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Abstract: Steel pipes are commonly used to strengthen the concrete’s load-bearing capacity. However,
they are prone to corrosion in salt erosion environments. In this study, the influence of Na2MoO4 and
benzotriazole on concrete-filled steel tubes’ corrosion performance is investigated. The steel pipes’
mass loss rates (MRs), ultrasonic velocity, electrical resistance, and the AC impedance spectrum and
Tafel curves of concrete-filled steel tubes were used to characterize the degree of corrosion in the
steel pipes. Scanning electron microscopy–energy-dispersive spectrometry and X-ray diffraction
were used for studying the composition of steel pipe rust. The research results revealed that the
NaCl freeze–thaw cycles (F-C) and NaCl dry–wet alternation (D-A) actions had a reducing effect on
the mass and ultrasonic velocity of the concrete-filled steel tubes. After 300 NaCl F-C and 30 NaCl
D-A, the MRs were 0%~0.00470% and 0%~0.00666%. The corresponding ultrasonic velocities were
0%~21.1% and 0%~23.6%. When a rust inhibitor was added, the results were the opposite. The MRs
decreased by 0%~80.3% and 0%~81.6% with the added Na2MoO4 and benzotriazole. Meanwhile, the
corresponding ultrasonic velocities were 0%~8.1% and 0%~8.3%. The steel tubes were corroded after
300 NaCl F-C and 30 NaCl D-A. The addition of rust inhibitors improved the corrosion resistance of
the concrete-filled steel tubes by increasing the electrical resistance before NaCl erosion. The corrosion
area rate decreased by using the rust inhibitors. The corrosion resistance effect of benzotriazole was
higher than that of Na2MoO4. The concrete-filled steel tube with an assembly unit comprising
5 kg/m3 of Na2MoO4 and 15 kg/m3 of benzotriazole had the best corrosion resistance under the
erosion induced by NaCl F-C and D-A. Rust inhibitors reduced the content of iron-containing crystals
and iron elements. The specimens with 5 kg/m3 Na2MoO4 and 15 kg/m3 benzotriazole had the
lowest concentration of iron-containing crystals and iron elements.

Keywords: steel pipes; corrosion resistance; inhibitors; AC impedance spectrum; Tafel curves

1. Introduction

Cement concrete is a kind of material widely applied in bridge and road engineer-
ing [1]. Steel bars, steel fibers, plant fibers, etc., are often used to enhance the strength and
durability of concrete [2–4]. Zhang et al. [5,6] stated that steel fibers increased flexural and
compressive strengths by 0%~48.2% and 0%~41.6%. Additionally, the impact toughness
improved using polyethylene fibers, polyvinyl alcohol fibers, and steel fibers at increasing
rates of 23.6%, 31.5%, and 41.7% respectively. Besides these methods for enhancing the
performance of concrete, steel pipe confinement is also a commonly used method for
improving the performance of concrete [7].

Steel tube-reinforced concrete is a type of concrete that fully combines the advantages
of steel and concrete. This combination structure shows high bearing capacity, plasticity,
convenient construction, toughness, and low cost. This type of structure has been widely
used in construction and transportation engineering recently [8–11].
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Dai revealed that steel tube-reinforced concrete exhibits good elastic–plastic and
ductility performance [12]. Additionally, steel tube-reinforced concrete columns’ ultimate
bearing capacity increased by 73.6–112.1% compared to ordinary concrete columns. Zhong
et al. reported that the creep coefficient of steel tube-reinforced concrete with a steel content
of 13% was reduced by about 35% compared to steel tube concrete with a steel content of
4% [13,14]. George et al. indicated that steel tubes are effective in improving the durability
of cement concrete [15]. The mechanical strength of steel tube-reinforced concrete did not
decrease after long-term immersion in NaCl.

