
Citation: Bratasyuk, N.A.; Latyshev,

A.V.; Zuev, V.V. Water in Epoxy

Coatings: Basic Principles of

Interaction with Polymer Matrix and

the Influence on Coating Life Cycle.

Coatings 2024, 14, 54. https://

doi.org/10.3390/coatings14010054

Academic Editors: Shrikant Joshi,

Thomas Lampke and Thomas

Lindner

Received: 5 December 2023

Revised: 19 December 2023

Accepted: 21 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Review

Water in Epoxy Coatings: Basic Principles of Interaction with
Polymer Matrix and the Influence on Coating Life Cycle
Nikita A. Bratasyuk 1 , Alexandr V. Latyshev 2 and Vjacheslav V. Zuev 1,3,*

1 Chemical Engineering Center, ITMO University, Kronverkskiy pr. 49, 197101 Saint-Petersburg, Russia;
bratasyukna@gmail.com

2 Gazprom VNIIGAZ LLC, Malookhtinsky pr. 45 A, 195112 Saint-Petersburg, Russia; avlat33@mail.ru
3 Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. 31,

199004 Saint Petersburg, Russia
* Correspondence: zuev@hq.macro.ru

Abstract: This review describes the interaction of epoxy coatings with water, the kinetics of water
uptake in epoxy resins, and the methods of studying the latter (gravimetric, IR (Infrared) and NMR
(Nuclear magnetic resonance) spectroscopies). The analysis of experimental data requires using
mathematical models which simulate the processes that occur during water uptake in a polymer
matrix. This review classifies the numerous models applied for the study of water absorption into
two large groups: Fickian and non-Fickian models. Fickian models involve the Fickian diffusion
model and its development for the case of anomalous diffusion, as well as the models of Jacobs–Jones,
Berens–Hopfenberg, and the time-varying diffusion coefficient model. The Carter–Kibler approach
is provided as an example of a non-Fickian or Langmuir-type model. A critical analysis of the
experimental methods is provided, including advantages and possible experimental errors. The
methods used for processing experimental data are discussed as well as the effect of water on the
exploitation properties and life cycle of epoxy coatings.

Keywords: epoxy coatings; water uptake; kinetic study; water state; coating performance; life cycle

1. Introduction

Polymer coatings are widely used as the most accessible tool to protect metal and
wood. Water on Earth ensures the existence of life on Earth; on the other hand, it is one
of the main sources that destroy objects produced by humankind. The infusion of water
stimulates corrosion processes in the materials underlying protective coatings. In polar
regions, it can result in the destruction of coatings and coated materials as a result of
multiple freeze–thaw cycles.

In this study, water is considered a complex liquid. The polarity of its molecules in
combination with the possibility of a hydrogen bond network being formed results in a
multilevel structure of liquid water. Such structures may persist during the infusion of
water into the polymer matrix, which influences the diffusion processes and the infiltrate in
the polymer bulk. Hence, the study of water infusion in coatings requires a multimethod
approach using modeling and spectroscopic structural analysis.

Epoxy resins, with their network structure and excellent mechanical performance,
high barrier properties, and thermal and chemical stability, are widely used as coatings
and matrices for composite materials. Their high rigidity leads to their fragility and void
formation during their preparation, which largely affects their water permeation.

The aim of most studies in this field is to examine the water permeation of common
epoxy-based coatings across a range of commercially relevant temperatures (from room
temperature to +80 ◦C). Water absorption can induce damage to the epoxy network, induce
distinctive cavity formation in the coating films, and increase the aggregative porosity of
the coatings. Hence, the analysis of the processes of water uptake is crucial for protecting
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transport pipelines, tanks, industrial constructions, and other objects. Vapor transport
analysis in a broad range of temperatures from deep freezing to high sunshine is important
for epoxy composites used in the aircraft industry because any damage to an aircraft is
crucial. Other important engineering plastics are polyamides 6 and 6.6, which are widely
used as materials for bearings, shafts, and other construction elements in the ship-building
industry. The high uptake of water by these plastics and its influence on the performance
characteristics of products is a topic that is not directly related to this review and would be
the subject of another research. However, the main methods of studying water absorption
appear to be common for all plastics and are referred to in the papers discussed.

The study of water uptake to epoxies has a long history [1]. The performance of
epoxy coatings during moisture absorption has been described to decrease as a result of
swelling [2], the fluctuation of bulk mechanical properties [3], the plasticization effect [4],
the chemical destruction of the epoxy matrix [5], and other factors. In this study, these
changes are considered to involve both experimental [6] and molecular simulation [7]
methods. The complexity of this task requires new insights to advance the molecular-level
understanding of the water interaction with the epoxy matrix and justifies the need for new
strategies, including 2D IR spectroscopy [8] and solid-state NMR using multi-quantum
filter techniques [9]. Methods based on electrochemical noise measurement have been
shown to be promising as reliable quantitative indicators of corrosion [10–13].

This review includes the following sections: the experimental methods used for
studying the water uptake of epoxy resins, the kinetics of this process, the water state in
the epoxy matrix, the influence of water absorption on the material properties of epoxy
coatings, and the molecular origin of these changes.

2. Methods for Studying Water Uptake
2.1. Gravimetric Analysis

Gravimetric analysis is one of the most popular methods used to characterize water
absorption in polymers and polymer composites [14–16]. Rectangular samples (10 mm
wide, 10 mm long, and 1 mm thick) are immersed in distilled water at room temperature or
higher. Water absorption is monitored as a function of the immersion time. The samples
are regularly removed from the liquid and wiped with filter paper to measure the water
uptake. The change in the water content, Mt (%), is calculated using Equation (1):

Mt =
wt − wd

wd
× 100 (1)

where wt is the weight of the sample immersed in water at the time t, and wd is the weight
of the dry sample.

The resulting diffusion plots normally represent curves with an oblique linear initial
portion and a subsequent horizontal representation of the equilibrium statement. On the
other hand, the immersion time is a very important parameter that affects the type of
curve that is produced. Often, researchers have achieved pseudo-equilibrium due to the
measurement time not being long enough.

In many cases, the nature of water absorption at the initial stages is consistent with
Fick’s law, since the absorption of water molecules in the volume occurs due to their
penetration into the free volume of the polymer network. Further absorption is usually
related to hydrogen bond formation, polymer network degradation, segmental relaxation,
swelling, and many other negative factors. Therefore, a gradual increase in water content
after reaching a pseudo-equilibrium state is typical for long-term tests [17–25].

The diffusion plots are easy to calculate and refer to, and thus can fit various mathe-
matical models. These models make it possible to define the water diffusion coefficient and
some other diffusion parameters. There are multiple mathematical models, and they have
different solutions for calculating the kinetic parameters of water absorption [14,26–28].

