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Abstract: In this study, we investigated the impact of K2ZrF6/Al2O3 composite additives on the
microstructure evolution and corrosion behavior of ceramic coatings formed through micro-arc
oxidation (MAO) treatment on hot-dip aluminum-coated 316L stainless steel surfaces. Our findings
revealed the successful preparation of micro-arc oxidation ceramic coatings, presenting a dual-layer
structure consisting of a porous micro-arc oxidation ceramic outer layer and a relatively dense/thick
hot-dip aluminum inner layer. The incorporation of K2ZrF6/Al2O3 composite additives induced
a self-sealing effect on the ceramic coating surface. Optimal coating performance was achieved
with a composite additive concentration of 7.5 g/L, resulting in remarkable improvements not
only in thickness, hardness, and surface smoothness but also in corrosion resistance. This research
introduces a pioneering investigation of K2ZrF6/Al2O3 composite additives in the context of micro-
arc oxidation technology, offering fresh perspectives and methodologies for the development of
highly corrosion-resistant materials.

Keywords: K2ZrF6/Al2O3 composite additives; micro-arc oxidation; corrosion resistance; microstructure
evolution; corrosion mechanisms

1. Introduction

Solar power generation technology, being a pivotal innovation in the field of new
energy generation, offers immense promise and research significance due to its attributes
of high stability, operational simplicity, safety, and reliability [1–5]. Operating within the
realm of solar radiation, a complex natural exposure environment, its effects extend beyond
mere temperature and climate to encompass alternating cycles of dryness and humidity, as
well as the pervasive presence of pollutants [6,7]. In the pursuit of a consistent electricity
supply for solar power generation systems, heat storage technology plays a critical role.
The choice of heat storage materials becomes not only a decision but also a determinant of
their compliance with heat storage technology standards. Among the commonly utilized
options are molten salts, metallic sodium, and high-temperature-resistant concrete. In
addition, aluminum-based alloys offer advantages including stability, substantial heat
storage capacity, and efficient thermal conductivity, making them particularly suitable for
use as heat storage materials. However, elevated temperatures lead to solid-to-liquid phase
transitions in these thermal storage aluminum alloys, necessitating the selection of contain-
ers characterized by commendable corrosion resistance [8,9]. Presently, container materials
primarily include weathering steel and stainless steel. Nevertheless, the prolonged interac-
tion of thermal storage aluminum alloys with containers continues to exhibit pronounced
corrosive effects, posing a significant risk of safety incidents and potential disruption of
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entire solar power generation systems if adequate measures are not taken [10–15]. Address-
ing this impending concern requires the prudent choice of superior container materials or
the modification of container interiors to meet the practical process requirements.

In practice, addressing the challenge of severe erosion on container surfaces involves
employing surface modification treatments. Among these methods, the application of
hot-dip aluminum coating emerges as a robust protective measure [16,17]. The combina-
tion of thicker aluminum coatings with micro-arc oxidation (MAO) technology leads to
the creation of ceramic coatings that serve as effective barriers against liquid aluminum
corrosion [18–20]. However, the scope of research and application in this field remains
limited, underscoring the urgent practical significance and engineering value of exploring
these less-explored areas.

In the realm of MAO investigations, researchers often enhance the fundamental
electrolyte by adding specific concentrations of additives to improve the characteristics of
ceramic coatings. This strategic inclusion of complex oxides contributes to the formation of
coatings with increased density, impressive resistance to wear and corrosion, and overall
improved performance [21–24]. Among them, ZrO2 functions as a high-temperature-
resistant oxide with a high melting point, high electrical resistivity, and low thermal
expansion coefficient. This makes it an ideal catalyst for enhancing high-temperature and
oxidation resistance in metal devices [25–29]. Notable examples include the findings of
Zhong et al. [30], which reveal the improved thermal shock resistance of MAO ceramic
coatings containing zirconium dioxide, in contrast to the silica coatings formed using the sol–
gel method. Similarly, Wang et al. [31] made significant advancements by developing MAO
coatings containing ZrTiO4 and m-ZrO2 on the Ti6Al4V alloy, resulting in significantly
enhanced oxidation resistance at elevated temperatures. The introduction of the K2ZrF6
compound into the basic electrolyte triggers a transformative chemical reaction within an
alkaline solution, leading to the in-situ generation of ZrO2 [32,33].

