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Abstract: Secondary aluminum ash (SAA) is a common waste that, without reasonable treatment,
results in pollution to the environment. A large amount of CO2 is emitted by human activities every
day. If the CO2 cannot be treated in a timely manner, it will accelerate the greenhouse effect and
pollute the environment. The CO2 curing on the surface of SAA can reduce excess CO2 emissions
while improving the performance of the SAA. The application of CO2-cured SAA can simultaneously
consume the emitted CO2 and solidify the SAA. In this article, the effect of CO2-cured secondary
aluminum ash on the rheological properties, the initial setting time, the flexural strength (ft), the
compressive strength (fcu) of reactive powder concrete (RPC), and the corresponding dry shrinkage
rate (DSR) are investigated. Meanwhile, the capillary water absorption, the chloride ion migration
coefficient (CMC), and the carbonization depth of RPC are determined. Scanning electron microscope
(SEM) and the X-ray diffraction spectrum curves are selected to reveal the mechanism of the macro
performance. Results indicate that CO2-cured secondary aluminum ash can increase the fluidity and
decrease the plastic viscosity of fresh RPC. The initial setting time is increased by the CO2 curing.
CO2-cured secondary aluminum ash can increase the ft and fcu by (0%~26.3% and 0% to 68.7%),
respectively. The DSR is increased by adding secondary aluminum ash with an increasing rate of 0%
to 91.3%. The capillary water absorption of RPC increases in the form of a linear function. The CMC
and the carbonization depth of RPC are decreased by adding the CO2-cured secondary aluminum
ash with decreasing rates of 0%~46.7% and 0%~45.7%. The CO2-cured secondary aluminum ash can
make the hydration more compact and increased increase the hydration products (Ca(OH)2).

Keywords: CO2 curing; surface; secondary aluminum ash; rheological properties; dry shrinkage rate;
initial setting time; X-ray diffraction spectrum

1. Introduction

As a kind of solid waste, secondary aluminum ash (SAA) can pollute the environment
if reasonable treatment is not carried out [1–3]. The magnetic separation method, plasma
technology, the acid leaching method, and fused salt electrolysis are the main processing
methods for the treatment of secondary aluminum ash [4,5]. However, these processing
methods are not only inefficient but also cost-ineffective. Therefore, some simple, low-cost,
and efficient methods should be adopted to handle this solid waste. The resource utilization
of solid waste is a relatively ideal treatment method.

The application of SAA in cement materials is a relatively recognized method. SAA
possesses some reactive oxygen species, which can accelerate the hydration process of
cement, thus increasing the corresponding mechanical strengths and durability. SAA can be
used as an active admixture, which can enhance the cementitious activity, further achieving
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the enhancement of the corresponding mechanical strength and durability. The flexural
strength (ft) and the compressive strength (fcu) are increased by rates of 23.1% and 33.4%
by adding SAA. Hence, the addition of SAA is advantageous to the performance of the
cement matrix [6–8].

RPC is short for reactive powder concrete, which is a kind of high-performance
concrete. This cement concrete is composed of cement, mineral admixtures, quartz sand,
and some reinforced fibers. The influence of waste fly ash, fly ash, and rice husk ash is able
to improve the mechanical strengths and the resistance to chloride erosion. Moreover, the
corrosion resistance of reinforced RPC can be improved by adding these solid wastes when
NaCl erosion is exerted on the specimens [9–15].

CO2 curing on raw materials has been proven to make the raw materials more com-
pact and further increase the mechanical strengths of the cement matrix. Witoon et al.
have reported that CO2 curing on the waste fly ash, sludge, and fly ash can improve the
corresponding mechanical strengths with these cementitious materials. The ft and fcu of
RPC can be increased by 14.6% and 16.3% with CO2-cured waste fly ash. On the other hand,
CO2 curing on solid waste can solidify the inner toxic elements and reduce their external
emissions [16–22]. Xu et al. [23] found that CO2 curing on waste fly ash can decrease the
release of heavy metals by dozens of times. Moreover, some researchers have pointed out
that CO2-cured steel slag, yellow phosphorus slag, and furnace slag can effectively improve
the mechanical strengths of the cement matrix. The flexural strength of cement mortar with
CO2-cured steel slag, yellow phosphorus slag, and furnace slag is 23.6%, 13.8%, and 24.5%
higher than that of cement mortar with raw solid waste. Moreover, the corresponding
compressive strengths are 21.4%, 14.6%, and 26.7% higher [24–26].

