determined from the slope of a linear fit to the 

Cu0.877Ni0.107Fe0.016 data. This linear fit provides an upper bound to the bulk measurements, and is 

consistent with the new |Ď| values for the nanolaminates as computed from Equations (6), (10) and (11). 

It has been postulated [21] that an asymptotic discontinuity is possible at the spinodal temperature, where 

the magnitude of the diffusion coefficient |Ď| vanishes since the composition fluctuation neither grows 

nor decays at Tc. Curvilinear (dashed) lines are constructed in Figure 6 where the diffusion values drop 

below the upper bound linear curve. A local depression in |Ď| is seen near a 103/T value of ~1.6 which 

corresponds with a spinodal temperature of ~350 °C. This value for the spinodal temperature is close to 

the 335 °C assumed in the computation of fʺ using Equation (9), which is similar to the 333 °C result 

from a thermodynamic evaluation [45] of the Cu-Ni alloy system using the CALPHAD approach. In an 

assessment of the collective interdiffusion in both Fe- and Si-based nanolaminate structures [46], it has 

been proposed that a collective atomic jumping mechanism that governs interdiffusion involves at least 

8–15 atoms. 

 

Figure 6. The Arrhenius-type relationship is plotted for the log10-scale variation of diffusion 

Ď (cm2·s−1) with inverse temperature 103·T−1 (K−1) for the Cu/Ni(Fe) nanolaminates (open 

circles) along with experimental data for Cu0.877Ni0.107Fe0.016 (solid diamonds) [33] and 

Cu0.5Ni0.5−xFex (solid squares) [34,35]. 
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7. Conclusions 

The static concentration wave approach to diffusion is used to model the diffusivity behavior for the 

spinodal decomposition of Cu/Ni(Fe) nanolaminates. In a comparison of results for aging at 320, 345 

and 400 °C, growth of the composition fluctuation is seen within the spinodal at temperatures below 

~335 °C. A potential asymptote in an Arrhenius plot of the diffusion coefficients Ď (as modeled for the 

long-wavelength approximation) is consistent with drop off in diffusivity that would occur near the 

chemical spinodal temperature of ~335 °C. The gradient energy coefficient is expanded as a fourth-order 

polynomial function of the wavenumber for the composition fluctuation. A fitting procedure that starts 

with the variation of the amplification factor takes advantage of the boundary condition where growth 

or decay vanishes at infinite wavelength. The sign of the gradient-energy coefficient Kμ alternates with 

increasing μ-order, starting with a 1st-order coefficient that has: a negative value outside the chemical 

spinodal, and; a positive value within the spinodal in accordance with the Cahn-Hilliard theory for 

spinodal decomposition. The magnitude of the gradient-energy coefficients decrease with: the increasing 

μ-order of the interaction and; decreasing temperature. A maximum magnitude of 4.49 × 10−20 J·nm−1 

for K1 is found at 400 °C and a minimum magnitude of 0.03 × 10−23 J·nm5 for K4. Fluctuation in the 

strain energy 2η2·Y term is seen for nanolaminate structures with composition wavelengths λ less than 7 nm, 

where a peak value of 0.94 × 108 J·m−3 is found from analysis of diffusion data at an aging temperature of 

400 °C. A decrease in the strain energy for Cu/Ni(Fe) is found outside the 2–5 nm range of composition 

wavelengths—As is consistent with a typical loss in strained-layer superlattice growth for metallic 

nanolaminates as often attributed to intermixing at interfaces and the introduction of threading dislocations. 
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Appendix  

Integrated intensity values Ic are corrected from measured Im values through consideration [24,25] of 

effects as composition-averaged scattering, polarization, mass absorption and temperature according to 

the expression. 

Ic = (Im)/(F2·L·P·Tx·Dw) (A.1) 

The measured intensities are normalized with respect to the following factors: F—For the 

composition-averaged atomic scatterings Fi; L·P—The Lorentz-Polarization effect as corrected for a 

graphite monochromator that, in this case, is found at a Bragg angle 2α of 25°; Tx—For the product of 

the mass absorption coefficient μ/ρ with density ρ and specimen film thickness x; and Dw—The  

Debye-Waller temperature effect on lattice vibration. The F2·L·P product dominates the intensity 

normalization. For the pseudobinary Cu-Ni(Fe) alloy that consists of Cu and Ni(Fe) layers, the 

constituent terms of Equation (A.1) are written as. 
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F = cCu·FCu + cNiFe·FNiFe = cCu·FCu + (1 − cCu)·FNiFe (A.2.1) 

FCu = 18.9 – 3.3·[sin(θ)/λX-ray – 2] (A.2.2) 

FNi = 20.7 – 3.5·[sin(θ)/λX-ray – 2] (A.2.3) 

FFe = 21.6 – 3.7·[sin(θ)/λX-ray – 2] (A.2.4) 

FNiFe = c·FFe + (1 − c)·FNi (A.2.5) 

c = cFe/(cFe + cNi) (A.2.6) 

L·P = [1 + cos2(2α)·cos2(2θ)]/{[1 + cos2(2α)]·[sin2(θ)·cos(θ)]} (A.2.7) 

Tx = 1 – e[−2μ·x/sin(θ)] (A.2.8) 

Dw = e[−2Ḇ·H] (A.2.9) 

H = [sin(θ)/λX-ray]2 (A.2.10) 

Ḇ = (2π·ȗ)2 (A.2.11) 

In Equations (A.2.9)–(A.2.11), the magnitude of displacement is ȗ for the scattering vector. The time 

dependent amplitude Q(t) for the A/B composition modulation of wavelength λA/B with respect to the 

corrected time-dependent intensity I(t) variation is expressed [24] as 

[I±(t)/IB(t)]c = {½Q(t)·[(λA/B·εo·s±) ± (−ξ)]}2 (A.3) 

The terms in Equation (A.3) are defined as 

s± = [2·sin (θB)/λX-ray] ± (1/λA/B) (A.4.1a) 

s± = 2·sin (θ±)/λX-ray (A.4.1b) 

εo = [(ξ+·w−) + ( ξ-·w+)]/{λA/B·[(s+·w−) – (s−·w+)]} (A.4.2) 

ξ = ΔF/F (A.4.3) 

ΔF = FA – FB = FCu – FNiFe (A.4.4) 

w± = (I±/IB)½ (A.4.5) 

The εo parameter is the amplitude of the lattice modulation per unit composition amplitude. Q(t) can 

be expressed by combining Equations (A.3) and (A.4.1–5). The assumption can be made [4] that the 

variation in the absolute value of the scattering factor (Fi) between the Bragg and first-order satellite 

reflections is negligible, i.e., ξ ≈ ξ+ ≈ ξ−. The expression for Q(t) then reduces to. 

Q(t) = [(s+·w−) – (s−·w+)]/(sB·ξ)  (A.5) 
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