The efforts exemplified by Askarnia et al. [34] involve the application of composite
coatings comprising Al2O3 and ZrO2 particles onto the AZ31 magnesium alloy using MAO
technology. This intervention led to a substantial reduction in surface pores, an approxi-
mately eight-fold decrease in wear rate, and a noticeable increase in coating hardness. This
outcome can be attributed to the improved wettability of the coating, primarily due to
Al2O3. Similarly, Soliman et al. [35] conducted MAO experiments by introducing NaF and
Al2O3 nano-additives into silicate electrolytes, resulting in a compact coating character-
ized by minimized roughness, primarily composed of a robust MgO phase that enhances
corrosion resistance.

The above literature review suggests that introducing the K2ZrF6/Al2O3 composite ad-
ditives into the basic electrolyte contributes to the presence of ZrO2 and Al2O3 in the MAO
coatings, thus significantly enhancing their performance [34,36,37]. However, to the best of
the authors’ knowledge, the impact of different concentrations of K2ZrF6/Al2O3 composite
additives on ceramic coatings formed through MAO treatment of hot-dip aluminum-coated
316L stainless steel has not been investigated. Combining an outer high-performance MAO
layer with the thicker aluminum layer on the 316L stainless steel has the potential to greatly
improve the corrosion resistance of the developed coating system.

This innovative work was conducted using pre-prepared hot-dip aluminized stain-
less steel samples, optimized MAO process parameters, and a basic electrolyte. Different
concentrations of composite additives, characterized by a K2ZrF6/Al2O3 composition ra-
tio of 4/1 and designated as S0, S1, S2, S3, and S4 in ascending order, were introduced.
This exploration aims to uncover the effects of varying composite additive concentrations
on the characteristics of MAO ceramic coatings. The objective is to determine the opti-
mal concentration of the composite additives that result in the highest performance of
ceramic coatings.
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2. Materials and Methods
2.1. Material and Coating Preparation

The 316L stainless steel material employed in this work has a dimension of 40 mm ×
13 mm × 2 mm. This stainless steel material is produced by Shanxi Taigang Stainless Steel
Co., Ltd. (Taiyuan, China). Its chemical composition (obtained through smelting analysis)
is presented in Table 1.

Table 1. Main chemical composition of 316L stainless steel (in wt.%).

Element C Si Mn S P Cr Ni Mo N

Content 0.02 0.8 1.5 0.03 0.03 16.5 10.8 2.2 0.08

Pre-Treatment: The specimens were polished with sandpaper up to #1200 grit, fol-
lowed by immersion in a 10 g/L NaOH solution at 80 ◦C for a constant 10 min. Subse-
quently, the surfaces were rinsed with deionized water. The specimens were then placed
in a 15% HCl solution at room temperature for 5 min, followed by rinsing off the residual
solution with deionized water. Next, the specimens were immersed in assist-plating agent,
5 wt.% K2ZrF6, at 90 ◦C for 15 min.

Hot-Dip Aluminum Plating: Prior to commencing the hot-dip aluminum plating exper-
iment, standard GB 9970 aluminum granules were placed in a graphite crucible and heated in
a metal melting furnace up to 1000 ◦C. After complete melting of the aluminum granules, the
furnace temperature was lowered to 730 ◦C for the hot-dip aluminum plating experiment,
with NaCl particles used as a covering agent. The 316L stainless steel samples were immersed
in the aforementioned molten aluminum for 5 min to prepare the hot-dip aluminum layer.
Subsequently, the samples were air-cooled at room temperature. The specimens were then
subjected to ultrasonic cleaning for 5 min using a 5% HNO3 + 1% HF solution, followed by
ultrasonic cleaning with anhydrous ethanol for 5 min. After air-drying with cold air, the
samples were stored in a drying chamber for micro-arc oxidation experiments.

