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Abstract: Thermal barrier coatings (TBCs) have been seriously threatened by calcium-magnesium-
alumina-silicate (CMAS) corrosion. The search for novel ceramic coatings for TBCs with excellent
resistance to CMAS corrosion is ongoing. Herein, CMAS corrosion resistance behavior and the
mechanism of a promising Hf6Ta2O17 ceramic coating for TBCs are investigated. The results show that
temperature is the most important factor affecting the CMAS behavior and mechanism. At 1250 ◦C,
the corrosion products are composed of dense reaction products (HfSiO4, CaXHf6−xTa2O17−x) and
CMAS self-crystallization products. At 1300 and 1400 ◦C, the corrosion products are mainly dense
CaTa2O6 and HfO2, which prevent further CMAS infiltration.

Keywords: thermal barrier coatings (TBCs); calcium-magnesium-alumina-silicate (CMAS); Hf6Ta2O17

ceramic; corrosion behavior; corrosion resistance mechanism

1. Introduction

Thermal barrier coatings (TBCs) can effectively protect hot components in high temper-
ature environments, and improve gas thermal efficiency and engine service lifetime [1–3].
7–8 wt.% Y2O3 partially stabilized ZrO2 (8YSZ) is extensively used as a top ceramic coating
in TBCs. However, erosion, sintering, oxidation and calcium-magnesium-alumina-silicate
(CMAS) corrosion are the main failure factors of TBCs in high- temperature service environ-
ments. As the service temperature increases, CMAS corrosion becomes the most dangerous
factor in spallation of the top ceramic coating [4–6]. On the one hand, the molten CMAS
permeates into the pores and microcracks of the 8YSZ coating, leading to the degradation
of the thermal-mechanical properties of the coating [7,8]. On the other hand, Y2O3 in 8YSZ
dissolves in the molten CMAS through thermal-chemical reaction, which induces a phase
transition of 8YSZ. This destroys the structural integrity and leads to coating failure [9,10].
Hence, it is significant to seek novel ceramic coatings for TBCs with excellent resistance to
CMAS corrosion.

Recently, many studies have been conducted on the promising CMAS-resistant TBCs,
such as RE2Zr2O7, RETaO4, REPO4 (RE = rare earth elements), Ti2AlC, LaTi2Al9O19 and
rare-earth-doped zirconia [11–16]. These new ceramic materials show different corrosion
behaviors and mechanisms. For LaTi2Al9O19 ceramics, Ca and Si elements in CMAS
are consumed effectively to form CaAl2Si2O8 and (Ca,La0.7)(Ti,Al)O3, which prevent
CMAS from further infiltration [14]. The corrosion mechanism the changing of the com-
position of molten CMAS and generating self-crystallization products that prevent the
CMAS infiltration. For RETaO4 and RE2Zr2O7 ceramics, YbTaO4 reacts with CMAS to
form Ca2Ta2O7 [12], and La2(Zr0.7Ce0.3)2O7 reacts with CMAS to precipitate apatite phase
(La,Ca)4(La, Ce)6(SiO4)6O2 and fluorite ZrO2 [17]. The corrosion mechanism is that the
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ceramic material reacts with molten CMAS to form a dense product layer, inhibiting further
CMAS infiltration. These new ceramic materials possess outstanding CMAS corrosion
resistance. However, they still cannot replace the traditional 8YSZ TBCs due to their
mismatched thermal expansion coefficients [18] and insufficient comprehensive perfor-
mance of thermal and mechanical properties [19,20]. Hf6Ta2O17 ceramic material with
A6B2O17 (A = Hf, Zr, B = Ta, Nb) superstructure crystal can solve the above problems
effectively [21,22]. Hf6Ta2O17 ceramic has a sufficiently large synthesis range, superior
phase stability and excellent thermal properties [23–25]. Furthermore, Hf6Ta2O17 ceramic
shows excellent mechanical properties, with hardness of 18.45 GPa and fracture toughness
of 2.6~3.1 MPa m1/2 at room temperature [26]. The comprehensive properties of Hf6Ta2O17
ceramic are excellent, but there is a lack of systematic in-depth study on the CMAS corrosion
resistance behavior and mechanism of a potential Hf6Ta2O17 ceramic for TBCs.