Today, commercial epoxy coatings are very complex polymer systems containing
many components including an epoxy binder, hardener, fillers, anti-corrosion pigments,
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solvents, reactive diluents, plasticizers, dispersants, coupling agents, thixotropic additives,
and other substances of various nature. The behaviors of these compositions under water
diffusion will vary depending on the morphology, structure, crosslink density, and free
volume of each polymer system [29,30]. Thus, the behavior of diffusion can be described
by any of the two large groups of models: Fickian and non-Fickian models.

2.1.1. Fickian Diffusion Model

The Fickian diffusion model is a straightforward approach to evaluate the water
absorption of epoxy compositions [15,16,31–33]. Fick’s law describes the transfer of water
into a polymer by diffusion only without considering intermolecular interactions and/or
changes in the topology of the polymer network. In a one-dimensional system with a
substance concentration gradient dC/dx in the x direction, the rate of change in the substance
concentration at a given point is a function of diffusion, and it is determined by Fick’s
second law (Equation (2)):

dC
dt

= D
d2C
dx2 (2)

Equation (2) can be presented for a three-dimensional system:

dC
dt

= Dx
d2C
dx2 + Dy

d2C
dy2 + Dz

d2C
dz2 (3)

where C is the concentration of the diffused substance; D, Dx, Dy, and Dz are the diffusion
coefficients; and x, y, and z are the diffusion directions.

Fick’s second law has more than one analytical solution, but the most common equa-
tion is given by Crank [16,27,34–36]:

Mt

M∞
= 1− 8

π2

∞

∑
n=0

1

(2n + 1)2 exp

(
−D(2n + 1)2π2t

l2

)
(4)

where Mt is the water absorption at time t,M∞ is the equilibrium water absorption, n is an
integer representing the number of terms in the series, l is the sample thickness, and t is the
diffusion time.

An analytical simplification of Equation (4) for a short exposure time takes the follow-
ing form for Mt/M∞ < 0.5:

Mt

M∞
=

4
l

√
Dt
π

(5)

and for Mt/M∞ > 0.5, it takes the following form:

Mt

M∞
= 1− exp

[
−7.3

(
Dt
l2

)0.75
]

(6)

The Fickian behavior of water diffusion in cured epoxy resin is only typical for its early
stages. However, many epoxy compositions exhibit behaviors that tend to deviate from
Fick’s law after a long-term immersion [6,17,35,37]. The movement of water molecules into
the polymer depends not only on the penetration of water into the free volume, but also on
the complexity of the intermolecular interactions between the polymer network and the
water. Polar groups in the structure, the crosslink density, free volume, and the results of
the water–polymer interactions (including segmental relaxation, plasticization, swelling,
and the destruction of the macromolecular structure) make it impossible to completely
describe the diffusion process using Fick’s law [24,38,39].

2.1.2. Non-Fickian (Anomalous) Diffusion Models

Polar functional groups in cured epoxy resins and the relaxation processes resulting
from the interaction with water molecules is the cause of an eventual deviation from the
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classical Fick’s law. There has been ample research to achieve a deeper understanding
of the water absorption process in epoxy materials and to propose more efficient mod-
els. As a result, the following four models were proposed for anomalous diffusion in
epoxies: two-phase polymer dual-diffusivity model (Jacobs–Jones model) [14,40], cou-
pled diffusion–relaxation model (Berens–Hopfenberg model) [41], time-varying diffusion
coefficient model [42,43], and “Langmuir-type” model (Carter–Kibler model) [44]. They
include some additional factors: bound and unbound phases of water; phases with different
structures of macromolecules formed within polymers; relaxation effects due to swelling;
and variability of diffusion coefficients over time, to name a few. All of these models rely
on experimental observations to determine their parameters and coefficients. This paper
focuses on the four above-mentioned models and does not regard those used for describing
nano- and reinforced composites (for example, the hindered diffusion model [28,45], barrier
models [46,47], and the model proposed by Shen and Springer [48]).

Jacobs–Jones Model (Two-Phase Polymer Dual-Diffusivity Model)

The Jacobs–Jones model assumes that a polymer has a two-phase structure, including
highly crosslinked and low crosslinked regions. The first stage of water absorption is
suggested to correspond to the rapid absorption of water. In this case, the diffusion
of molecules occurs both in the highly crosslinked phase and in the low crosslinked
one. Further, the diffusion process slows down due to water absorption only into the
highly crosslinked phase. Both stages follow Fick’s law, and the resulting equation is as
follows [14,40]:

Mt

M∞
= Vd

{
1− exp

[
−7.3

(
Ddt
l2

)0.75
]}

+ (1−Vd)

{
1− exp

[
−7.3

(
Dlt
l2

)0.75
]}

(7)

where D is the diffusion coefficient of the dense (highly crosslinked) phase, Dl is the
diffusion coefficient of the less dense (low crosslinked) phase, and Vd is the volume fraction
of the highly crosslinked phase. This model neglects the interaction between the water and
the polymer network.

Maggana and Pissis [14] suggested a modified Jacobs–Jones model. The main dif-
ference is the final interpretation of the two phases above. Thus, there is the main (the
first) phase, in which most of the water is absorbed, and the second phase with a different
density and/or hydrophilic characteristics.

Berens–Hopfenberg Model (Coupled Diffusion-Relaxation Model)

The Behrens-Hopfenberg model is based on the relaxation phenomena resulting from
the polymer swelling during the diffusion. The diffusion of water in a glassy polymer is
facilitated by Fickian diffusion and relaxation changes in the polymer network occurring
with the free volume changes [41,49]. Thus, the main equation of the model can be expressed
as follows (Equation (8)):

Mt = MF + MR = M∞F

(
1− exp

[
−7.3

(
Ddt
l2

)0.75
])

+ M∞R

(
1− exp

(
−kt2

))
, (8)

where MF is the amount of absorbed water, related to the Fickian diffusion process, MR is
the amount of absorbed water, related to relaxation, M∞F is the water saturation value dis-
regarding any stress relaxation, M∞R is the water saturation value related to the relaxation
effect, and k is a constant related to the relaxation rate of the polymer.