Micro-Arc Oxidation Treatment: The aforementioned hot-dip plated samples under-
went micro-arc oxidation treatment subsequently. A combination of silicate and phosphate
electrolyte was introduced with K2ZrF6/Al2O3 composite additives at concentrations of
0 g/L (S0; 0.0 g/L K2ZrF6 + 0.0 g/L Al2O3), 2.5 g/L (S1; 2.0 g/L K2ZrF6 + 0.5 g/L Al2O3),
5.0 g/L (S2; 4.0 g/L K2ZrF6 + 1.0 g/L Al2O3), 7.5 g/L (S3; 6.0 g/L K2ZrF6 + 1.5 g/L Al2O3),
and 10.0 g/L (S4; 8.0 g/L K2ZrF6 + 2.0 g/L Al2O3), which can be seen in Table 2. The
micro-arc oxidation was performed at a frequency of 200 Hz, an oxidation time of 30 min,
positive-to-negative duty ratios of 15% to 5%, and a current density of 10 A/dm2.

Table 2. The concentration of K2ZrF6/Al2O3 composite additives utilized in this work.

Condition Total Concentration (g/L) K2ZrF6 (g/L) Al2O3 (g/L)

S0 0.0 0.0 0.0
S1 2.5 2.0 0.5
S2 5.0 4.0 1.0
S3 7.5 6.0 1.5
S4 10.0 8.0 2.0

2.2. Characterization Methods

The micro-arc oxidation ceramic layer’s surface and cross-sectional morphology were
observed using a scanning electron microscope (SEM, ZEISS EVO MA15, Carl Zeiss Mi-
croscopy GmbH, Jena, Germany). Energy-dispersive X-ray spectroscopy (EDS, OXFORD 20,
Carl Zeiss Microscopy GmbH, Jena, Germany) was employed to characterize the element
distribution and content of the micro-arc oxidation ceramic layer on both the surface and
cross-sectional surface. X-ray diffraction (XRD) analysis was carried out on a DX-2700B
diffractometer (Dandong Haoyuan Instrument Co., Ltd., Dandong, China) for phase com-
position analysis of the micro-arc oxidation ceramic layer. Specific parameters were as



Coatings 2023, 13, 1543 4 of 16

follows: Cu target, Kα radiation source, acceleration voltage and current set at 40 kV and
40 mA, respectively, step size of 0.0167◦, dwell time of 12 s, approximately 0.1◦/min.

The thickness of the aluminum coating under different plating temperatures and times,
as well as the thickness of the micro-arc oxidation ceramic layer with varying concentrations
of composite additives, was measured using the TT-230 eddy current thickness gauge, with
an accuracy of 1 µm. For each test, five random positions on the aluminum-coated surface
were selected, and the average of the measurements was taken as the final thickness
value. The surface hardness of the micro-arc oxidation ceramic layer doped with different
concentrations of composite additives was measured using a digital micro-hardness tester
(HXD-1000TMB, Shanghai Taiming Optical Instrument Co., Ltd., Shanghai, China), with
a loading force of 100 gf, a holding time of 15 s, and a diamond indenter. Similarly, five
random positions on the ceramic layer surface were chosen for each test, and the average
of the measurements represented the final hardness value.

The corrosion resistance of the micro-arc oxidation ceramic layer was analyzed using
an electrochemical workstation (Reference 3000, Gamry, Philadelphia, PA, USA). Employing
the classical three-electrode system, the specimen served as the working electrode, a
platinum electrode as the auxiliary electrode, and a saturated calomel electrode as the
reference electrode. For electrochemical impedance spectroscopy, the specific technical
parameters were as follows: test area of 1 cm2, frequency range from 100 kHz to 0.01 Hz,
and amplitude set at ±10 mV. All electrochemical tests were conducted in a 5% NaCl
solution at room temperature of 25 ◦C.

3. Results and Discussion
3.1. Analysis of Oxidation Voltage in Micro-Arc Oxidation Process

Figure 1 demonstrates that the relationship between oxidation voltage and time during
the micro-arc oxidation (MAO) experiment exhibits a consistent pattern across various
additive concentrations. In the early stage of the MAO process (i.e., 0–3 min), the oxidation
voltage rises linearly and rapidly with time, with nearly identical growth rates among
different composite additive concentrations. At this phase, the oxidation voltage has not yet
reached the critical breakdown voltage, as shown in the image. It is found that gas bubbles
begin to emerge around the anode sample, and the temperature gradually ascends. As time
elapses (i.e., 3–5 min), the growth rate of the oxidation voltage decelerates. Concurrently,
a handful of sparks appear on the sample’s surface, accompanied by an escalation in
temperature. Subsequently (i.e., 5–20 min), the oxidation voltage stabilizes at a specific
value. This signifies the appearance of numerous volcano-like micropores on the sample’s
surface, penetrated by the oxidation voltage, leading to an intensification and brightening
of the sparks [38,39].