However, the compactness of ordinary cement-based materials is not high, and their
inner harmful substances easily seep out. RPC with high compactness can prevent the
heavy metals in SAA from leaching. CO2 curing on SAA can solidify toxic substances in
SAA while increasing the mechanical strengths of RPC. However, this method of handling
SAA has not been mentioned.

The effect of CO2-cured SAA on the rheological properties of fresh RPC is measured in
this article. The initial setting time, the ft, and the fcu of RPC are determined. The capillary
water absorption of RPC is obtained. The corresponding dry shrinkage rate is measured.
The chloride ion migration coefficient (CMC) and carbonization depth are found. The
scanning electron microscope (SEM) photos and the X-ray diffraction spectrum curves are
obtained to analyze the mechanism of the macro performance. This research can offer an
excellent method for better resource utilization of SAA, manufacturing RPC, and dealing
with excessive CO2 emissions. The mechanical strengths and durability of SAA–RPC under
various erosive environments are very novel and meaningful, and will be systematically
studied in the future.

2. Experimental Section
2.1. Raw Materials

In this study, the initial and final setting times of ordinary Portland cement (OPC)
are 98.7 min and 318.1 min, respectively, provided by Zhengzhou Shunbao Cement Co.,
Ltd., Zhengzhou, China. Fly ash (FA) with a specific surface area of 14–25 m2/g is selected
as a mineral admixture, with a bulk density of 196 kg/m3 and an average particle size of
0.11–0.17 µm. FA was purchased from Shandong Shunke Building Materials Technology
Co., Ltd., Longkou, China. The aluminum ash purchased from Anyang Jiacheng Yenai
Co., Ltd., Anyang, China, contains 22% to 50% Al2O3 and less than 10% SiO2. Level
S95 blast furnace slag powder (BFS) with a density of 2.88 g/cm3, activity index above
95%, a specific surface area of 437.1 m2/g, and a loss on ignition of 2.21% manufactured
by Hebei Chuangtian Engineering Materials Co., Ltd., Shijiazhuang, China, is used as
another mineral admixture. The quartz sand produced by Xinghongye Calcium Industry
Co., Ltd., Changxing, China, has a SiO2 content of over 99.5% and an apparent density of
2.66 g/cm3. The aggregates used in this study are three different particle sizes of quartz
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sand, with particle sizes ranging from 3.28 to 1.59 mm, 0.82 to 0.31 mm, and 0.31 to 0.19 mm,
respectively. The dosage ratio of the three particle sizes is 1:1.5:1. The particle size and
compositions of the cementitious materials are shown in Tables 1 and 2. The flowability
of fresh RPC is adjusted by polycarboxylate superplasticizer, whose water-reducing rate
is 37.8%.

Table 1. The accumulated pass rate of the powder materials (%).

Types
Particle Size/µm

0.3 0.6 1 4 8 64 360

OPC 0.12 0.31 2.5 15.6 28.2 93.3 100
BFS 0.045 0.14 3.27 19.36 35.15 98.12 100
FA 31.26 58.47 82.35 100 100 100 100

Quartz sand 0 0 0 0 0.039 23 100
SAA 0.06 0.23 0.62 1.15 3.96 25.7 87.47

Table 2. Chemical composition of the powder materials (%).

Types SiO2 Al2O3 FexOy MgO CaO SO3 K2O Na2O Ti2O Loss on
Ignition

OPC 20.9 5.5 3.9 1.7 62.2 2.7 - - - 3.1
BFS 33.9 15.0 0.48 9.82 36.7 0.4 3.7 - - -
SF 90.7 0.22 0.61 0.24 0.45 0.1 7.6 - - -

Quartz sand 99.4 - 0.6 - - - - - - -
SAA 4.6 79.3 3.9 5.7 1.5 - - 0.9 - -

2.2. The Manufacturing Process of Specimens

NJ-160A mixer is used for mixing SAA–RPC with a water–binder ratio of 0.2. The
dried material is placed in a mixer and mixed at a rotational speed of 60 ± 2 r/min for
2 min. After mixing the material, the solution of water and water reducer is poured into
the mixer, and the rotational speed is then increased to 80 ± 2 r/min for 6 min. The
freshly mixed slurry is injected with a size of 40 × 40 × 160 mm3 and 50 × 50 × 50 mm3

molds. After demolding, the specimens are cured in the standard curing environment
((20 ± 2) ◦C and relative humidity of 96.2%). The concrete carbonization test box provided
by Xianxian Jiantong Test Instrument Sales Department, Cangzhou, China, is used to offer
the carbonization environment. The concentration of CO2 in the concrete carbonization
test box is 20%, and the concrete carbonization test box shows a gas pressure of 0.5 MPa.
Figure 1 shows the manufacturing process of the RPC samples. The mixing proportions are
shown in Table 3.
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Table 3. The mixing proportions of RPC with SAA (kg/m3).