Research on absorption in polymers has revealed that the rate-controlling process de-
pends on the size of the penetrant [41]. When the absorption starts rapidly but slows down
at the later stages, the diffusion outpaces the relaxation. However, if these processes operate
simultaneously, it becomes challenging to differentiate them based on the absorption curve.
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Time-Varying Diffusion Coefficient Model

A one-dimensional time-varying diffusion coefficient model is a modified Fickian
model (Equation (2)) interpreting the diffusion coefficient as a time-dependent func-
tion. Weistman [42] suggested the following equation for a diffusion model with a time-
varying diffusivity:

∂C
∂t

= D0 exp
[
− B

θ(t)

]
∂2C
∂x2 (9)

where D0 and B are material constants and θ(t) is the absolute temperature.
According to Roy et al. [43], moisture uptake can be expressed by Equation (10):

Mt

M∞
= 1− 8

π2

∞

∑
n=0

1

(2n + 1)2 exp

{
−(2n + 1)2π2

l2 ×
[

D0t +
R

∑
r=1

Dr

[
t + τr

(
e−

t
τr − 1

)]]}
(10)

The main parameters, M∞, D0, Dr, and τr, are determined by fitting Equation (10) to
the experimental data.

This model is often used for water diffusion in epoxy composites and
adhesives [34,42,43,47,50–53]. Despite obtaining good approximation results for com-
posites and adhesives, the model with a time-varying diffusion coefficient has been rarely
found to describe the water absorption process in epoxy coatings.

Carter–Kibler Model (“Langmuir-Type” Model)

The Langmuir model and its modifications consider chemical interactions between
water molecules and polar groups of the epoxy polymer in contrast to the above-mentioned
models. The Langmuir-type model assumes that there are two states of absorbed water
molecules: bound and free. According to the model, the state of water molecules at any
time and in any place in the polymer unit may regularly change from bound to free (this
can happen with probability β) and from free to bound (with probability γ). The coefficients
β and γ are also referred to as the desorption and absorption coefficients, respectively. The
Langmuir equation for the one-dimensional case has the following form [33,54–57]:

dC f

dt
+

dCb
dt

= D
d2C
dx2 (11)

dCb
dt

= γC f − βCb (12)

γC f ∞ = βCb∞ (13)

where C f and C f ∞ are the concentration of «free» water and its maximum concentration,
respectively, and Cb and Cb∞ are the concentration of «bound» water and its maximum
concentration, respectively.

Carter and Kibler [44] derived Equation (14) for calculating water absorption:

Mt

M∞
=

{
1− 8

π2

∞

∑
i=1

r+i exp
(
−r−i t

)
− r−i exp

(
−r+i t

)
i2
(
r+i − r−i

) +
8

π2

(
κ

β

β + γ

) ∞

∑
i=1

exp
(
−r−i t

)
− exp

(
−r+i t

)(
r+i − r−i

) }
(14)

r±i =
1
2

[(
κi2 + γ + β

)
±
√
(κi2 + γ + β)

2 − 4κβi2
]

(15)

κ = Dγ

(π

l

)2
(16)

These equations can be simplified for ease of calculation:

Mt

M∞
=

β

γ + β
e−γty(t) +

(
1− e−βt

)
+

β

γ + β

(
e−βt − e−γt

)
(17)
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y(t) = 1− 8
π2

∞

∑
n=0

1

(2n + 1)2 exp
[
−(2n + 1)2κt

]
(18)

A typical water absorption curve can be presented as the sum of free (unbound) and
bound water (Figure 1). There are normally two stages of absorption—the first one (charac-
teristic of unbound absorption) and the second one (characteristic of bound absorption).
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The absorption coefficient γ and the desorption coefficient β are very important
parameters of the Carter–Kibler model. Scott and Lees [55] reported some difficulties in
selecting the method for calculating these parameters and compared a number of methods
used to estimate the coefficients β and γ. The authors chose a simplex algorithm to evaluate
the non-linear regression corresponding to the experimental data.

The Langmuir-type model showed the greatest efficiency among those described for
non-Fickian diffusion in epoxy coatings [9,26,34,37,39,51,54–59]. For example, Glaskova
et al. [51] quantified the performance of a number of the above models for a selected com-
mercial epoxy resin and found that Langmuir-type and relaxation models provide results
that have adequate agreement with the experimental data. Other researchers [55,58,59] also
showed that Langmuir-type models provide highly convergent results and can properly
predict a further increase in mass from a set of obtained experimental data.

On the other hand, a good approximation of the data does not always confirm the
validity of the model. Two models with different permissible physical justifications may
equally approximate the same water absorption data. Therefore, the true applicability of
the model has to be confirmed by other control tests (e.g., absorption–desorption test and
elevated temperatures) or by studying water absorption using spectral analysis methods.

Using gravimetric measurements without any comparison with other methods (e.g.,
IR or NMR) may also lead to an interpretation error. Unfortunately, gravimetric analysis
does not allow for the study of the diffusion mechanism, the relaxation behavior, and
the interactions between the penetrant and the polymer. Nevertheless, the absorption
kinetics obtained by gravimetric analysis is essential for studying the water absorption of
epoxy compositions.

2.2. Infrared Spectroscopy (IR)

Another widely used method is infrared (IR) spectroscopy in the middle and near-
infrared ranges [19,31,60–69]. FTIR spectroscopy has been successfully used to investigate
water diffusion in a thermoset and, in particular, in epoxy materials. In contrast to gravi-
metric analysis, it is not only possible to observe the concentration dependencies of water
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molecules in the polymer volume, but also to determine the interaction of the penetrant
and the polymer network at a molecular level.

The equipment available today contributes to a more accurate investigation of the
diffusion processes in polymer systems compared to the facilities that existed 30–40 years
ago. For example, the development of in situ measurement technology has improved
the accuracy of analyzing the changes in polymer systems during moisture absorption.
Measurements are performed in real time with continuous spectrum removal using special
tooling or techniques (in situ time-resolved spectroscopy, difference spectroscopy, or 2D
correlation spectroscopy). Many studies are performed using FTIR-ATR (attenuated total
reflectance) spectroscopy. This technique is often criticized due to a number of drawbacks:
insufficient contact between the specimen and the crystal; a more complex relationship
between absorbance and water concentration compared to transmission; and the “skin
effect” and multilayer structures in thin films that make interpreting the resulting data
difficult [20]. However, the influence of these factors is negligible. The most common
research approach is to collect spectra in the middle range (4000–400 cm−1) of dry and wet
samples at different time intervals [8,70–72]. The further quantitative analysis is performed
by the deconvolution of the spectra in the ranges of 3700–3100 cm−1 (stretching vibrations
of hydroxyl groups) and of 1700–1600 cm−1 (deformation vibrations of hydroxyl groups).
These ranges contain information about both intermolecular and intramolecular hydrogen
bonding. The region from 3700 to 3100 cm−1 is more intense and contains more information
about the hydrogen bonds, while that of 1700–1600 cm−1 is less informative due to the
overlapping with other functional groups and low signal intensity [9,60,66].