Concrete-filled steel pipes are prone to corrosion due to salt erosion, when this concrete
is used in coastal environments. Corrosion easily occurs at the interface between steel pipes
and concrete [16–20]. Although 316 L stainless steel with strong corrosion resistance can
be used for steel pipe production, its high cost makes it difficult to use in practice [21].
Adding rust inhibitors to concrete is a good method for preventing steel pipe corrosion.
Rust inhibitors can be divided into cathodic rust inhibitors and anodic rust inhibitors.
Cathodic rust inhibitors can prevent steel from corrosion by forming an adsorption film
on the steel. Meanwhile, the corrosion resistance of steel pipes is increased by anodic rust
inhibitors due to the improved passivation film. The application of an assembly unit of
cathodic and anodic rust inhibitors to enhance the corrosion resistance of concrete-filled
steel tubes combines the advantages of these two kinds of rust inhibitors.

In this study, the corrosion resistance of concrete-filled steel tubes was investigated.
The mass loss rates of steel tubes and the concrete-filled steel tubes’ electrical parameters,
including electrical resistance, as well as the values for the AC impedance spectra and Tafel
curves, were obtained, which reflected the corrosion. The scanning electron microscopy
images and X-ray diffraction curves of the rust on the surface of the steel tubes were
generated to determine the corresponding corrosion. This research will provide a reference
for improving the corrosion resistance of steel pipes used for concrete reinforcement.

2. Materials and Experimental Methods
2.1. Raw Materials

The ordinary Portland cement (OPC) offered by Jinhua Kunbang Decoration Materials
Co., Ltd., Jinhua, China, was used as a binding material. Three types of materials were used,
with densities of 3.21 g/cm3, 2.93 g/cm3, and 2.24 g/cm3. OPC has an initial setting time of
113.4 min initial setting time and a final setting time of 246.7 min. Crushed granite gravel
with a maximum particle diameter of 26.5 mm, a minimum diameter of 9.5 mm (continuous
particle sizes), and a crushed index of 4.9% was used for coarse aggregates. River sand
by Lingshou County Bo Vanadium Mineral Products Co., Ltd., Shijiazhuang, China, was
used for fine aggregates, with a fineness modulus of 2.86. An efficient polycarboxylic
acid water-reducing agent with a reducing rate of 40% was used for adjusting the fluidity
of fresh cement concrete. Benzotriazole and sodium molybdate were provided by the
Nanjing Milan New Materials Co., Ltd., Nanjing, China, and they were used as anodic
and cathodic rust inhibitors, respectively. The corresponding pureness rates are 99.7%
and 99.8%, respectively. Q355B steel pipes manufactured by Tianjin Baolai Steel Co., Ltd.,
Tianjin, China, were used in this research. The inside and outside diameters of the steel
pipes were 100 mm and 80 mm, respectively. The properties of the cement and the corrosion
inhibitors are shown in Tables 1 and 2 respectively.

Table 1. The properties of the cement.

Chemical Composition (%) Loss on
Ignition (%)

Median Diameter
D50 (µm)CaO SiO2 Al2O3 Fe2O3 MgO MnO R2O SO3

62.51 21.18 5.19 3.84 1.81 0.15 0.47 2.90 1.55 18.6
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Table 2. The properties of the corrosion inhibitors.

Types Na2MoO4·2H2O Benzotriazole Cl

Benzotriazole / 99.6% <0.02

Sodium olybdate 99.7% / <0.02

2.2. The Manufacturing Methods

Cement concrete was manufactured as follows: Firstly, aggregates were poured into
an HJW-60 concrete single horizontal shaft-forced mixer and stirred at a mixing speed of
45 rpm per minute for 1 min. Then, cement was added, and the mixture was stirred for
another 1 min. Ultimately, a mixture of water and water-reducing agent was added to the
mixer, and the mixture was stirred at a rate of 45 rpm/min for 2 min, yielding fresh concrete.
Table 3 shows the mixing proportions of the cement concrete used in the concrete-filled
steel tubes.

Table 3. The mixing proportions of cement concrete used in the concrete-filled steel tubes.