Water OPC SAA FA BFS Quartz
Sand

Water-
Reducer

243.42 737.74 0 368.82 110.66 973.99 16.23
243.42 737.74 92.23 276.59 110.66 973.99 16.23
243.42 737.74 184.46 184.46 110.66 973.99 16.23
243.42 737.74 276.59 92.23 110.66 973.99 16.23
243.42 737.74 368.82 0 110.66 973.99 16.23

2.3. Measurement of Rheological Properties and Setting Time

An NLD-3CSA mortar dry material fluidity tester is used for the measurement of
slump flow of fresh RPC. The yield shear stress of freshly mixed RPC is tested in the
experiment; the Huck rotary rheometer used for testing is provided by Shanghai Diguan
Industrial Co., Ltd. (Shanghai, China), with a testing speed range of 0 r/min to 30 r/min.
The measuring details are described in Sun’s research [27]. The measuring process of yield
shear stress can be observed in Wang’s research [28]. The initial setting time of RPC is
measured using a ZKS-100A mortar setting time tester offered by Shanghai Leiyun Testing
Instrument Manufacturing Co., Ltd. in Shanghai, China. The measuring process can be
found in Chinese standard JGJ70-90 [29]. Figures 2 and 3 show the measuring equipment
of rheological properties and setting time.
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2.4. The Determination of Mechanical Strengths

The mechanical strength measurement process mainly refers to the Chinese standard
GB/T17671-1999 [30] and Zhu’s research [31]. In the experiment, the flexural and compres-
sive strength of the samples are mainly collected, and a YAW-300C fully automatic bending
and compression testing machine is used to measure these two strengths. Specimens with
size of 40 × 40 × 160 mm3 are used for the determination of flexural and compressive



Coatings 2023, 13, 1377 5 of 14

strengths. The testing speeds for bending strength and compressive strength are 2.4 kN/s
and 0.1 kN/s, respectively. The testing process of mechanical strength is shown in Figure 4.
Three specimens are used for the measurement of flexural strength. After the specimens are
folded into two sections, the six broken samples are moved to the compression clamp to test
their compressive strength. After the flexural and compressive experiments, the average
values and the error bars’ values are obtained to characterize the experiments’ accuracy.
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2.5. The Determination of Drying Shrinkage Rate

A micrometer provided by Shenzhen Lide Xinmao Technology Co., Ltd., Shenzhen,
China, is used for drying shrinkage rate (DSR) testing. DSR testing requires the following
steps: first, install the sample on the bracket of the multimeter, and then use a micrometer
to test the shrinkage value. DSR can be obtained by Equation (1).

DSR =
L1 − Lt

L1
(1)

In Equation (1), L0 represents the initial length of the specimen, and L means the
length of specimen at different curing ages. By this method, the DSR is obtained. The
measurement of DSR is shown in Figure 5.
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2.6. Capillary Water Absorption

The capillary water absorption (CA) is measured with the specimens of size Φ100 mm
× 100 mm. The vacuum oven is used to dry the specimens. The around sides of the
specimens are coated with epoxy resin. After the epoxy resin is hardened, the specimens
are moved for the measurement of capillary water absorption. The bottom surface is
immersed in distilled water, and the mass of specimens is measured every ten minutes.
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2.7. The Measurement of CMC

The specimens with size of Φ100 mm × 50 mm are used to measure the CMC. The
NELD-CCM540 cement chloride ion diffusion coefficient tester provided by Shanghai
Meiyu Instrument Technology Co., Ltd., Shanghai, China, is used for testing the CMC.