According to the research [9,15,60,66,73,74], the intensity of the bands corresponding
to OH-group vibrations increases, and the peak broadens with the increasing diffusion time.
The selected region has a single overlapping broad peak that cannot be used in diffusion
studies without some additional processing. Therefore, according to the results of deconvo-
lution, it is customary to distinguish the following ranges: 3800–3500 cm−1 (S0, free/mobile
water molecules), 3600–3400 cm−1 (S1, water molecules bound by weak hydrogen bonds),
3500–3200 cm−1 (S2L, moderately bound water molecules), and 3300–3100 cm−1 (S2T,
strongly bound water molecules) [9,15,60,62,63,66,71,75]. Figure 2 illustrates the possi-
ble deconvolution peaks.

Coatings 2024, 14, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 2. Band deconvolution corresponding to OH-group vibrations in the range of 3800–3000 
cm−1. 

The number of water molecule states differs from one study to another; however, 
most researchers agree on the definitions of free, weakly related, and strongly related 
states.  

In addition to the middle range, the near infrared (NIR) range is of particular interest 
for studying water diffusion by evaluating the stretching and bending vibrations during 
hydrogen bond formation. The NIR region of the infrared spectrum has a wavelength 
range of 8000–4000 cm−1. The current study focuses on two ranges, 7300–6300 cm−1 and 
5400–4800 cm−1, that correspond to the -OH stretching vibration band and the –OH bend-
ing vibration band, respectively. Although the 5500–4800 cm−1 range provides qualitative 
information at the molecular level, quantitative analysis is very difficult, as the hydrogen 
bond has opposite effects on stretching and bending vibrations, which reduces the ability 
to separate different components of a complex profile [73,76]. Therefore, the interval of 
the hydroxyl group stretching vibration is often analyzed in more detail [62,76–81]. 

The deconvolution of the 7300–6300 cm−1 range shows three overlapping peaks (Fig-
ure 3): a peak at 7080–7050 cm−1, attributed to the free state of water molecules (type S0); a 
peak at 6850–6810 cm−1, assigned to singly hydrogen-bound water molecules (type S1); and 
a peak at 6580–6535 cm−1, attributed to strong hydrogen-bound interactions (type S2). 

 

Figure 2. Band deconvolution corresponding to OH-group vibrations in the range of 3800–3000 cm−1.

The number of water molecule states differs from one study to another; however, most
researchers agree on the definitions of free, weakly related, and strongly related states.

In addition to the middle range, the near infrared (NIR) range is of particular interest
for studying water diffusion by evaluating the stretching and bending vibrations during
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hydrogen bond formation. The NIR region of the infrared spectrum has a wavelength
range of 8000–4000 cm−1. The current study focuses on two ranges, 7300–6300 cm−1 and
5400–4800 cm−1, that correspond to the -OH stretching vibration band and the –OH bend-
ing vibration band, respectively. Although the 5500–4800 cm−1 range provides qualitative
information at the molecular level, quantitative analysis is very difficult, as the hydrogen
bond has opposite effects on stretching and bending vibrations, which reduces the ability
to separate different components of a complex profile [73,76]. Therefore, the interval of the
hydroxyl group stretching vibration is often analyzed in more detail [62,76–81].

The deconvolution of the 7300–6300 cm−1 range shows three overlapping peaks
(Figure 3): a peak at 7080–7050 cm−1, attributed to the free state of water molecules
(type S0); a peak at 6850–6810 cm−1, assigned to singly hydrogen-bound water molecules
(type S1); and a peak at 6580–6535 cm−1, attributed to strong hydrogen-bound interactions
(type S2).
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Figure 3. Band deconvolution corresponding to OH-group vibrations in the range of 7800–6000 cm−1.

As water is absorbed, the width and the height of the peaks change due to many
factors. These changes allow for the determination of the exact nature of hydrogen bonding
as well as the resulting changes in properties. Polar groups, the structure and branching of
the polymer network, its defectiveness, and the compatibility of the system components
are among the factors that will determine the diffusion rate and the ways water molecules
will penetrate into the polymer system volume.

An isolated spectrum of absorbed water is required for adequate data analysis. Using
difference spectroscopy, the spectra of absorbed water are isolated by eliminating the
interference of the epoxy network spectra [15,75]:

Adif = Awet −KAdry (19)

where Adif, Awet, and Adry are the absorbances of the difference spectrum, wet spectrum,
and dry spectrum, respectively, and K is the subtraction factor, i.e., an adjustable parameter
used to compensate for possible thickness changes between the sample and the reference
spectra [15,75,79]. Usually, K is equal to 1 because the thickness changes upon water
absorption are negligible for most specimens.

The resulting time-resolved spectra are studied using generalized 2D correlation
spectroscopy. This method better distinguishes the overlapping peaks and determines the
correlation between them. Two-dimensional correlation FTIR spectroscopy has a number
of advantages: it can detect overlapping spectroscopic information, it can easily search for
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minor changes in peaks, and it can identify specific sequence of events occurring in the
system under the influence of external factors [9,15,60,62,65].

Noda [82] proposed the basic principles of 2D IR spectroscopy based on the 2D NMR
correlation method. The generalized 2D method considers signals as arbitrary functions of
time, temperature, pressure, concentration, or any other physical variable, and defines the
intensity of synchronous and asynchronous correlations (Equation (20)):

Φ(υ1, υ2) + iΨ(υ1, υ2) =
1

π(Tmax − Tmin)

∫ ∞

0
Y1(ω)·Y∗2(ω)dω (20)

where Φ(υ1, υ2) is the synchronous two-dimensional correlation intensity; Ψ(υ1, υ2) is the
asynchronous two-dimensional correlation intensity; Y1(ω) =

∫ ∞
−∞
∼
y(υ1, t)e−iωtdt is the

Fourier transformation of changes in spectral intensity, observed for a certain spectral
variable

∼
y(υ1, t) relative to the external variable t; Y∗2 (ω) =

∫ ∞
−∞
∼
y(υ2, t)e+iωtdt is the

variation of spectral intensity
∼
y(υ2, t) at another spectral variable υ2; ω is the Fourier

frequency; and t is the fixed interval of some external variable between Tmin and Tmax.
The synchronous spectrum characterizes the degree of coherence between the dy-

namic fluctuations of the IR signals measured at two different wavenumbers and shows
a general similarity between the two separate spectral intensity changes. In contrast, the
asynchronous spectrum describes the independent and inconsistent fluctuations and indi-
cates that the bands υ1 and υ2 vary in phases relative to each other during the diffusion.
The typical synchronous and asynchronous spectra are shown in Figure 4.
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Figure 4. Typical 2D correlation spectra of water absorption into epoxy composition in the
3700–3100 cm−1 range.