Types Water
(kg)

Cement
(kg)

Sand
(kg)

Gravel
(kg)

Na2MoO4
(kg)

Benzotriazole
(kg)

WR
(kg)

A1 200.25 501.25 648.50 972.95 5 0 1
A2 200.25 501.25 648.50 972.95 10 0 1
A3 200.25 501.25 648.50 972.95 15 0 1
A4 200.25 501.25 648.50 972.95 20 0 1
A5 200.25 501.25 648.50 972.95 25 0 1
A6 200.25 501.25 648.50 972.95 0 5 1
A7 200.25 501.25 648.50 972.95 0 10 1
A8 200.25 501.25 648.50 972.95 0 15 1
A9 200.25 501.25 648.50 972.95 0 20 1
A10 200.25 501.25 648.50 972.95 0 25 1
A11 200.25 501.25 648.50 972.95 5 5 1
A12 200.25 501.25 648.50 972.95 5 10 1
A13 200.25 501.25 648.50 972.95 5 15 1
A14 200.25 501.25 648.50 972.95 5 20 1
A15 200.25 501.25 648.50 972.95 10 5 1
A16 200.25 501.25 648.50 972.95 10 10 1
A17 200.25 501.25 648.50 972.95 10 15 1
A18 200.25 501.25 648.50 972.95 15 5 1
A19 200.25 501.25 648.50 972.95 15 10 1
A20 200.25 501.25 648.50 972.95 20 5 1

2.3. The Measuring Methods
2.3.1. The Electrical Parameters

The AC electrical resistance of concrete-filled steel tubes was analyzed using a TH2827C
precision LCR digital bridge provided by Shenzhen Lexin Intelligent Testing Technology
Co., Ltd., Shenzhen, China. The measuring voltage and frequency were 1 V and 104 Hz,
respectively, corresponding to the sampling frequency of 10 Hz. The Wellington RST5060F
Electrochemical Workstation, purchased from Honghua Instrument Equipment Industry
and Trade Co., Ltd., Gongyi, China, was used to plot the AC impedance spectrum curves.
The frequency settings of the Electrochemical Workstation ranged from 105 Hz to 1 Hz with
an AC voltage of −10 mV~10 mV. Figure 1 shows the measuring process of ultrasonic and
electrical performance parameters.
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Figure 1. The measuring process of ultrasonic and electrical performance parameters.

2.3.2. The Mass Loss Rate

The mass of the steel tubes was determined before corrosion. After the concrete-filled
steel tubes encountered salt erosion, their corroded surfaces were sanded with sandpaper.
The steel tubes’ mass loss rates (MRs) were calculated to determine the concrete-filled steel
tubes’ corrosion.

2.3.3. The Micro-Analysis

Steel tube rust samples were collected for analysis using scanning electron microscopy–
energy-dispersive spectrometry (SEM-EDS) images and X-ray diffraction (XRD) curves.
A Thermofly Axia Chemi SEM tungsten-filament scanning electron microscope (Thermo
Fisher Scientific., Shanghai, China) and a wave-sound desktop X-ray diffractometer by
Suzhou Langsheng Scientific Instrument Co., Ltd., Suzhou, China, were used for generating
the SEM photos and XRD curves.

2.3.4. The Experimental Conditions of NaCl Freeze–Thaw Cycles and Dry–Wet Alternations

The concrete-filled steel tubes were immersed in a NaCl solution with a concentration
of 3% for 4 days after 24 days of curing in a standard environment. Then, some specimens
were moved to a fully automatic freeze–thaw concrete test box, obtained from Anhui Annai
Instrument Co., Ltd., Ma’anshan City, China. The NaCl freeze–thaw cycles (F-C) continued
for 300 cycles. The freeze–thaw temperature ranged from −18 ◦C to 8 ◦C. During each
NaCl dry–wet alternation (D-A), specimens were immersed in the NaCl solution for 8 h;
after that, the surfaces of the specimens were dried using a rag. Then, the specimens were
dried at a temperature of 80 ◦C for 36 h. Ultimately, the samples were cooled for 2 h. The
Chinese standard GB/T 50082-2009 was used for the measurements of NaCl freeze–thaw
cycles and dry–wet alternations [22].