2.8. The Measurement of Carbonation Depth

The specimens with size of 100 mm × 100 mm × 100 mm are used for the measurement
of the carbonation depth (Dc). The specimens are placed in a carbonization curing box with
a CO2 concentration of 20% for 90 days, and then the carbonation depth is measured. The
Chinese standard GB/T 50082-2009 is the reference for the determinations of CMC and
carbonation depth [32]. Six specimens are used for the experiments to test the DSR, the CA,
the CMC, and the Dc. After the measurement, the average values are considered as the
tested results.

2.9. The Scanning Electron Microscopy and XRD Experiments

The samples are removed from the inner parts of the specimen. The particle size range
of the sample is 0.5~3 mm. All samples are dried in a Li Chen vacuum drying chamber
provided by China Experimental Instrument Sales Center, Beijing, China. Subsequently, the
dried sample is moved to a vacuum spraying chamber for gold spraying. The SEM photos
of the samples are observed with Zeiss Scanning electron microscope. The remaining
samples are crushed into powder in a mortar. The powder sample is placed in a TD-3500
Diffractometer (purchased from Wuxi Lingen Electromechanical Equipment Co., Ltd., Wuxi,
China) to obtain the X-ray diffraction spectrum.

3. Results and Discussions
3.1. The Rheological Parameters of SAA–RPC

The slump flow of fresh RPC is shown in Figure 6. In Figure 6, the slump flow increases
with the increasing dosages of CO2-cured SAA. As described in Li’s research, CO2 curing
can promote the reaction between alumina and CO2, forming Al2(CO3)3 and decreasing
the pores’ inner SAA. The decreased pores can decrease the absorption of free water in the
fresh RPC [33,34]. Therefore, the slump flow is increased by adding an amount of SAA.
The growth rate ranges from 0% to 23.04%. Moreover, the error bars are less than 2.5% of
the slump flow, indicating the accuracy of the experiment.
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Figure 7 shows the yield shear stress of fresh RPC. As illustrated in Figure 7, the yield
shear stress decreases with the increasing dosages of CO2-cured SAA. Liu et al. found
that CO2 curing on SAA can decrease its ability to adsorb free water, thus increasing the
fluidity of fresh RPC [35]. As described in previous research, the yield shear stress of fresh
RPC shows a negative relationship with that of slump flow [36,37]. Therefore, the yield
shear stress of fresh RPC is reduced by adding the CO2-cured SAA. The reduction rate
of the yield shear stress varies from 0% to 31.96%. Meanwhile, the error bars’ values are
1.0%~2.2%, showing the accuracy of the measuring results.
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Figure 6. The slump flow of fresh SAA−RPC. 

Figure 7 shows the yield shear stress of fresh RPC. As illustrated in Figure 7, the yield 
shear stress decreases with the increasing dosages of CO2-cured SAA. Liu et al. found that 
CO2 curing on SAA can decrease its ability to adsorb free water, thus increasing the fluid-
ity of fresh RPC [35]. As described in previous research, the yield shear stress of fresh RPC 
shows a negative relationship with that of slump flow [36,37]. Therefore, the yield shear 
stress of fresh RPC is reduced by adding the CO2-cured SAA. The reduction rate of the 
yield shear stress varies from 0% to 31.96%. Meanwhile, the error bars’ values are 
1.0%~2.2%, showing the accuracy of the measuring results. 
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Figure 7. The yield shear stress of fresh SAA−RPC. Figure 7. The yield shear stress of fresh SAA–RPC.

3.2. The Initial Setting Time of SAA–RPC

The initial setting time of fresh RPC is illustrated in Figure 8. It can be found that
the initial setting time of fresh RPC increases by adding CO2-cured SAA, due to how
the CO2 curing can increase the amount of Al2(CO3)3 and decrease the pores’ inner SAA.
The Al2(CO3)3 adsorbs on the surface of hydration products, increasing the initial setting
time of RPC [38]. The growth rate of RPC’s initial setting time ranges from 0% to 117.3%.
Additionally, the error bars’ values are lower than 3.1% of the initial setting time. Therefore,
the results of this experiment are accurate.
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3.3. The Mechanical Strengths of SAA–RPC