In this paper, Hf6Ta2O17 ceramic is prepared by a solid reaction method, and the
Hf6Ta2O17 ceramic is subjected to CMAS corrosion at 1250, 1300 and 1400 ◦C for 4, 16, 50
and 100 h each. The corrosion behavior is investigated and the effects of temperature and
time on CMAS corrosion resistance of the Hf6Ta2O17 ceramic are discussed. The research
plan is shown in Figure 1.
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Figure 1. Schematic flowchart showing research plan.

2. Experimental Procedure

HfO2 (purity > 99.99%) and Ta2O5 (purity > 99.99%) were selected as the starting
materials (both oxides were purchased from China New Metal Materials Technology Co.,
Ltd., Bejing, China). The powders were weighted in a stoichiometric ratio of 85.71 mol%
HfO2–14.29 mol% Ta2O5 and then mixed with ethanol by a planetary ball mill for 8 h. After
drying the slurries at 80 ◦C for 12 h, the mixed powders were reacted at 1600 ◦C for 20 h to
obtain Hf6Ta2O17 powder. The chemical reaction equation is presented as follows:

6HfO2 + Ta2O5 → Hf6Ta2O17 (1)

Finally, the Hf6Ta2O17 powders were sieved with 500-mesh screen, and subsequently
uniaxially cold compacted into pellets (ϕ = 10 mm) under a pressure of 200 MPa. The
Hf6Ta2O17 ceramic was obtained by sintering the pellets at 1600 ◦C for 20 h. Based on CMAS
coated on vane blades in a real service environment, the CMAS composition of 33 mol%
CaO–9 mol% MgO–13 mol%–Al2O3–45 mol% SiO2 was determined, whose melting point
is about 1235 ◦C [27,28]. The oxide powders were weighed and mixed in the planetary ball
mill in these proportions. After drying, CMAS glass was synthesized by heat treating at
1300 ◦C for 4 h, then ground to get fine CMAS powder.

Before the CMAS corrosion test, the Hf6Ta2O17 ceramic was ground, polished and
ultrasonically cleaned. According to the surface area of the prepared ceramic pellets, an
appropriate amount of CMAS powder was weighed with an analytical balance. To evenly
coat the Hf6Ta2O17 ceramic surface, the CMAS powder was mixed with absolute alcohol to
create a pasty, viscous liquid. After drying at 80 ◦C, the coated CMAS amount was kept at
10 ± 1 mg/cm2. Then, samples of the CMAS-covered ceramics were heat treated at 1250,
1300 and 1400 ◦C, with a ramping rate of 10 ◦C/min for both heating and cooling, in a
muffle furnace for 4, 16, 50 and 100 h each. Three samples were put into the furnace for
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comparison in each test. Finally, the corroded ceramics were cut through the middle with a
cutting machine to obtain the cross section.

The phase structures of the Hf6Ta2O17 ceramic and corrosion products were detected
by X-ray diffractometry (XRD, Ultimate IV, RIGAKU, Tokyo, Japan) with CuKα radiation
at a scanning rate of 4◦/min and scanning range of 10~90◦. The microstructure and
composition of the specimens were measured by scanning electron microscope (SEM,
TESCAN MIRA3 LMH, Brno, Czech Republic), energy dispersive spectroscopy (EDS, X
MAX20, Oxford Instruments, Oxford, UK) and transmission electron microscopy (TEM,
JEM-2100, JEOL Ltd., Tokyo, Japan). Image J software (1.51 23) was used for image analysis,
and the infiltration depth was measured by cross-sectional backscattered electron (BSE)
image after corrosion. Five different cross-sectional BSE images were taken, with each
image taking five depth measurements. Finally, the average value was taken to obtain the
infiltration depth.

3. Results
3.1. Characterization of Hf6Ta2O17 Ceramic

Figure 2 shows the XRD pattern and SEM image of the surface of Hf6Ta2O17 ceramic.
The characteristic peak is a pure structure of orthorhombic Hf6Ta2O17 phase, and no
diffraction peaks of HfO2 or Ta2O5 phase are detected. The Hf6Ta2O17 ceramic has a dense
microstructure (with porosity below 15%), and no obvious compositional contrast appears,
which implies that no possible component segregation occurs.
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ceramic.