3. Results and Discussion
3.1. The MR of Steel Tubes

The MRs of the steel tubes are shown in Figure 2. As observed in Figure 2, steel tubes’
MRs increased after NaCl F-C and NaCl D-A. After using 300 NaCl F-C and 30 NaCl D-A,
the MRs were 0%~0.00470% and 0%~0.00666%, respectively. The freeze–thaw cycle of
sodium chloride and the alternating dry–wet action caused an increase in cracking and the
widening of cracks at the interface between steel pipes and concrete [23,24]. Moreover, the
MRs decreased with the added benzotriazole and sodium molybdate because benzotriazole
forms an adsorption layer at the interface between the steel pipe and concrete, thereby
enhancing the corrosion resistance of the steel pipe and reducing its mass loss [25,26].
Notably, the compactness of the passivation film at the interface between steel pipes
and concrete improved with the addition of sodium molybdate, thereby enhancing the
corrosion resistance of the steel pipes and reducing their mass loss. When the assembly
unit comprised 5 kg/m3 of sodium molybdate and 15 kg/m3 of benzotriazole, the mass
loss rates of the steel tubes were the lowest. The mass loss of the concrete-filled steel tubes
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with benzotriazole was lower than that with sodium molybdate. Moreover, the mass loss
of the concrete-filled steel tubes after NaCl dry–wet alternation was higher than that after
NaCl freeze–thaw cycles.
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Figure 2. The mass loss rates of steel tubes: (a) with a single rust inhibitor, after NaCl F-C; (b) with 
an assembly unit of rust inhibitors, after NaCl F-C; (c) with a single rust inhibitor, after NaCl D-A; 
(d) with an assembly unit of blended rust inhibitors, after NaCl D-A. 
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Figure 2. The mass loss rates of steel tubes: (a) with a single rust inhibitor, after NaCl F-C; (b) with
an assembly unit of rust inhibitors, after NaCl F-C; (c) with a single rust inhibitor, after NaCl D-A;
(d) with an assembly unit of blended rust inhibitors, after NaCl D-A.

3.2. The Ultrasonic Velocity of Concrete-Filled Steel Tube

The ultrasonic velocity of the concrete-filled steel tubes is exhibited in Figure 3. The
number of NaCl F-C and NaCl D-A had a decreasing effect on the concrete-filled steel tube’s
ultrasonic velocity. This can be explained by the accelerating action of NaCl F-C and NaCl
D-A on the corrosion of steel pipes and alkali–aggregate reaction, thereby exacerbating the
development of concrete cracks [27]. Cracks in cement concrete prevent the propagation of
ultrasound in concrete, leading to a decrease in ultrasound values. The added corrosion
inhibitors can increase the ultrasonic velocity of concrete-filled steel tubes because the
inhibitors can prevent the corrosion of steel pipes, thus delaying the cracking of concrete,
resulting in a decrease in ultrasonic velocity [28]. An increase in the amount of anticorrosion
admixture increased the ultrasonic velocity and the corresponding increasing rate. Concrete-
filled steel tubes with benzotriazole had higher ultrasonic velocity than those mixed with
Na2MoO4. Concrete-filled steel tubes with an assembly unit of anticorrosion admixtures
had higher ultrasonic velocity than those with the addition of a single rust inhibitor. The
concrete-filled steel tubes with 5 kg/m3 Na2MoO4 and 15 kg/m3 benzotriazole had the
highest ultrasonic velocity and increasing rate. Moreover, the concrete-filled steel tubes
had higher ultrasonic velocity after NaCl F-C than after NaCl D-A.
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Figure 3. The ultrasonic velocity of concrete-filled steel tube: (a) with a single rust inhibitor, after 
NaCl F-C; (b) with an assembly unit of rust inhibitors, after NaCl F-C; (c) with a single rust inhibitor, 
after NaCl D-A; (d) with an assembly unit of blended rust inhibitors, after NaCl D-A. 
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Figure 3. The ultrasonic velocity of concrete-filled steel tube: (a) with a single rust inhibitor, after
NaCl F-C; (b) with an assembly unit of rust inhibitors, after NaCl F-C; (c) with a single rust inhibitor,
after NaCl D-A; (d) with an assembly unit of blended rust inhibitors, after NaCl D-A.