Moreover, during the MAO process, as the concentration of composite additives
increases, the oxidation voltage follows a pattern of initial increase and subsequent decrease.
Remarkably, at a concentration of 7.5 g/L, the oxidation voltage reaches its peak at 530 V.
This behavior is primarily due to lower additive concentrations at which K2ZrF6 and Al2O3
disperse in the electrolyte. Hydrolysis could lead to the formation of Al(OH)3 and Zr(OH)4
precipitates, which further hinder the movement of charged particles in the electrolyte. This
elevation in electrolyte resistance necessitates a higher oxidation voltage to induce surface
breakdown [40]. Consequently, within the additive concentration range of 0–7.5 g/L, the
oxidation voltage increases proportionally with concentration. However, with a further
increase in additive concentration, agglomeration occurs during the formation of the
ceramic layer. This obstructs the progression of the MAO process, leading to a slowdown
in coating deposition rates and, consequently, a reduction in surface resistance. As a
result, when the additive concentration reaches 10 g/L, the oxidation voltage displays a
declining trend.
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Figure 1. U-T (oxidation voltage–time) variation curve of hot-dip aluminum plated samples with
composite additives at different concentrations during the micro-arc oxidation treatment.

3.2. Microstructure and Elemental Analysis of Micro-Arc Oxidation Ceramic Coatings

Figure 2 presents the surface morphology and elemental distribution of ceramic
coatings formed through micro-arc oxidation treatment on hot-dip aluminum-coated 316L
stainless steel surfaces, with varying concentrations of K2ZrF6/Al2O3 composite additives
introduced into an optimized silicate-phosphate-based electrolyte. As seen in the figures, a
layer of micro-arc oxidation ceramic coating was successfully prepared on the surface of the
316L hot-dip aluminum-coated samples, characterized by numerous discharge micropores
and a typical volcanic morphology. EDS mapping reveals a relatively uniform distribution
of O, Al, and Zr elements in the ceramic coatings, indicating the successful involvement
of Zr elements in the formation of the micro-arc oxidation coating. During the micro-
arc oxidation process, Zr mainly exists in the form of ZrO2, which has been reported to
significantly enhance heat shock resistance and oxidation resistance of micro-arc oxidation
coatings [41]. In this work, the addition of K2ZrF6 may induce the generation of ZrO2,
possibly following the following mechanism [41]:

K2ZrF6 → 2K+ + ZrF6
2− (1)

ZrF6
2− + 4OH− → Zr(OH)4 + 6F− (2)

Zr(OH)4 → ZrO2 + 2H2O (3)

ZrF6
2− + 4OH− → ZrO2 + 6F− + 2H2O (4)

From Figure 2a, it is evident that at a composite additive concentration of 2.5 g/L,
there are larger and numerous discharge micropores on the ceramic coating surface. This is
primarily due to the fusion of adjacent micropores during the micro-arc oxidation process,
resulting from the abundance of micropores. As the composite additive concentration
increases to 5 g/L (Figure 2b), the Al2O3 and K2ZrF6 powders partially fill the micropores,
reducing their quantity. This enhances the coating’s surface density and smoothness
while generating a small amount of white fusion material. Based on EDS mapping results
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and previous studies, this white fusion material is mostly composed of silicon–oxygen
compounds. Excessive silicon–oxygen compounds can affect the smoothness of the ceramic
coating surface. At a composite additive concentration of 7.5 g/L (Figure 2c), the ceramic
coating surface becomes smoother, with fewer white fusion materials, and many micropores
are covered by fine particles. However, when the composite additive concentration reaches
10 g/L (Figure 2d), more white fusion materials are generated on the ceramic coating
surface, and there are more micro-convex regions. This suggests that an excessively high
composite additive concentration can reduce the surface smoothness of the ceramic coating
and affect the coating’s performance.