3.2. Microstructure Characterization of Hf6Ta2O17 Ceramic after CMAS Corrosion
3.2.1. Surface Morphology of Hf6Ta2O17 Ceramic after CMAS Corrosion

The surface morphology of Hf6Ta2O17 ceramic after CMAS corrosion is shown in
Figure 3. At the corrosion temperature of 1250 ◦C, there is a black strip phase (A) and a gray
bulk phase (B), in addition to residual CMAS melt (C). The elemental composition of the
marked areas is listed in Table 1. A is anorthite phase (CaAl2Si2O8) and B is wollastonite
phase (CaSiO3), both of which are self-crystallization products of molten CMAS [29]. As
the corrosion temperature elevates to 1300 ◦C, the specimen surface is mainly composed
of residual CMAS (C) and a little white snowflake phase (D) that is rich in Ca, Hf and Ta
elements. The corrosion results at 1400 ◦C reveal that a large amount of white dendritic
phase (E) appears on the specimen surface. The composition of the white dendritic phase
(E) is similar to that of D, which is rich in Ca, Hf and Ta elements, but the Ta content is
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significantly higher than that of D. The corrosion results indicate that the corrosion prod-
ucts and corrosion phenomena of Hf6Ta2O17 ceramic are obviously different at different
corrosion temperatures.
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Figure 3. BSE images of the surface of Hf6Ta2O17 ceramic after CMAS corrosion: (a) at 1250 ◦C for
8 h; (b) at 1300 ◦C for 16 h; (c) at 1400 ◦C for 16 h. The inset figures present high-magnification images
of the surface.

Table 1. Chemical compositions of the marked regions in Figure 3.

Fraction Location
Composition (at.%)

O Mg Al Si Ca Hf Ta -

A 58.34 0.13 16.09 17.23 8.17 0.02 0.02 CaAl2Si2O8
B 56.16 0.18 1.50 21.55 19.94 0.46 0.21 CaSiO3
C 56.40 0.9 1.7 21.6 17.2 1.6 0.6 CMAS
D 60.57 0.30 1.02 - 11.05 16.00 11.06 -
E 51.90 0.01 2.37 8.62 13.59 3.08 20.45 -

3.2.2. Cross-Sectional Morphology of Hf6Ta2O17 Ceramic after CMAS Corrosion

Figure 4 shows the cross-sectional morphology of Hf6Ta2O17 ceramic attacked by
CMAS at different temperatures and times. The cross section is obviously stratified into a
residual CMAS layer, reaction layer, dense layer and ceramic layer. The corrosion behavior
of Hf6Ta2O17 ceramic at three temperatures is dramatically distinctive. At 1250 ◦C, when
the corrosion time is short (<100 h), the infiltration depth of molten CMAS is very shallow
(Figure 4a–d), and the thickness of the reaction layer is in the range of 3.3~15.2 µm. After
100 h, an obvious dense layer with a thickness of 22.2 µm appears below the reaction
layer (Figure 4d). At 1300 ◦C for 4 h, the reaction products are similar to those at 1250 ◦C,
but a new phase structure begins to precipitate (Figure 4e), which is analyzed in detail
in Section 3.3.2. When the corrosion time increases to 16 h, the morphology of the re-
action product changes dramatically, and CMAS infiltration depth increases to 34.1 µm
(Figure 4f). Furthermore, the thickness of the reaction layer increases slowly with time,
ranging from 17.8 to 27.9 µm, but the dense layer keeps thickening, increasing from 16.3 to
125.1 µm (Figure 4f–h). The corrosion phenomenon at 1400 ◦C is similar to that at 1300 ◦C
(Figure 4j–l). At the initial stage of corrosion, a thick reaction layer with a thickness of
83.3 µm is generated, while the dense layer is extremely thin (~20.6 µm). With the increase
in corrosion time from 4 h to 100 h, the thickness of the reaction layer is basically stable,
increasing by only about 10 µm. The dense layer also becomes thicker, increasing from 20.6
to 86.6 µm.
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Figure 4. Cross-sectional BSE images of Hf6Ta2O17 ceramic after CMAS corrosion: (a) at 1250 ◦C for
4 h; (b) at 1250 ◦C for 16 h; (c) at 1250 ◦C for 50 h; (d) at 1250 ◦C for 100 h; (e) at 1300 ◦C for 4 h; (f) at
1300 ◦C for 16 h; (g) at 1300 ◦C for 50 h; (h) at 1300 ◦C for 100 h; (i) at 1400 ◦C for 4 h; (j) at 1400 ◦C
for 16 h; (k) at 1400 ◦C for 50 h; (l) at 1400 ◦C for 100 h. The CMAS infiltration depth is measured
from the initial specimen surface (yellow dash lines) to the infiltration front (black dash lines).