3.3. The Electrical Resistance of Concrete-Filled Steel Tubes

The electrical resistance of concrete-filled steel tubes is illustrated in Figure 4. It can
be observed from Figure 4 that before NaCl action, electrical resistance increases with the
increasing dosages of benzotriazole and sodium molybdate, as benzotriazole forms an
adsorption film at the interface between the steel pipe and concrete in the concrete-filled
steel pipes [29]. The adsorption film prevents the migration of electrons in the steel pipe
and pore solution ions in the concrete, resulting in a decrease in the conductivity of the
concrete-filled steel pipes. Sodium molybdate makes the passivation film more dense,
causing a decrease in electron and ion migration and an increase in electrical resistance.
The concrete-filled steel tube with 5 kg/m3 Na2MoO4 and 15 kg/m3 benzotriazole had the
highest electrical resistance. An increase in the number of NaCl F-C and NaCl D-A led to
an increase in the electrical resistance of the concrete-filled steel tubes. This is due to the
increased rust on the surface of the steel tube induced by the NaCl action, which blocks
the migration of electrons and free ions. With the increase in the number of NaCl F-C
and NaCl D-A actions, the electrical resistance of the concrete-filled steel tubes decreased
with the addition of benzotriazole and sodium molybdate. This is because benzotriazole
and sodium molybdate can improve the rust resistance of steel pipes, thereby reducing
the rust stains on the steel. As the rust on steel reduced its electrical conductivity, the
decrease in the electrical conductivity of concrete-filled steel pipes slowed down [30,31].
Thus, the electrical resistance of the concrete-filled steel tubes after undergoing the NaCl
action decreased by adding benzotriazole and sodium molybdate.
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(d) with assembly unit of rust inhibitors, after NaCl D-A. 
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Figure 4. The electrical resistance of steel tubes: (a) with a single rust inhibitor, after NaCl F-C;
(b) with assembly unit of rust inhibitor, after NaCl F-C; (c) with a single rust inhibitor, after NaCl
D-A; (d) with assembly unit of rust inhibitors, after NaCl D-A.

3.4. The AC Impedance Spectrum Curves of Concrete-Filled Steel Tubes

Figure 5 depicts the AC impedance spectrum curves of the concrete-filled steel tubes.
In Figure 5, Zr values represent the actual electrical resistance values in the AC impedance
spectra, while Zi values represent the electrical reactance values. The interface between
the steel pipe and concrete, the interface between aggregate and cement mortar, and the
interface between the liquid phase and solid phase of the pore solution are the mechanisms
involved in concrete-filled steel pipes [23]. Therefore, the capacitance value in concrete-
filled steel pipes is relatively high. The maximum values of electrical resistance increased
with the increase in the number of NaCl F-C and NaCl D-A actions since the NaCl action
can accelerate the corrosion of steel pipes and the cracking of concrete, hindering the
propagation of the charged particle [32]. Consequently, Zr increased by the NaCl action.
After the NaCl action, Zr decreased by adding the rust inhibitor owing to the fact that
the rust inhibitors delayed the corrosion of steel pipes, thereby reducing the increasing
rate of the electrical resistance of concrete-filled steel pipes after the NaCl action [33]. The
concrete-filled steel tubes with the assembly unit of 5 kg/m3 Na2MoO4 and 15 kg/m3

benzotriazole had the highest Zr corresponding to the peaks observed in AC impedance
spectrum curves.
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The impedance spectrum fitting software ZSimpWin, version 3.5, was used for obtain-
ing the equivalent circuits of the AC impedance spectrum curves. The detailed process can
be found in a previous study [34]. The equivalent circuits of the AC impedance spectrum
curves are depicted in Figure 6. It is observed that the equivalent circuits are composed of
four electrical components. One of the four electrical components was the contact electrical
resistance (the electrical resistance between the steel pipes and concrete). The other three
electrical components were the parallel electrical resistances and capacitances of the rust,
the pore solution, and the concrete matrix. The Chi values of the equivalent circuits were
all lower than 0.034, indicating the accuracy of the equivalent circuits.
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spectrum fitting software ZSimpWin; (b) detailed images of the equivalent circuits.