Figure 2. Surface micromorphology and element distribution of ceramic coating on hot-dip alu-
minized samples after micro-arc oxidation treatment under different composite additive concen-
trations: (a1) 2.5 g/L; (b1) 5.0 g/L; (c1) 7.5 g/L; (d1) 10 g/L; (a2–d2) is the enlarged image of the
corresponding area).
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According to Table 3, the ceramic coating contains a series of elements including O,
Al, P, Zr, and Si. With the increase in composite additive concentration, the Zr content
also increases, indicating the increasing involvement of Zr elements in the film-forming
process. This confirms the presence of ZrO2 on the coating surface. Additionally, the Si
content exhibits a trend of initially decreasing and then increasing. When the composite
additive concentration is 7.5 g/L, the Si content is the lowest, at only 0.8 wt.%, consistent
with the SEM results mentioned above. This indicates that at this concentration, there are
fewer white fusion materials, and the ceramic coating’s surface smoothness and density
are optimal.

Table 3. EDS element content on the surface of hot-dip aluminized samples after micro-arc oxidation
treatment under different composite additive concentrations.

Composite Additive Concentration (g/L) O (wt.%) Al (wt.%) P (wt.%) Si (wt.%) Zr (wt.%)

2.5 35.165 61.538 0.200 1.399 1.698
5.0 31.900 64.900 0.300 1.100 1.800
7.5 30.400 66.300 0.300 0.800 2.200
10.0 30.800 65.500 0.300 1.100 2.300

Figure 3 illustrates the cross-sectional morphology and elemental linear distribution
of hot-dip aluminum-coated samples after micro-arc oxidation treatment at different com-
posite additive concentrations. As shown, the coating structure is dense, without distinct
porous layers. According to the linear element scanning results, in the vicinity of the outer
surface (0–10 µm), the content of Al, Zr, and O is higher. However, beyond this depth,
the Al content is high, while the Zr and O contents are lower. This indicates a layered
structure of the coating, with the outer layer being rich in Al, Zr, and O, mainly constituting
an Al2O3-ZrO2 micro-arc oxidation layer. The inner layer is rich in Al, mainly derived
from the hot-dip plating process. Furthermore, Si elements tend to randomly aggregate
throughout the entire coating thickness.

Figure 3. Cross-sectional morphology and element distribution of hot-dip aluminized samples
after micro-arc oxidation treatment under different composite additive concentrations: (a) 2.5 g/L;
(b) 5.0 g/L; (c) 7.5 g/L; (d) 10 g/L.
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3.3. Phase Analysis of Micro-Arc Oxidation Ceramic Coatings

Figure 4 shows the XRD spectra of samples after micro-arc oxidation treatment of
hot-dip aluminum-coated 316L stainless steel surfaces with varying concentrations of
composite additives. From the graph, it can be observed that the diffraction peaks are
mainly attributed to Al and Al2O3 phases. The presence of characteristic peaks of Al
indicates that the micro-arc oxidation ceramic coating is relatively thin, allowing X-rays to
easily penetrate the ceramic coating during testing and detect the aluminum plating layer
on the stainless steel substrate. Additionally, the intensity of the Al characteristic peak is
highest in sample S1, indicating a thinner micro-arc oxidation coating and easier detection
of the aluminum plating layer by X-rays. As the composite additive concentration increases,
the intensity of the Al characteristic peak decreases, suggesting that higher concentrations
of composite additives can effectively increase the thickness of the ceramic coating. The
Al2O3 phase in the XRD spectra exhibits a single characteristic peak, and the intensity of this
peak remains relatively consistent across different additive concentrations. This indicates
that its origin is primarily the oxidation of aluminum atoms in the aluminum plating layer
during the micro-arc oxidation process, although Al2O3 powder in the additives could also
contribute to its presence. Furthermore, no ZrO2 was detected, suggesting that the content
of ZrO2 is relatively low and exists only near the surface of the coating, as confirmed by
SEM and EDS results. It should be noted that the diffraction peak of Al deviates from the
standard position of the Al peak and shifts slightly to the right [37,42,43]. The occurrence
of this peak shift phenomenon indicates a distortion in the lattice constant of the Al crystal
during the processes of hot-dip coating and micro-arc oxidation [44–46]. This phenomenon
may be related to the presence of residual stresses, or compounds such as Al2O3, ZrO2, or
SiO2. However, the specific reasons for this need further in-depth research.