According to Noda’s rule, if Φ(υ1, υ2) > 0 and Ψ(υ1, υ2) > 0, the band υ1 changes before
the band υ2. And if Φ(υ1, υ2) > 0 and Ψ(υ1, υ2) < 0, the band υ1 changes after the band
υ2. The red regions in the 2D correlation spectra generally indicate a positive correlation,
and the blue regions indicate a negative one. The coordinates of the cross-peaks, e, located
below the correlation diagonal, are to be indicated as (υ1, υ2), where υ1 and υ2 refer to the
spectrum frequencies by the X-axis and Y-axis. The coordinate values also have a “+” or
“−“ sign depending on the positive or negative value of the peak, respectively.

These approaches can be used for both medium and near-infrared ranges. More details
on the test methodology and interpretation can be found in [15,31,33,60,62,64–67].

Besides the features described above, spectroscopy also provides the diffusion coef-
ficient, absorption kinetic plots and profiles, concentration plots, volume change during
water uptake, and other parameters [19,20,31,64,70,74,75,83].
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2.3. Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique for investi-
gating water diffusion in epoxy coatings [4,84,85]. NMR exploits the behavior of atomic
nuclei in a magnetic field and provides valuable information about molecular mobility,
diffusion behavior, and the interaction between water molecules and the polymer matrix.
Using various NMR methods, researchers can quantitatively analyze water diffusion, probe
water–polymer interactions, and evaluate coating performance. By applying magnetic field
gradients and analyzing the resulting changes in the NMR signal, researchers can determine
the diffusion coefficient and the spatial and temporal distribution of water molecules [86].

Using NMR techniques can provide an understanding of the effects of temperature,
humidity, and of the coating structure on diffusion. Moreover, NMR spectroscopy can
be combined with other NMR-based methods, such as relaxometry and imaging, to gain
some further information about water diffusion processes and their impacts on coating
properties [34,58,87–89].

When studying the water–epoxide interaction using NMR spectroscopy, it is deuterium
oxide, D2O, that is used as the diffusing liquid, rather than hydrogen oxide, H2O. This
is explained by the fact that the 1H isotope makes an essential proportion of the epoxy
composition, making the 1H signal from the polymer dominant in the NMR signal, while
the content of deuterium, 2H, is very small. Therefore, using D2O and 2H-NMR will
provide the data that refers only to diffusing heavy water [34,59,90,91].

The sensitivity of 2H-NMR experiments allows for the assessment of molecular mo-
bility and, consequently, the physical state of water molecules. The 2H NMR spectra
(Figure 5) can be interpreted as a superposition of only two subspectra corresponding to
water molecules reorienting either very rapidly or very slowly. The decomposition of the
spectra may be related to the mobile/“fast moving” phase (narrow peak) and bound/“slow-
moving” phase (wide peak) of heavy water [9,59,90]. The relative proportions of highly
mobile and less mobile water molecules can be determined by analyzing the intensity of
narrow and broad components of the 2H NMR spectrum.
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dependencies of water absorption in epoxy compositions for each type of water by inte-
grating the two peaks of the NMR signal. Despite good convergence between the results
obtained using NMR spectroscopy and using the Carter and Kibler model (gravimetric
analysis), there was a striking difference in the interpretation of the terms “mobile” and
“bound” water for each of them. Popineau et al. [59] noted that the “mobile” water in
the Langmuir-type model is actually the “bound” phase in NMR spectroscopy, and vice
versa. From a kinetic perspective, the following explanation can be given: the “free” phase
refers to individual water molecules with high mobility that can easily permeate into the
polymer’s bulk. On the other hand, the “bound” phase represents the water molecules
that have formed hydrogen bonds and occupy the microcavities and channels within the
polymer. These water molecules are constrained by the available free volume within the
polymer matrix. The authors emphasize that the “mobile” and “bound” states are related
to kinetic concepts, and not directly to intermolecular water–polymer interactions.

NMR Imaging

NMR imaging, including Magnetic Resonance Imaging (MRI), provides spatially
resolved information on water diffusion patterns within epoxy coatings [34,87,92]. These
imaging techniques provide a visualization and mapping of the water distribution and the
penetration depth. By acquiring multiple images over time, researchers can also monitor
the progression of water diffusion. NMR imaging provides valuable insights into the
spatial heterogeneity of water diffusion and can guide the optimization of coating designs
for improved water resistance.

The principles of NMR imaging are similar to NMR spectroscopy, with spatial en-
coding added. In NMR imaging, a strong, homogeneous magnetic field is applied to the
sample, which aligns the nuclear spins of the water molecules. Radiofrequency pulses are
then applied to perturb the spins, followed by the detection of the resulting NMR signal.
Spatially varying magnetic field gradients applied during the experiment provide the NMR
signal encoding.

The reconstructed NMR images provide visual information about the transport and
distribution of water within the epoxy matrix. A quantitative analysis can be performed
on the images to extract parameters including water diffusion coefficients, water uptake
profiles, water concentration gradients, and other parameters [34,87,92].

NMR imaging allows for the non-destructive observation of dynamic processes, in-
cluding water diffusion and flow, in real time. By varying the imaging parameters, it is
possible to study various aspects of water transport in a polymer, including the diffusion
rates, spatial distribution, and the effects of temperature, humidity, and composition on
water transport behavior.

To summarize, NMR spectroscopy offers essential opportunities for studying water
diffusion in epoxy coatings. Through quantitative analysis, the investigation of water–
polymer interactions, and the assessment of coating performance, NMR techniques provide
valuable information on diffusion kinetics, molecular dynamics, and coating behavior.
These data contribute to the development of more water-resistant epoxy coatings for
various applications.

2.4. Electrochemical Impedance Spectroscopy (EIS)

The basic principle of EIS involves applying an AC electrical signal to the polymer–
water system and measuring the resulting impedance response across a range of frequencies.
The impedance (Z) is a complex quantity that consists of two components: resistance (R)
and reactance (X). The resistance component represents the ohmic losses in the system,
while the reactance component reflects the capacitive and inductive effects.

EIS can be utilized to assess the transport properties of water within the polymer
matrix. As water diffuses into the polymer, it influences the electrical conductivity and
impedance of the system. The analysis of the impedance spectra obtained through EIS
provides valuable information about the water diffusion process [93] that increases the
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material’s polarizability. This enhanced polarizability raises the polymer permittivity.
Measuring impedance quantifies the rise in permittivity through the derivation of capaci-
tance. The relationship between the permittivity of the polymer film and the capacitance is
expressed by Equation (21) [19,94].