The electrical resistance of the rust on the surface of the steel pipes is displayed in
Figure 7. The electrical resistance of the rust showed an increasing trend with the increase
in the number of NaCl F-C and NaCl D-A, due to the increase in the rust area on the surface
of the steel tube, which hindered the migration of electrons and increased the electrical
resistance. However, an increase in the dosages of the rust inhibitors had a decreasing effect
on the rust’s electrical resistance. The reducing effect of benzotriazole on the rust’s electrical
resistance was higher than that of Na2MoO4. The reducing effect of an assembly unit
comprising 5 kg/m3 of Na2MoO4 and 15 kg/m3 of benzotriazole on the rust’s electrical
resistance was the highest. The rust’s electrical resistance after 30 NaCl D-A was higher
than that after 300 NaCl F-C.
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Figure 7. The electrical resistance of concrete-filled steel tubes: (a) with a single rust inhibitor; (b) with
an assembly unit of rust inhibitors.

3.5. The Tafel Curves of Concrete-Filled Steel Tubes

Figure 8 displays the Tafel curves of concrete-filled steel tubes after 300 NaCl F-C
and 30 NaCl D-A. As can be seen, the Tafel curves are divided into two parts. In the
first part, the potential is almost unchanged with the increasing log (current). In the
second part, the curves are divided into two sections; in the first section, the potential
increases with the increasing log (current). However, in the second section, the potential
decreases with the increasing log (current). Equation (1) is used to calculate the corrosion
area rate of steel pipes [30]. In Equation (1), v represents the steel tube’s corrosion rate,
with the unit expressed as g/m2h; m is the metal’s atomic weight, with the unit of g; i
stands for the corrosion current density, and its unit is µA/cm2. The key parameters (AC
impedance spectrum curves’ actual values corresponding to the maximum points and
corrosion current densities in the Tafel curves) characterizing the corrosion of steel pipes
are shown in Tables A1 and A2 (in Appendix A), respectively.

v =
10m

9.65×104

3.6 N
i = 3.73 × 10−4 m

N
i (1)

Figure 9 demonstrates the corrosion area rate of the concrete-filled steel tubes cal-
culated with Equation (1). As shown in Figure 9, the corrosion area rate exhibited an
increasing trend with the increase in the number of NaCl F-C and NaCl D-A. This can
be explained by the effect of NaCl action on the accelerated corrosion of steel pipes [35].
In terms of the corrosion inhibitors, the corrosion area rate of steel pipes decreased with
an increase in corrosion inhibitors’ dosages. As mentioned in the previous section, the
decrease in the corrosion area rate is mainly due to the improved rust resistance perfor-
mance of the rust inhibitors [21,36]. The concrete-filled steel tube with the assembly unit of
5 kg/m3 Na2MoO4 and 15 kg/m3 benzotriazole had the lowest corrosion area rate. The
corrosion area rate of the concrete-filled steel tube with benzotriazole was lower than that
with Na2MoO4. Additionally, the corrosion area rate of the concrete-filled steel tube after
30 NaCl D-A was higher than that after 300 NaCl F-C.
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Figure 8. The AC impedance spectrum curves of concrete-filled steel tubes: (a) with a single rust 
inhibitor, after NaCl F-C; (b) with assembly unit of rust inhibitor, after NaCl F-C; (c) with a single 
rust inhibitor, after NaCl D-A; (d) with an assembly unit of rust inhibitors, after NaCl D-A. 
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Figure 9. The corrosion rate of concrete-filled steel tubes: (a) with a single rust inhibitor; (b) with an
assembly unit of rust inhibitors.
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3.6. The EDS of the Rust