Figure 4. XRD patterns of hot-dip aluminized samples after micro-arc oxidation treatment under
different composite additive concentrations.

3.4. Analysis of Thickness and Hardness of Micro-Arc Oxidation Ceramic Coatings

In general, there are two main factors influencing the corrosion resistance of ceramic
coatings during the micro-arc oxidation process. Firstly, the microstructure of the ceramic
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coating’s surface plays a significant role. Variations in the number and non-uniformity of
unique volcano-like micropores on the surface of micro-arc oxidation ceramic coatings lead
to different probabilities of corrosion ions diffusing through these micropores and reaching
the interface of the intermediate layer or substrate. A higher number and larger size of
micropores facilitate the diffusion of corrosive ions to the substrate interface, resulting in
poorer corrosion resistance [47–53]. Secondly, the thickness and hardness of the ceramic
coating are also important factors affecting the corrosion resistance of composite coatings.
Thicker ceramic coatings provide a greater barrier against corrosive ions for the intermedi-
ate layer or substrate interface [54]. The hardness of micro-arc oxidation coatings directly
impacts their corrosion resistance [55]. A higher coating hardness usually indicates better
resistance against scratching, wear, and deformation, thereby reducing the susceptibility of
the coating to external erosive forces.

According to Figure 5a, it can be observed that with an increase in the concentra-
tion of composite additives, the thickness of the ceramic coating initially increases and
then decreases, reaching its maximum value at 7.5 g/L. This indicates that incorporating
K2ZrF6/Al2O3 composite additives into the base electrolyte within the range of 0 to 7.5 g/L
promotes an increase in the thickness of the ceramic coating. The primary reason for this
is that the addition of K2ZrF6/Al2O3 composite additives alters the oxidation voltage
during the micro-arc oxidation process, which is directly related to the deposition rate of
the coating. Higher oxidation voltage leads to a faster deposition rate and, consequently, a
thicker coating, aligning with the conclusions drawn from Figure 1. However, when the
concentration of composite additives reaches 10 g/L, the reduction in the thickness of the
ceramic coating can be attributed to the uneven diffusion of excessive additives within
the electrolyte. This can lead to aggregation and adhesion on the surface of the hot-dip
aluminum-coated samples, making it more difficult to breach the aluminum plating layer
and impeding the arc discharge during the micro-arc oxidation process, thereby affecting
the coating’s deposition rate.

Figure 5. Thickness value (a) and hardness value (b) of ceramic coating on hot-dip aluminum-coated
samples after micro-arc oxidation treatment under different composite additive concentrations.

From Figure 5b, it can be seen that the trend in hardness variation of the ceramic
coating corresponds closely with the thickness variation trend. This implies that the micro-
arc oxidation ceramic layer significantly contributes to the hardness value. When 7.5 g/L of
K2ZrF6/Al2O3 composite additives are added, the hardness value of the sample increases
from 406HV to 482HV compared to the sample without K2ZrF6/Al2O3 additives. The
increase in coating hardness can be attributed to the addition of 7.5 g/L K2ZrF6/Al2O3,
which significantly enhances the oxidation voltage during the micro-arc oxidation process
as evidenced by Figure 1. This, in turn, provides more oxidation energy, leading to the
formation of more hard phases such as Al2O3 and ZrO2. The presence of these hard phases
contributes to the improved surface hardness of the coating.
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3.5. Electrochemical Response and Corrosion Mechanism Analysis

Electrochemical methods play a crucial role in evaluating the corrosion performance
of micro-arc oxidation coatings. These methods simulate the electrochemical processes
in real corrosion environments, providing comprehensive and quantitative information
about coating corrosion performance [45,52,56,57]. Among these methods, electrochemical
impedance spectroscopy (EIS) plays a pivotal role in analyzing the corrosion performance
of micro-arc oxidation coatings. EIS data present the electrochemical impedance spectrum
of the coating, encompassing various aspects such as charge transfer processes, interfacial
reactions, and the formation of corrosion products. These data not only aid in a deeper
understanding of corrosion types and degrees but also predict the durability and lifespan
of coatings in practical use.