The flexural strength (ft) of RPC is observed in Figure 9. The ft of specimens cured
for 1 day, 7 days, and 28 days show an ascending trend when adding CO2-cured SAA.
CO2 curing on SAA can increase the amount of Al(OH)3, thus increasing the ft of RPC. The
growth rates of the ft are 0%~26.3%. The curing age demonstrates a positive effect on the ft
of RPC. This is attributed to the increased hydration degree of cement [39–41]. The values
of the error bars are less than 2.41% of the ft.
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The compressive strength (fcu) of RPC is shown in Figure 10. The fcu of RPC increases
with the increasing dosages of CO2-cured SAA. The fcu of RPC is increased by the increasing
curing age. The growth rate of RPC’s fcu ranges from 0% to 68.7%. The error bars’ values
are less than 3.76% of the fcu, which indicates the accuracy of the experiment.
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3.5. Capillary Water Absorption 
Figure 12 shows the capillary water absorption of RPC with different dosages of CO2-

cured SAA. The mass of absorbed water decreases in the form of a linear function with 
the immersion time. The fitting degrees of the functions are higher than 0.95, which con-
firms the accuracy of the fitting results. As found in Figure 12, the addition of CO2-cured 
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3.4. The DSR of SAA–RPC

The DSR of RPC is observed in Figure 11. The DSR of RPC increases with the increasing
dosages of CO2-cured SAA. The DSR of RPC is increased by the increasing curing age. The
hydration of cement is increased by adding CO2-cured SAA, as it decreases the free water
and increases the DSR of RPC. The increasing rate of the DSR ranges from 0% to 91.3%.
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3.5. Capillary Water Absorption 
Figure 12 shows the capillary water absorption of RPC with different dosages of CO2-

cured SAA. The mass of absorbed water decreases in the form of a linear function with 
the immersion time. The fitting degrees of the functions are higher than 0.95, which con-
firms the accuracy of the fitting results. As found in Figure 12, the addition of CO2-cured 

Figure 11. The DSR of SAA–RPC.

3.5. Capillary Water Absorption

Figure 12 shows the capillary water absorption of RPC with different dosages of CO2-
cured SAA. The mass of absorbed water decreases in the form of a linear function with the
immersion time. The fitting degrees of the functions are higher than 0.95, which confirms
the accuracy of the fitting results. As found in Figure 12, the addition of CO2-cured SAA
can decrease the mass rate of absorbed water that increases with the immersion time, due
to the improved compactness caused by the CO2-cured SAA.

Coatings 2023, 13, x FOR PEER REVIEW 10 of 15 
 

 

SAA can decrease the mass rate of absorbed water that increases with the immersion time, 
due to the improved compactness caused by the CO2-cured SAA. 

0 5 10 15 20 25 30
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R2=0.98
m=0.0056t+0.015

R2=0.98
m=0.00629t+0.024

R2=0.97
m=0.00891t+0.024

R2=0.99

m=0.116t+0.028

Immersed time (min)

0%
25%
50%
75%
100%

M
as

s 
of

 a
bs

or
ve

d 
w

at
er

 (g
)

m=0.116t+0.028

R2=0.97

 
Figure 12. The capillary water absorption of SAA−RPC. 

3.6. The CMC of RPC 
The CMC of RPC is shown in Figure 13. The CMC of RPC ranges from 1.1 × 10−12 to 

2.1 × 10−12. This is ascribed to the fact that open pores exist in the RPC. Therefore, the chlo-
ride ions migrate along open pores under the action of an electric field, leading to an in-
crease in the CMC. Moreover, as illustrated in Figure 13, the CMC of RPC decreases with 
increasing dosages of CO2-cured SAA. The decreasing rate of the CMC ranges from 0% to 
46.7% due to the fact that the CO2-cured SAA can increase the hydration degree of cement, 
thus improving the compactness of RPC [42–44]. Consequently, the CMC of RPC is de-
creased by adding the CO2-cured SAA. The error bars’ values of the CMC are lower than 
the real values of the CMC, which confirm the accuracy of the CMC’s testing results. 

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

C
M

C
(×

10
-1

2 )

CO2 cured SAA(%)

0

20

40

60

D
ec

re
as

in
g 

ra
te
（

%
）

 
Figure 13. The CMC of SAA-RPC. 

  

Figure 12. The capillary water absorption of SAA–RPC.