The SEM-EDS results of the rust on the surface of the steel tubes are displayed in
Figure 10. Figure 10a shows the micrographs (magnified by 100 times) of the rust samples
used for SEM-EDS experiments. The testing zones of SEM-EDS are labeled in Figure 10a. It
was found that the rust on the surface of the steel tubes consisted of Fe, Cl, Ca, C, O, Na,
Ni, and Si. The A10 concrete-filled steel tubes after 300 NaCl F-C and 30 NaCl D-A were
selected. As shown in Figure 10, the Fe content after 30 NaCl D-A was higher than that after
300 NaCl F-C due to the fact that the steel tubes corroded more seriously after NaCl D-A.
Therefore, the Fe content was the highest after 30 NaCl D-A. Moreover, the Fe concentration
of the rust on the surface of the concrete-filled steel tube with the assembly unit of 5 kg/m3

Na2MoO4 and 15 kg/m3 benzotriazole was the lowest, which was attributed to its best
corrosion resistance.
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Figure 10. The SEM-EDS of rust on the surface of the steel tubes: (a) micrographs of samples; (b) A10,
after 300 NaCl F-C; (c) A10, after 30 NaCl D-A; (d) A14, after 30 NaCl D-A.

3.7. The XRD Curves of the Rust

The XRD curves of the rust on the surface of the steel tubes are exhibited in Figure 11.
The rust consisted of α-FeO(OH), β-FeO(OH), Fe2O3, and Fe3O4. A higher number of
Fe2O3 and Fe3O4 crystals were observed after 30 NaCl D-A than after 300 NaCl F-C. NaCl
F-C and NaCl D-A can accelerate the rate at which chloride ions damage the passivation
film on the surface of the steel, thereby accelerating the corrosion of iron, resulting in the
formation of crystals such as α-FeO(OH), β-FeO(OH), Fe2O3, and Fe3O4. The corrosion
effect of 30 NaCl D-A on the passivation film was more serious than that of 300 NaCl F-C.
The Fe2O3 and Fe3O4 concentrations in the specimens with the assembly unit of 5 kg/m3

Na2MoO4 and 15 kg/m3 benzotriazole were the lowest.
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4. Conclusions

The effect of an assembly unit of Na2MoO4 and benzotriazole on the corrosion re-
sistance of concrete-filled steel tubes was investigated. The following conclusions can
be drawn:

The MRs increased at the rates of 0%~0.00470% and 0%~0.00666% after 300 NaCl F-C
and 30 NaCl D-A. Moreover, the corresponding ultrasonic velocities were 0%~21.1% and
0%~23.6%. When the rust inhibitor was added, the results were the opposite. The addition
of Na2MoO4 and benzotriazole decreases the MRs at the rates of 0%~80.3% and 0%~81.6%.

The corresponding ultrasonic velocities were 0%~8.1% and 0%~8.3% after NaCl action.
The added rust inhibitors slowed down the reduction in ultrasound speed.

The initial electrical resistance of concrete-filled steel tubes decreased by adding the
rust inhibitors with increasing rates of 0%~123% and 0%~127%. Specimens with the assem-
bly unit of cathodic and anodic rust inhibitors had the highest initial electrical resistance.

The increasing rates of electrical resistance after NaCl F-C and NaCl D-A were 81.6%
and 87.3%, respectively. The electrical resistance after the specimens were subjected to
NaCl F-C and NaCl D-A actions decreased by the decreasing rates of 31.6% and 35.7%,
respectively, with Na2MoO4 and benzotriazole used as rust inhibitors. Concrete-filled
steel tubes with the assembly unit of 5 kg/m3 Na2MoO4 and 15 kg/m3 benzotriazole had
the highest electrical resistance before the NaCl action and the lowest increasing rates by
NaCl action.