As shown in Figure 6a, Nyquist plots and low-frequency area magnifications of micro-
arc oxidized coatings on hot-dip aluminum-coated samples under different composite
additive concentrations exhibit similar electrochemical behavior. Generally, the relationship
between resistance and capacitance in charge transfer processes can be reflected by the
impedance arc in Nyquist plots. The size of the impedance arc’s radius is directly propor-
tional to the corrosion resistance of the sample; a larger radius indicates better corrosion
resistance [45,57–59]. From the magnified low-frequency area, it can be observed that the
impedance arc radius of ceramic coatings on hot-dip aluminum-coated samples increases
initially and then decreases with the rise in composite additive concentration. The S3
sample has the largest impedance arc radius, indicating the best corrosion resistance. The
corrosion resistance order can be listed as follows: S3 > S4 > S2 > S1 > S0. The poorest
corrosion resistance is observed in S0 samples, confirming that the K2ZrF6/Al2O3 compos-
ite additives used in this study effectively enhance the corrosion resistance of micro-arc
oxidation ceramic coatings.

Figure 6b presents Bode plots of micro-arc oxidized coatings on hot-dip aluminum-
coated samples after treatment under different composite additive concentrations. The
corrosion resistance of samples can also be evaluated by the magnitude of |Z| at low
frequency; larger |Z| values indicate better corrosion resistance. It can be confirmed that
the S3 sample exhibits the best corrosion resistance. Additionally, the phase angle and
impedance values of all samples change in a similar trend as frequency varies, suggesting
that K2ZrF6/Al2O3 composite additives only influence the corrosion resistance of the micro-
arc oxidation ceramic coating and do not alter the structural characteristics of the ceramic
layer itself [60]. Furthermore, the Bode plots reveal at least two time constant features,
corresponding to the ceramic outer layer of the coating and the hot-dip aluminum inner
layer, aligning with the cross-sectional analysis results.

Figure 7 illustrates the equivalent circuit diagram of EIS for micro-arc oxidized coatings
on hot-dip aluminum-coated samples after treatment under different composite additive
concentrations. In the diagram, Rs represents the electrolyte resistance, RP1 and CP1
represent the equivalent resistance and capacitance of the outer layer of the coating, while
RP2 and CP2 represent the equivalent resistance and capacitance of the inner layer of the
coating. The ZSimpWin impedance spectroscopy fitting software was employed to fit
EIS data, and the fitted parameters are presented in Table 4. It can be observed that the
fitted resistance RP2 > RP1. This is due to the thicker hot-dip aluminum inner layer, which
better resists the corrosion of external corrosive ions, resulting in higher impedance values.
Conversely, the micro-arc oxidation outer layer of the coating is thinner and contains
certain voids, facilitating the passage of corrosive ions and thus leading to relatively lower
impedance values. Nevertheless, research indicates that porous ceramic coatings can exhibit
a self-sealing effect during the corrosion process, effectively preventing further corrosion.
The self-sealing effect of micro-arc oxidation coatings refers to the ability of small pores on
the coating surface to close, enhancing the coating’s sealability and corrosion resistance.
Methods for achieving self-sealing pores in micro-arc oxidation coatings generally involve
optimizing process parameters, increasing oxide film thickness, implementing secondary
treatments, adding pore-sealing agents, utilizing surface treatments, etc. These methods aim
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to reduce pore formation and promote the self-filling and sealing of internal coating pores,
thereby enhancing the sealability and corrosion resistance of the coating. Additionally, the
appearance of an additional time constant in the high-frequency position of the Bode plots
might be attributed to further self-sealing effects of the coating. Similar reports are found
in the literature [61].

Figure 6. EIS spectra of micro-arc oxidation coatings on hot-dip aluminum-coated samples treated
under different composite additive concentrations: (a) Nyquist plot; (b) Bode plot.
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Figure 7. Equivalent circuit diagrams of EIS for micro-arc oxidation coatings on hot-dip aluminum-
coated samples treated under varying composite additive concentrations.