C =
εε0 A

d
(21)

where A is the area of the sample, d is the sample thickness, ε is the dielectric constant of
the medium, and ε0 is the permittivity of free space.

Assuming that the changes in capacitance are directly proportional to the changes
in the dielectric constant (while keeping the geometrical parameters constant), using
Equation (6) with any given time “t” and at time zero estimates the volume water uptake
(Brasher–Kingsbury equation):

χV =
log(Ct/C0)

log εw
(22)

where Ct is the capacitance at time t, C0 is the dry coating capacitance, which is generally
obtained by extrapolating t to zero, and εw is the dielectric constant of water. The volume
water uptake χV obtained from the EIS experiments on coatings can be compared to the
mass water uptake χm determined through gravimetric measurements. This comparison
was made possible by following the procedure described in [25,95]. The resulting absorp-
tion curves can be fitted to calculate the diffusion coefficient using various Fickian and
non-Fickian models that have been considered above for gravimetric analysis [19,95–97].

The impedance spectra obtained from EIS measurements provide valuable informa-
tion about water transport features, including the diffusion of water molecules through
the epoxy matrix, the water-filled voids or channels present, and the interaction of water
with the epoxy surface or interfaces. The spectra can be analyzed using equivalent circuit
models. These models consist of various circuit elements that represent the electrochem-
ical processes occurring during water diffusion, including charge transfer at interfaces,
Warburg impedance for diffusion, and solution resistance. Fitting the experimental data
to the equivalent circuit model provides the information about the underlying transport
mechanisms and diffusion coefficients [69,98,99].

In addition, EIS provides an evaluation of the electrochemical barrier performance
of epoxy coatings against water and corrosion. Measuring the impedance response of the
coated system assesses the resistance to ion transport and the effectiveness of the epoxy
coating in preventing the penetration of corrosive species and other corrosion processes.
The impedance modulus at the low-frequency domain (0.1 or 1 Hz) can generally be
regarded as an indicator of systematic barrier properties of a coated metal [62,99,100]. The
double-layer capacitance Cdl and the charge transfer resistance Rct were the electrochemical
parameters related to the corrosion reaction to the metal/coatings interface, and they were
obtained from fitting the EIS spectra [68,69,97,98].

EIS offers a versatile and non-destructive method for studying water transport in
epoxy materials and assessing their anticorrosive performance. By providing information
about water diffusion, coating integrity, and electrochemical barrier properties, EIS provides
an understanding of the behavior of epoxy coatings in corrosive environments and supports
the development of improved corrosion protection strategies.

2.5. Other Methods
2.5.1. Fluorescence

Fluorescence-based techniques offer a powerful approach to study water diffusion in
polymer materials [101–103]. Fluorescent probes or dyes can help to track and visualize the
movement of water molecules within the polymer matrix.

One common method is to incorporate a fluorescent dye or probe into the epoxy mate-
rial. The dyes or probes are sensitive to water, and their fluorescence properties change
upon the interaction with water molecules. Trans-4-nitro-4′-aminostilbene (NAS) [104], tri-
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cyanovinyljulolidene (TCJ) [103], 5-Dimethylamino-1-naphthalene-sulfonylchloride (DNS-
Cl) [105,106], 5-Dimethylaminonaphthalene-1-[N-(2-aminoethylenesulfonamide)] (DNS-2),
and 5-Dimethylaminonaphthalene-1-[N-(2-aminopentylenesulfonamide)] (DNS-5) [107]
were used as external fluorophores to control the absorption of water molecules into epoxy
resins. As water diffuses into the epoxy, the fluorescence signal can be monitored and
analyzed to understand the dynamics of water diffusion.

Fluorescence microscopy or spectroscopy can be employed to observe and quantify
the diffusion of water in a polymer. Exciting the fluorescent dye with a specific wavelength
of light allows for the measurement of the emission intensity or lifetime of the fluores-
cence signal. As water molecules diffuse, the fluorescence signal can change, providing
information about the spatial and temporal distribution of water within the material.

Furthermore, fluorescence correlation spectroscopy (FCS) can be used to measure
the diffusion coefficients and dynamics of water in coatings at the microscopic level. FCS
analyzes the fluctuation in the fluorescence signal caused by the diffusion of fluorescently
labeled water molecules. By analyzing these fluctuations, it is possible to determine the
diffusion coefficient and investigate the mechanisms of water diffusion in the polymer
matrix [108].

2.5.2. Atomic Force Microscope-Infrared Spectroscopy (AFM-IR)

When investigating water diffusion in polymers using AFM-IR, water molecules’
distribution and movement within the polymer matrix can be visualized and character-
ized. AFM provides topographical information, identifying surface features and defects.
Meanwhile, IR spectroscopy provides chemical identification and mapping based on the
absorption of infrared light by various molecular species [109].

The AFM-IR setup allows us to directly observe and analyze the diffusion of water
molecules in polymers. Water absorption and diffusion in a polymer can cause changes
in its chemical composition and structure. These changes can be detected and monitored
through variations in the infrared absorption spectra obtained by AFM-IR. By mapping
these changes, it is possible to visualize the movement and diffusion of water at a high
spatial resolution.

Thus, Morsch and colleagues [8,110,111] were able to directly visualize the water
absorption in epoxy-phenolic compositions on a submicron scale using the AFM-IR method,
as well as characterize the distribution of absorbed water and study the morphology of
the coating.

2.5.3. Positron Annihilation Lifetime Spectroscopy (PALS)

PALS involves the use of positrons, which are positively charged antiparticles of
electrons. When positrons are implanted into a material, they rapidly annihilate with
electrons, resulting in the emission of gamma rays. Measuring the time delay between
the positron injection and annihilation provides information about the free volume and
defects within the material. PALS not only determines the amount of free volume, but also
the distribution of free-volume holes [112,113]. As mentioned earlier [18,30,85], polarity,
the topology of the polymer structure, and molecular mobility determine the absorption
kinetics. Polarity has the greatest influence on the equilibrium moisture absorption; the
greater the polarity of the polymer units, the more water is absorbed [22].

It is often a very challenging task to estimate the topological and polar contributions
to the absorption process. However, two separate research groups [22,114] managed to
isolate and study the influence of topological contribution on the nature of absorption.
One of the groups used various amine isomers to obtain polymer networks that were
fundamentally different in terms of their structure and packing density while maintaining
identical chemical compositions and network polarity [114]. The second group selected the
“epoxy resin-hardener-chain extender” system and synthesized the epoxy compositions, in
which the polarity remained constant, while the topology systematically changed [18]. In
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both cases, the kinetics of the penetrant absorption was found to strongly depend on the
size of the free-volume holes.