Before the NaCl action, the resistance values corresponding to the peaks of the AC
impedance spectrum curves increased with the addition of rust inhibitors. The NaCl F-C
and NaCl D-A actions had an increasing effect on the resistance values corresponding to
the peaks of the AC impedance spectrum curves. The equivalent circuits were composed
of four electrical components connected in series. The four electrical components were the
contact resistances between the steel pipes, stainless steel bars, and cement concrete, as
well as the parallel electrical resistances and capacitances of the pore solution, rust, and
the concrete matrix. The electrical resistance of the rust decreased by the increase in the
dosages of rust inhibitors and increased by the NaCl actions. The concrete-filled steel tubes
with 5 kg/m3 Na2MoO4 and 15 kg/m3 benzotriazole had the highest electrical resistance
associated with the peaks before the NaCl action and the lowest increasing rates of electrical
resistance. The rust’s electrical resistance in the concrete-filled steel tubes with the assembly
unit composed of 5 kg/m3 Na2MoO4 and 15 kg/m3 benzotriazole was the lowest.

The corrosion area rates of the steel pipes increased with NaCl F-C and NaCl D-A. The
addition of the rust inhibitors led to a decrease in the corrosion area rates of the steel pipes.
The concrete-filled steel tubes with the assembly unit of 5 kg/m3 Na2MoO4 and 15 kg/m3

benzotriazole had the lowest corrosion area rate.
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The rust had the highest Fe concentration after the NaCl D-A action. The rust inhibitors
decreased the Fe content. Concrete-filled steel tubes with the assembly unit using 5 kg/m3

Na2MoO4 and 15 kg/m3 benzotriazole had the lowest concentration of Fe elements and
iron oxide crystals.
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Appendix A

Table A1. The maximum points of Zr (Ω) obtained from AC impedance spectrum curves of UHPC
before salt erosion.

Types Maximum Points of Zr (Ω)

A1 688.6
A2 550.2
A3 627.9
A4 400.6
A5 1036.7
A6 594.9
A7 1372.6
A8 737.6
A9 317.6

A10 614.5
A11 183.0
A12 146.2
A13 258.1
A14 164.7
A15 367.4
A16 166.2
A17 383.5
A18 206.1
A19 222.6
A20 430.6
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Table A2. The maximum points of Zr (Ω) obtained from AC impedance spectrum curves of UHPC
after NaCl F-C.

Types Maximum Points of Zr (Ω)

A1 7770.0
A2 5364.0
A3 7992.0
A4 7192.8
A5 9387.0
A6 5364.0
A7 8493.0
A8 9162.8
A9 4830.7

A10 10,459.8
A11 7933.5
A12 7611.4
A13 11,417.1
A14 4497.5
A15 6973.8
A16 8527.0
A17 5378.8
A18 7108.4
A19 13,742.7
A20 15,643.3

Table A3. The maximum points of Zr (Ω) obtained from AC impedance spectrum curves of UHPC
after NaCl D-A.

Types Maximum Points of Zr (Ω)

A1 11,100.0
A2 8940.0
A3 13,320.0
A4 11,988.0
A5 13,410.0
A6 10,728.0
A7 8493.0
A8 13,946.4
A9 7548.0

A10 16,092.0
A11 12,300.0
A12 9594.0
A13 14,391.0
A14 12,169.0
A15 18,869.3
A16 23,071.9
A17 12,692.9
A18 16,774.4
A19 24,322.5
A20 27,686.3
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Table A4. The corrosion current obtained from Tafel curves of UHPC after NaCl F-C.

Types Corrosion Current (µA)

A1 0.1
A2 0.1
A3 0.2
A4 0.2
A5 0.2
A6 0.2
A7 0.2
A8 0.3
A9 0.3

A10 0.3
A11 0.1
A12 0.1
A13 0.1
A14 0.1
A15 0.2
A16 0.2
A17 0.2
A18 0.2
A19 0.3
A20 0.3

Table A5. The corrosion current obtained from Tafel curves of UHPC after NaCl D-A.

Types Corrosion Current (mA)

A1 0.1
A2 0.2
A3 0.2
A4 0.2
A5 0.2
A6 0.3
A7 0.3
A8 0.3
A9 0.3

A10 0.3
A11 0.2
A12 0.2
A13 0.2
A14 0.1
A15 0.3
A16 0.3
A17 0.3
A18 0.3
A19 0.3
A20 0.3
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