Table 4. Fitting results of EIS for micro-arc oxidation coatings on hot-dip aluminum-coated samples
treated under different composite additive concentrations.

Sample Rs (Ω·cm2) Cp1 (F·cm−2) Rp1 (Ω·cm2) Cp2 (F·cm−2) Rp2 (Ω·cm2)

S0 20.37 9.707 × 10−5 545.3 3.856 × 10−3 1134
S1 14.56 1.746 × 10−4 580.0 2.871 × 10−3 1353
S2 52.13 2.242 × 10−5 1473.0 1.430 × 10−3 2779
S3 52.70 1.263 × 10−5 3240.0 6.439 × 10−4 7488
S4 18.26 7.745 × 10−7 2571.0 3.112 × 10−5 3207

With an increase in the concentration of K2ZrF6/Al2O3 composite additives, both RP1
and RP2 show an initial increase followed by a subsequent decrease. The combined value
of RP1 and RP2 determines the level of the coating’s resistance to external corrosion. Con-
sequently, the corrosion resistance of the film layer demonstrates an initial improvement,
followed by a reduction. The S3 sample exhibits the highest R values, reaching 3240 Ω·cm2

and 7488 Ω·cm2 respectively, indicating the best corrosion resistance among the samples.
This suggests that an appropriate amount of K2ZrF6/Al2O3 powder adequately fills the
volcano-like micropores on the micro-arc oxidation ceramic coating, reducing the number
and size of these pores [56,61,62]. Moreover, the formed phases such as Al2O3 and ZrO2
can obstruct the erosion of corrosive ions, enhancing the corrosion resistance of the ceramic
coating [63,64].

In summary, K2ZrF6/Al2O3 composite additives were introduced into the micro-arc
oxidation technology field in this investigation, revealing their impact on ceramic coating
performance and corrosion resistance. This research not only advances the forefront of
micro-arc oxidation technology but also provides new perspectives and methodologies for
exploring the realm of material corrosion and protection.

4. Conclusions

This study investigated the influence of introducing different concentrations of
K2ZrF6/Al2O3 composite additives into an optimized silicate–phosphate-based electrolyte
on the microstructure evolution and corrosion mechanism of ceramic coatings formed
on the surface of 316L stainless steel through hot-dip aluminum coating and subsequent
micro-arc oxidation (MAO) treatment. The specific conclusions are as follows:

(1) The analysis of oxidation voltage in the micro-arc oxidation process revealed
consistent patterns across various additive concentrations of K2ZrF6/Al2O3. However,
increasing additive concentrations led to an initial rise and subsequent decline in the
stabilized oxidation voltage, with the maximum value found at a concentration of 7.5 g/L.

(2) Micro-arc oxidation ceramic coatings were successfully prepared on the surface
of 316L stainless steel hot-dip aluminum-coated samples, forming a dual-layer structure
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of hot-dip aluminum/micro-arc oxidation ceramic coating. The micro-arc oxidation ce-
ramic coating primarily consisted of Al2O3/ZrO2 and displayed numerous micropores.
The addition of K2ZrF6/Al2O3 composite additives resulted in a self-sealing effect on
the ceramic coating surface, simultaneously impacting the coating properties. With an
increase in composite additive concentration, the thickness and hardness of the ceramic
coating showed an initial increase followed by a decrease trend. When the composite
additive concentration reached 7.5 g/L, both the thickness and hardness of the ceramic
coating reached their maximum values. Additionally, the coating surface became smooth
and compact, effectively retarding the penetration of corrosive media and significantly
enhancing corrosion resistance.

(3) Electrochemical results supported that the coating on the sample surface exhibited a
dual-layer structure, mainly composed of a porous micro-arc oxidation ceramic outer layer
and a relatively thick hot-dip aluminum inner layer. When the K2ZrF6/Al2O3 composite
additive concentration was 7.5 g/L, the resistance values of both the inner and outer
layers reached their maximum values, indicating that the hot-dip aluminum/MAO ceramic
coating possessed the best corrosion resistance.
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