3.6. The CMC of RPC

The CMC of RPC is shown in Figure 13. The CMC of RPC ranges from 1.1 × 10−12

to 2.1 × 10−12. This is ascribed to the fact that open pores exist in the RPC. Therefore, the
chloride ions migrate along open pores under the action of an electric field, leading to
an increase in the CMC. Moreover, as illustrated in Figure 13, the CMC of RPC decreases
with increasing dosages of CO2-cured SAA. The decreasing rate of the CMC ranges from
0% to 46.7% due to the fact that the CO2-cured SAA can increase the hydration degree of
cement, thus improving the compactness of RPC [42–44]. Consequently, the CMC of RPC
is decreased by adding the CO2-cured SAA. The error bars’ values of the CMC are lower
than the real values of the CMC, which confirm the accuracy of the CMC’s testing results.
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Figure 13. The CMC of SAA–RPC.

3.7. The Carbonization Depth of RPC

Figure 14 shows the carbonization depth of RPC. As observed in Figure 14, the
carbonization depth decreases with the increasing dosages of CO2-cured SAA. This is
ascribed to the fact that the CO2-cured SAA can improve the compactness of RPC [45,46].
Therefore, the migration rate of CO2 in RPC becomes slow, leading to a decrease in the
carbonization depth of RPC. The decreasing rate of carbonization depth by the CO2-cured
SAA ranges from 0% to 45.7%, with the mass ratio of CO2-cured SAA increasing from 0%
to 100%. The error bars are lower than 7.8% of the real values of the carbonization depth,
indicating the accuracy of the experimental results.
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3.8. Microscopic Analysis

The SEM photos of RPC are shown in Figure 15. The specimens are cured in the
standard curing environment for 28 days. As observed in Figure 15, fibrous hydration
products are found when the mass ratios of CO2-cured SAA are 0% and 50%, respectively.
The fibrous hydration products are decreased by the increasing dosages of CO2-cured SAA.
This indicates the fact that the addition of CO2-cured SAA can inhibit the appearance of
fibrous hydration products. Moreover, the increased CO2-cured SAA can improve the
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compactness of the RPC. Therefore, the mechanical strengths are improved by adding the
CO2-cured SAA.
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Figure 15. The SEM of RPC with CO2-cured SAA.

The XRD curves are exhibited in Figure 16. As shown in Figure 16, the crystals’
diffraction peaks of calcium silicate (C3S), dicalcium silicate (C2S), silica (SiO2), calcium
hydroxide (CH), and aluminum oxide (Al2O3) are observed. As found in Figure 16, the
crystals’ diffraction peaks of calcium silicate, dicalcium silicate, silica, and aluminum
oxide are decreased by adding CO2-cured SAA, while the crystals’ diffraction peaks of
calcium hydroxide are increased. This is attributed to the fact that the addition of CO2-
cured SAA can improve the hydration degree of cement, thus decreasing the content of
calcium silicate, dicalcium silicate silica, and aluminum oxide and increasing the content of
calcium hydroxide.
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4. Conclusions

The influence of CO2-cured SAA on the working properties, the mechanical strengths,
and the durability were investigated. The research results are summarized as follows.

Due to the reduction in SAA porosity caused by carbonization, the slump flow of
fresh RPC is increased, and the corresponding plastic viscosity is decreased by adding CO2-
cured SAA. The slump flow increases by 0%~23.04%, and the plastic viscosity decreases by
0%~31.96%. The initial setting time is increased by CO2-cured SAA, with an increasing rate
of 0%~117.3%.

The addition of SAA can improve the mechanical strengths of RPC by increasing the
SAA’s activity and reducing the corresponding porosity. The flexural and compressive
strengths of RPC are increased with the increasing rates of the CO2-cured SAA, with the
increasing rates of 0%~26.3% and 0%~68.7%, respectively. The CO2-cured SAA can increase
the DSR of RPC with an increasing rate of 0%~91.3%. The capillary water absorption of
RPC increases in the form of a linear function.

Following the research on RPC’s durability, it was found that the addition of CO2-
cured SAA can decrease the CMC and the carbonization depth of RPC by rates of 0%~46.7%
and 0%~45.7%, respectively.

As obtained from the SEM results, the CO2-cured SAA can decrease the production of
needle-shaped hydration products, increasing the compactness of hydration products. The
Ca(OH)2 crystals are increased by the addition of CO2-cured SAA.

This study proved that the CO2-cured SAA can effectively improve the mechanical
strengths of RPC. The application of CO2-cured SAA in RPC can increase the strength of
RPC while reducing its production cost and alleviating environmental pollution.

The effect of CO2-cured SAA on the durability of RPC under various erosive environ-
ments needs to be investigated in the future.
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