3. Influence of Water on Glass Transition Temperatures of Epoxy Coatings

The glass transition temperature (Tg) is a crucial parameter for epoxy coatings as it
strongly affects the material’s mechanical, thermal, electrical, and chemical properties. Un-
derstanding and controlling the Tg is essential for achieving desirable coating performance
and durability. The influence of water on the glass transition temperature of epoxy coatings
is one of the most important considerations for designing and formulating coatings for
various applications. Understanding the plasticization effect of water can help engineers
and coating manufacturers optimize formulations to ensure long-lasting performance, even
in water-exposed environments. Effective mitigation strategies produce highly durable
and protective epoxy coatings for a wide range of applications.

When water diffuses into an epoxy coating, this can lead to changes in the Tg of the
epoxy. Water molecules can affect the mobility of polymer chains. Water molecules can
act as plasticizers (so that polymer chains can move more easily) and reduce the Tg of the
epoxy coating. As water diffuses into the coating, it disrupts the polymer chains, increasing
their mobility. This increased mobility lowers the Tg and can result in a softer and more
flexible material. Usually, the decrease in Tg due to the plasticizing effect ranges from 10 to
20 ◦C for every percent of water molecules in the epoxy material [6,53,115–118].

Water diffusion highly depends on the polymer structure, crosslink density, envi-
ronmental conditions (including temperature, pressure, humidity, and presence of salts),
steric effect, polymer–penetrant interaction, and thermal and mechanical history. Since
the relaxation phenomena also have significant effects on the changes in the nature of
absorption, Fickian diffusion predominates in an amorphous polymer at temperatures
much higher than Tg, while non-Fickian behavior regularly occurs in polymers at the glass
transition temperature and below. This is explained by the relaxation of the polymer, which
is essential for penetrant molecules to diffuse into the molecular network. This rearrange-
ment results in a significant macroscopic swelling related to the diffusion of vapors and
liquids into polymers [119–121].

When water penetrates into the epoxy matrix, there is a change in the effective crosslink
density as a result of the interaction of the polymer and water molecules. This leads to
an increase in the distribution of molecular weights and in the relaxation time. The effect
of this process can be observed on thermograms when measuring the glass transition
temperature using the DMA method. As the water content increases, the tan delta (tan δ)
peak in the glass transition region broadens towards lower temperatures [61,122,123].
Often, the tan δ peak can become separated into two peaks with low- and high-temperature
maxima [5,6,122,124]. The high-temperature maximum corresponds to a less plasticized
network, while the low-temperature one corresponds to a highly plasticized network. The
tan δ peak will change until the water saturation is reached. After that point, no evolution
in the shape of the peak is observed. This is often explained by the plasticizing effect.
Nogueria et al. [5] explained the observed phenomenon by the plasticizing effect and
two additional factors: the free volume and the epoxy–water interactions. The formation
of hydrogen bonds between water molecules and polymer chains requires breaking the
interchain hydrogen bonds, which leads to an increased mobility of the chain in the glass
transition region and a corresponding decrease in the effective crosslink density.

The extent of the Tg change depends on the concentration of water diffusing into the
epoxy coating. Higher water concentrations typically result in more important reductions
in Tg. The relationship between the water concentration and Tg change may not be linear,
and different epoxy systems may exhibit varying sensitivity to water plasticization. In-
tramolecular interactions, post-cure, swelling, microcracking, physical aging, hydrolysis,
and chain scission at higher temperatures also result in a different Tg [39,49,125–127].

Understanding the effect of water uptake on Tg and subsequent chemical resistance is
essential for selecting appropriate coatings for environments where exposure to chemicals
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is a concern. Prediction models for the glass transition temperature of epoxy coatings
during water diffusion are based on various approaches, ranging from empirical equations
to more complex theoretical models. The goal of these models is to estimate how Tg changes
with the water content in the increasing epoxy matrix. Some of the most commonly used
methods are the Fox, Kelley-Beuche (free volume model) and Simha–Boyer equations.

The Fox equation is an empirical model that relates the glass transition temperature of
a polymer to the weight fractions of various components. The equation can be modified
for epoxy–water systems to consider the effect of water (or other low-molecular-weight
diluent) uptake [114,125,128]:

1
Tg

=
wp

Tgp
+

ww

Tgw
(23)

where Tgp and Tgw are the glass transition temperature of the polymer and water, respec-
tively, and wp and ww are mass fractions of polymer and water, respectively. According
to [129,130], the experimentally obtained value of Tg of the water is in the range between
124 and 138 K.

The Fox equation is formulated based on the assumption of ideal volumetric additivity
at Tg, and it neglects any specific interactions between the two components. Therefore,
this model, in most cases, poorly describes the change in the glass transition temperature
during water absorption as there are specific interactions between the water and the polar
groups within the epoxy network.

The free volume theory (Kelley-Bueche equation) suggests that the glass transition
is related to the available free volume in the polymer matrix. By considering the effect of
water uptake on the free volume, the Tg changes can be estimated [131–133]:

Tg =
αgpVpTgp + αlw

(
1−Vp

)
Tgw

αgpVp + αlw
(
1−Vp

) (24)

where αgp is the difference in the coefficient of thermal expansion (CTE) of a polymer
between the glassy and rubbery states; αlw is the CTE of water; and Vp is the volume fraction
of the polymer. The value of Vp can be calculated using the following equation [134]:

Vp =
1

1 + 0.01Mm

(
ρp
ρw

) (25)

where Mm is the equilibrium water content, and ρp and ρw are the densities of the polymer
and water, respectively.

This approach requires knowledge of the epoxy’s free volume properties and their
variation with water uptake. All parameters required to calculate the glass transition
temperature can be obtained from the literature (for example, the CTE and Tg of water are
taken as 4 × 10−3/K and 277 K, respectively [133–135]) or experimentally (for example,
the thermal expansion coefficients αlw and αgp are determined with a TMA experiment).
This model has been used by many authors [124,132–136] and has proven to have good
agreement with experimental data.

The Simha–Boyer equation is another empirical model that describes Tg changes with
the water uptake. It is given in [137] as follows:

1
Tg

=
1

Tgp
+

(
1

Tgw
− 1

Tgp

)
Vw (26)

where V is the volume fraction of water in the polymer. As mentioned above, the Tg of
water is in the range between 124 and 138 K. It was also mentioned [117,118] that this
method is able to adequately describe the decrease in the glass transition temperature as a
result of the water penetrating into the polymer.
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In addition to empirical and theoretical models, there are molecular simulation meth-
ods and techniques that can be used to predict the glass transition temperature during water
uptake in the epoxy. Molecular dynamics (MD) simulations can provide insights into the
behavior of polymers at the molecular level. By simulating the interactions between epoxy
and water molecules, MD simulations can offer predictions of Tg changes during water
uptake. However, MD simulations require detailed knowledge of the epoxy molecular
structure and parameters, as well as ample computational resources [135,138].

