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Abstract: Ion layer gas reaction (ILGAR) method allows for deposition of Cl-containing 

and Cl-free In2S3 layers from InCl3 and In(OCCH3CHOCCH3)3 precursor salts, respectively. 

A comparative study was performed to investigate the role of Cl on the diffusion of Cu from 

CuSCN source layer into ILGAR deposited In2S3 layers. The Cl concentration was varied 

between 7 and 14 at.% by varying deposition parameters. The activation energies and 

exponential pre-factors for Cu diffusion in Cl-containing samples were between 0.70 to 

0.78 eV and between 6.0 × 10−6 and 3.2 × 10−5 cm2/s. The activation energy in Cl-free 

ILGAR In2S3 layers was about three times less compared to the Cl-containing In2S3, and the 

pre-exponential constant six orders of magnitude lower. These values were comparable to 

those obtained from thermally evaporated In2S3 layers. The residual Cl-occupies S sites in 

the In2S3 structure leading to non-stoichiometry and hence different diffusion mechanism for 

Cu compared to stoichiometric Cl-free layers. 
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1. Introduction 

In2S3 has found increased attention in photovoltaic’s as a replacement for toxic CdS [1–4] because of 

its suitable properties. It has been effectively used as a buffer layer for both chalcopyrite [1–3] and 

nanocomposites [5,6] solar cells and as an extremely thin absorber (eta) in eta cells [7,8] and 

nanocomposites [9] solar cells with ZnO nanorods or nanoporous-TiO2 electrodes, respectively. 

Diffusion of Cu from Cu(In,Ga)(S,Se)2 absorber [3,10,11] or CuSCN hole conductor [12] into In2S3 

layers has been a major drawback to effective performance and stability of these solar cells. 

In2S3 exists in three phases: β-phase which is stable at room temperature up to 420° [13,14], the  

α-phase which is stable above 420 °C [15] up to 754 °C and the γ-phase which is stable between 754 °C 

and its melting point 1090 °C [16]. The most commonly used phase is the β-In2S3. β-In2S3 has a defect 

spinel superstructure in which In occupies all octahedral sites and a third of the tetrahedral sites [16,17]. 

A third of the tetrahedral cationic sites remain vacant but ordered along 4I screw with alignment of three 

spinel blocks in c-direction [17]. β-In2S3 can accommodate foreign atoms, for example Fe [18], Ag [19], 

Cl [20], Cu and Na [10]. 

The presence of foreign impurities in host In2S3 affects occupation and migration of new foreign 

atoms. Diffusion of Cu in In2S3 is inhibited by the presence of Na because both Na and Cu compete for 

the same cationic vacancies and substitution sites in In2S3 structure [21]. Different authors have reported 

diffusion of Cu in In2S3 to be governed by vacancy [22] or insertion/substitution [21] mechanism.  

A better understanding and hence control of Cu diffusion in In2S3 layers is crucial for photovoltaic 

applications [23]. 

ILGAR is a sequential and cyclic method of depositing highly conformal In2S3 layers on different 

substrates [24,25]. In2S3 layers can be deposited from InCl3 or In(OCCH3CHOCCH3)3 to obtain Cl-free 

and Cl-containing layers [26]. The presence of Cl in In2S3 increased the optical band up to 2.4 eV 

compared to 2.0 eV for Cl-free layers. Higher conversion efficiency was achieved for Cl-free In2S3 layers 

compared to Cl-containing layers both prepared by ILGAR [26]. The stoichiometry as well as  

opto-electronic properties of In2S3 layers also changes with inclusion of Cl. Crystallinity and 

photosensitivity increased with increasing Cl content [20]. It is therefore important to investigate the 

effect of Cl on diffusion of Cu in ILGAR deposited In2S3 layers. 

Rutherford backscattering spectroscopy (RBS) is an absolute method for determination of elemental 

composition and depth profiling of various materials with high accuracy [27,28]. The diffusion 

coefficient of Cu in In2S3 can be obtained from Cu concentration profiles by solving the diffusion 

equation analytically or numerically with appropriate boundary conditions and comparing or fitting the 

resulting profiles with the experimental data. Activation energy and diffusion prefactor of 0.3 eV and  

9 × 10−11 cm2·s−1 determined from RBS depth profiling have been reported for Cu diffusion in thermally 

evaporated In2S3 layers [23]. 

In this work, we report a comparative study of Cu diffusion in Cl-free and Cl-containing In2S3 layers. 