It is important to note that each method has its own limitations and may not accurately
capture the specific behavior of the epoxy system selected. Therefore, accurate predictions
may require a combination of approaches along with an experimental validation. Addi-
tionally, a specific formulation, curing agents, and environmental conditions of the epoxy
system can influence the Tg changes, and accounting for these factors would improve the
accuracy of the predictions.

4. The Effect of Water Absorption on Mechanical Properties of Epoxy Materials

Epoxy materials are the basis for preparing composites used in the production of
aircrafts, wind, and tidal turbine blades [139]. They are in direct contact with atmospheric
water (moisture), rain, or sea water. As a result, they undergo humidity damages during
their operation. Composite materials were shown to absorb more water from the environ-
ment compared to common polymers [140]. This has a detrimental effect on the mechanical,
electrical, and thermal properties of epoxy composites and reduces their service lives [141].

A high moisture uptake can lead to obvious mechanical degradation and even severe
failure and damage [142]. The inclusion of fillers was found to decrease the moisture
absorption, increase the glass transition temperature, and slightly reduce the detrimental
effect on the mechanical properties after hygrothermal conditioning [143]. However, no
long-term durability of epoxy resins seems to have been comprehensively documented.

Water attacks epoxy-based composites at every level. The fibers, matrix, fiber–matrix
interface, and adhesives are all susceptible to deterioration. Absorbed water can increase
creep and relaxation, introduce residual stresses, cause osmotic pressure, and degrade the
epoxy matrix, fillers, and filler/matrix interfaces via hydrolysis and chemical nucleophilic
attack and acid or alkali catalysis. Water accelerates the fatigue degradation of composites
and shortens their fatigue life. Additionally, fatigue damage offers new paths for moisture
ingress and significantly increases the rate of moisture-related damage. However, the
effect of fluids tends to be contradictory. For example, fluids result in improved impact
resistance. This may be due to the impacting object being resisted by a larger volume
of fibers. However, over time, impact damage may allow more routes for moisture to
penetrate into the composite, and, thus, impair its properties over time [144].

Moisture damage begins near the surface of the material and spreads inward over
time, with cracks tending to grow parallel to the free surface. This damage is often localized,
resulting in a small number of large cracks [145]. Crack growth is dominated by different
effects depending on the level of loading. At lower load levels, cracking is most influenced
by chemical reactions. At moderate load levels, cracking is most affected by diffusion.
At higher load levels, stress-assisted corrosion controls crack growth [146]. The rate of
mechanical performance degradation of epoxy-based composites has been observed to be
directly correlated with the rate of moisture absorption [147]. Moisture is attracted to areas
of air entrainment such as voids and delaminations. Thus, these areas can collect water
over time [148]. Cracks and voids, even the microscopic ones, allow for easier penetration
of water into the composite system via capillary action and diffusion. Therefore, a generous
application of epoxy resin can potentially render moisture-related effects negligible. After
an initial period of seeking out and filling cracks and voids, moisture begins to swell the
composite. One study observed a linear relationship between strain and water uptake from
the beginning of swelling [149]. Notably, water has been shown to diffuse more slowly
through epoxy composites than through polyester composites, to give an example [150].
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Water uptake results in microcrack formation in the bulk of the epoxy and in the
amplified voids, which tend to become linked together, generating paths, which promotes
further penetration of water in the epoxy depth. The absorbed water may prove damaging
to installed wraps. The tendency of composite materials to suffer damage when operating
in harsh humidity environments shows that the humidity issue for epoxy-based composites
should not be underestimated. It needs, instead, a rigorous and deep study to evaluate the
impact on the system performance and assess the reduction in the operative life.

The moisture history of the composite is important. Both the maximum load at failure
and the fracture toughness have been observed to decrease linearly as the time of moisture
exposure increases. A higher average moisture content over the life of the material will
result in a higher level of damage, and desorption appears to be more destructive than
absorption. Additionally, wet–dry cycling has been observed to decrease the ultimate
load of various epoxy-based composites. Typically, glass-fiber-reinforced composites suffer
much more than carbon-fiber-reinforced composites.

Epoxy matrices are the primary victims of moisture absorption. If unchecked, moisture
absorption by the resin will result in plasticization, swelling, hydrolysis, and fiber debond-
ing from the matrix [45]. By plasticizing the polymer and lowering the glass transition
temperature, moisture can soften a polymer and increase creep effects. This is typically
reversible with drying. The hydrolysis of the epoxy resin, however, is irreversible, and
can change both the stiffness and the strength of the polymer. Degradation is substantially
slowed if the resin is fully cured prior to exposure [7]. Additionally, water-resistant epoxies
have been shown to increase the reliability of glass-fiber-reinforced epoxy composites
by 200%–300%. Moisture absorption is known to encourage fibers to debond from the
surrounding matrix. Matrix cracking allows further paths for moisture penetration, thus
accelerating damage growth. Additionally, fluid ingress can result in swelling, which can
cause stresses between the fibers and the matrix and deteriorate the bond between them,
resulting in tiny debondings. Epoxy resin swelling and osmotic pressure due to moisture
uptake can cause debonding stresses between the fibers and resin.

5. Conclusions

This review discusses water uptake in epoxy thermosets and its effect on their physical
properties. The absorption of water strongly affects the exploitation characteristics of
epoxy coatings and their lifecycles. The models used for describing water absorption to a
polymer matrix involve many parameters that can adequately describe the process with
parameter tuning. However, when using multiple variable parameters, the physical essence
of absorption can be obscured. Hence, one of the promising directions in this field is the
development of new models with fixed physically transparent parameters, which will
adequately describe the water uptake process in epoxy resins.

Another challenge is the development of experimental techniques that would deter-
mine the water state in an epoxy matrix in a straightforward and unambiguous manner.
Conventional and amply used experimental methods (IR and NMR spectroscopies) do
not appear to address this issue directly because the interpretation of the data obtained is
based on spectra simulation. Hence, the models underlying the calculation predetermine
the results.

Therefore, new investigations are required to understand the mechanisms of water
uptake for advanced epoxy materials or any incidental effects related to it. Like all polymer
materials, epoxy resins are expected to become recyclable or reusable. As they are used
in sophisticated technological devices, self-healing and recyclable materials have to be
readily accessible. The controlled water uptake can be considered for this challenge.
Epoxy resins offer an excellent platform for materials and systems that integrate stimuli-
responsive motives to obtain life-like and intelligent materials with dynamically adaptive
and interactive functions.
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