In2S3 layers were prepared by ILGAR method, which was modified to obtain layers with varying  

Cl content. The Cu source was CuSCN deposited on top of In2S3. The distribution of diffused Cu in In2S3 

was profiled by RBS from which the diffusion coefficients were determined as a function of  

annealing temperature. 
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2. Experimental Section 

In2S3 layers were deposited by ILGAR [24,25] onto c-Si wafers without additional treatment of the 

c-Si substrates. InCl3 or In(acac)3 precursor salt was dissolved into ethanol solvent to obtain a solution 

of 25 mM. In(acac)3 precursor was used to deposit Cl-free layers while InCl3 was used for Cl-containing 

layers. The deposition temperature for deposition of all samples was 200 °C. The standard ILGAR cycles 

were adjusted to produce In2S3 layers with varying Cl content. The details of the deposition parameters 

for the different samples are given in Table 1. CuSCN was deposited onto each of the c-Si/In2S3 samples 

by spray-spin coating method [23] from a solution of 50 mM CuSCN dissolved in propyl sulfide [29]. 

For each sample, ten spray-spin coating cycles were deposited, which corresponds to about 500 nm 

thickness as determined by Dektak profilometer before heat treatment, while the thickness of the samples 

after heat treatment varied as shown in Table 1. The c-Si/In2S3/CuSCN samples were then cut into 

smaller sizes of about 7 mm × 7 mm. The smaller pieces were then annealed for 5 min at temperatures 

between 150 °C and 250 °C. A set of small samples annealed at these temperatures and one not annealed 

was obtained for each large c-Si/In2S3/CuSCN sample. 

CuSCN layer was then etched away in pyridine solution [23]. The sample was first dipped into 

pyridine solution for 2 s then rinsed in deionized water to wash away the pyridine. This was repeated 

until a shiny surface similar to the as-deposited In2S3 was obtained. RBS measurements were performed 

with 1.4 MeV He+ ion beam and the backscattered ions detected at a scattering angle of 168° [23]. 

3. Results and Discussion 

The composition of In2S3(acac) and In2S3(Cl) was determined from RBS measurements on as-

deposited samples. The integral of the respective peaks were used to calculate the areal densities, from 

which the layer thicknesses were obtained. The number of atoms (Nit) of a given element in a layer is 

given by [27], 
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where t is the layer thickness, A the integral of the peak, Q the number of ions incident on the sample,  

Ω the detector solid angle and σ(E0) the differential scattering cross-section. The concentration of each 

element was obtained by dividing the atomic density (Ni) of each element by that of In2S3  

(4.53 × 1022 cm−3). The values of the atomic concentrations and layer thicknesses of the samples are 

given in Table 1. 

Table 1. Thickness and layer composition of In2S3 films. 

Name Thickness (nm) In (at.%) S (at.%) Cl (at.%) S/In 

S0 86 39 61 0 1.56 
S8 152 37.5 52.2 11.3 1.41 
S9 65 37.1 49.1 13.8 1.32 

S11 64 37.8 54.4 7.8 1.44 
S12 45 37.6 53.9 8.6 1.43 
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Sample S0 was In2S3(acac) while samples S8, S9, S11 and S12 were In2S3(Cl). Deposition parameters 

were adjusted to obtain In2S3(Cl) with different Cl content. The difference in layer thicknesses was due 

to a difference in deposition rate due to the changes in the deposition steps. The presence of large 

amounts of Cl in In2S3(Cl) layers led to a strong deviation from stoichiometry while In2S3(acac) layers 

were more stoichiometric with S/In ration of 1.56, which is very close to the expected value of 1.5. The 

amount of In was almost constant for all In2S3(Cl) samples while S content dependent on the residual 

Cl. This means that the InCl3 precursor layers were not completely sulfurized, leaving behind Cl residues. 

RBS spectra for In2S3(acac) and In2S3(Cl) containing diffused Cu after annealing for 5 min at different 

temperatures are shown in Figure 1. The various peaks corresponding to the elements detected in the 

samples are shown. The Cu peak increases in height with increasing diffusion (annealing) temperature. 

The shape of the peaks depicts a concentration gradient of Cu in In2S3 with higher concentration at the 

surface. Inclusion of Cu into In2S3 matrix results in an increase in the volume of the In2S3 that can be 

seen by increase in the width of the In and S peaks with increasing diffusion temperature. 

 

Figure 1. RBS spectra for (a) In2S3(acac):Cu and (b) In2S3(Cl):Cu after diffusion of Cu at 

different temperatures. The respective peaks are indicated. 

Figure 2 shows the Cu peaks from Figure 1. The distribution of Cu in the In2S3 bulk is not similar for 

In2S3(acac):Cu and In2S3(Cl):Cu layers. The distribution in the other In2S3(Cl):Cu layers with varying 

Cl content was similar to Figure 2b. The Cu peaks increased systematically with diffusion temperature 

for In2S3(acac):Cu similar to the case for thermally evaporated In2S3 layers reported in reference [23]. 

The Cu peaks from In2S3(Cl):Cu increased slowly with diffusing temperature for temperatures below 

200 °C and then increased strongly above 200 °C. The distribution of Cu tends to be more constant in the 

In2S3(Cl):Cu bulk than in In2S3(acac):Cu. The difference in the nature of the concentration gradients can 

be attributed to the presence of Cl. Cl therefore plays a crucial role in the diffusion of Cu in In2S3 layers. 

The depth profiles of Cu were extracted from the Cu peaks of the RBS spectra for the different 

samples using WiNDF software [30]. A recursion equation was developed from the Fick’s second law 

of diffusion and used to numerically calculate the Cu concentration profiles and compare the results to 
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the measured data. Details can be found in reference [23]. The depth profiles were fitted numerically 

with minimum deviation and values for the diffusion coefficients were obtained. The measured and 

simulated depth profiles for In2S3(acac):Cu and In2S3(Cl):Cu are shown in Figure 3. 

 

Figure 2. Cu peaks for (a) In2S3(acac):Cu and (b) In2S3(Cl):Cu for different diffusion 

temperatures. The scatters represent measured data while the solid lines are from simulation. 

 

Figure 3. Simulated and measured depth profiles for Cu in (a) In2S3(acac):Cu and  

(b) In2S3 (Cl):Cu from which diffusion coefficients were determined. 

The depth profiles show a thin surface layer with high Cu concentration independent of diffusion 

temperature. This means an interfacial layer with a large amount of Cu was formed upon deposition of 

CuSCN and annealing. A thin interfacial layer due to diffusion of Cu into In2S3 layer was also observed 

for Cu(In,Ga)Se2/In2S3 layer system for Chalcopyrite solar cells [3]. This thin surface layer was therefore 

not used in fitting the profiles to obtain diffusion coefficient values.  
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Diffusion coefficient values were calculated for all the samples with different Cl contents and plotted 

against inverse temperature in an Arrhenius plot as shown in Figure 4. The activation energy of Cu 

diffusion in the different In2S3 layers and exponential prefactors were obtained from the Arrhenius plots. 

The results for Cu diffusion in thermally evaporated In2S3 layers [23] are included for comparison.  

 

Figure 4. Arrhenius plot of diffusion coefficient against inverse temperature for different 

In2S3 layers. 

The values of the activation energies and exponential prefactor for all the samples with different Cl 

concentrations are shown in Table 2. 

Table 2. Activation energy and exponential prefactor of In2S3 films with varying chlorine percentages. 

In2S3 films Activation energy EA (eV) Exponential prefactor D0 (cm2/s) 

In2S3:Cl 13.8 at.% 0.70 6.0 × 10−6 
In2S3:Cl 11.3 at.% 0.72 3.0 × 10−6 

In2S3:Cl 8.5 at.% 0.78 3.2 × 10−5 

In2S3:Cl 7.8 at.% 0.76 1.2 × 10−5 
In2S3:acac 0.24 2.7 × 10−11 
In2S3:PVD 0.30 9.0 × 10−11 

The activation energy and prefactor for the diffusion of Cu in Cl-free In2S3 layers was of the same 

order for In2S3 deposited by ILGAR and PVD but much lower than in Cl-containing layers. Residual Cl 

in In2S3 is known to occupy S places in the In2S3 matrix resulting in an increase in the optical band gap, 

photosensitivity and a decrease in work function [4,20,31]. The presence of Cl changes the stoichiometry 

and local bond configuration of In2S3 and this can limit Cu migration in In2S3:Cl compared to migration 

in stoichiometric In2S3. The In–Cl bond energy is much stronger than that of In-S and this could be the 

reason for the higher activation energy needed for Cu to diffuse in Cl-containing In2S3. A higher amount 

of energy is therefore required to overcome the barrier for Cu migration. The prefactor in In2S3:Cl was 

five to six orders of magnitude higher than in In2S3:acac and In2S3:PVD. An increase in the prefactor 

could be concomitant with an increase in the entropy. 
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4. Conclusions 

In2S3 layers were deposited by Ion layer gas reaction onto c-Si wafers and CuSCN deposited onto the 

samples by spray-spin coating, deposition parameters were varied to obtain varying chlorine contents in 

the sample that ranged from 7.8 at.% to 13.8 at.%. The distribution of copper in the samples with chlorine 

was strongly influenced by chlorine for annealing temperatures above 200 °C. This shows that chlorine 

plays a crucial role in copper diffusion in In2S3. The activation energies and exponential prefactors for 

Cu diffusion in Chlorine containing samples were between 0.7 to 0.78 eV and between  

6 × 10−6 and 3.2 × 10−5 cm2/s. The activation energy in Cl free In2S3 layers was about three times less 

and the pre-exponential constant six orders of magnitude lower. 
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