The evolution of CMAS infiltration depth with corrosion time of Hf6Ta2O17 ceramic
at three temperatures is shown in Figure 5. After CMAS corrosion for 100 h, the CMAS
infiltration depths at 1250, 1300 and 1400 ◦C are 32.3, 153 and 180.8 µm, respectively.
Hf6Ta2O17 ceramic shows a lower infiltration depth (32.3 µm) at 1250 ◦C. At 1300 and
1400 ◦C, the infiltration depth of Hf6Ta2O17 ceramic increases significantly. After fitting the
experimental data, the infiltration rate k at the three temperatures can be quantified in the
form of a µm·tn, where a and n are constants and t is time. At 1250, 1300 and 1400 ◦C, the
infiltration rates of Hf6Ta2O17 ceramic are 0.85 µm·t−0.29, 3.6 µm·t−0.23 and 14.17 µm·t−0.83,
respectively. The parameter a increases significantly with increasing temperature, and
the difference between n at 1250 and 1300 ◦C is not significant, while a notable decrease
occurs at 1400 ◦C. This indicates that the infiltration rate at 1300 ◦C is significantly greater
than that at 1250 ◦C. The infiltration rate also appears to increase at 1400 ◦C, while the
enhancement is much greater than that at 1300 ◦C. The CMAS infiltration depth reaches
104.4 µm after corrosion for 4 h at 1400 ◦C, indicating that temperature is the most sensitive
factor influencing the CMAS corrosion behavior of Hf6Ta2O17 ceramic. Furthermore,
the infiltration depth increases with time, and the infiltration rate decreases with time.
The relationship between CMAS infiltration depth and corrosion time basically follows a
parabolic law, which is due to the formation and growth of the dense layer [30].
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Figure 5. (a) Evolution of CMAS infiltration depth with time in Hf6Ta2O17 ceramic at different
temperatures; (b–d) Expanded view of infiltration depth with time in Hf6Ta2O17 ceramic at 1250,
1300 and 1400 ◦C, respectively. R2 represents the value of the matching factor.

3.3. Characterization of CMAS Corrosion Products of Hf6Ta2O17 Ceramic
3.3.1. Characterization of Corrosion Products at 1250 ◦C

Figure 6 shows a cross-sectional image of Hf6Ta2O17 ceramic attacked by CMAS at
1250 ◦C for 4 h and its corresponding element mapping. There are two main types of
products in the residual CMAS layer: A and B. The reaction layer is only 2~3 µm thick,
made up of irregular lumps. At the same time, Ca element infiltrates into the ceramic
layer, forming a thin dense layer. The element mapping results show that the segregation
of Ca and Al appears in the residual CMAS layer, a small amount of Hf diffuses into the
residual CMAS, and the content of Ta is extremely low. This is attributed to the fact that
the Hf-O bond in Hf6Ta2O17 ceramic is longer than the Ta-O bond, which implies that
Hf element more easily diffuses into the residual CMAS [21]. XRD patterns of Hf6Ta2O17
ceramic attacked by CMAS at 1250 ◦C for 4, 16, 50 and 100 h are shown in Figure 7. The
characteristic peaks of the corrosion products are mainly CaAl2Si2O8 and CaSiO3 after
corrosion for 4 h. However, the CaSiO3 phase disappears after corrosion for 16 h and the
characteristic peak of HfSiO4 phase appears with time. The highest diffraction peaks of
anorthite are detected under long-term corrosion. According to the XRD results and the
EDS results in Table 2, it can be determined that the molten CMAS self-crystallizes into
CaAl2Si2O8 (A) and CaSiO3 (B), the reaction layer consists of HfSiO4 (D), and the dense
layer is composed of CaXHf6−xTa2O17−x (F) after corrosion for 4 h at 1250 ◦C. It is worth
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noting that there are no characteristic peaks of HfSiO4 phase after corrosion for a short
time, because few HfSiO4 phases are formed under short-term corrosion and the residual
CMAS is quite thick.
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Table 2. Chemical compositions of the marked regions in Figure 6b.

Fraction Location
Composition (at.%)

O Mg Al Si Ca Hf Ta -

A 58.15 0.36 14.29 17.92 8.89 0.25 0.14 CaAl2Si2O8
B 56.88 0.09 1.34 20.61 20.63 0.14 0.10 CaSiO3
C 56.50 1.37 5.41 20.74 13.13 2.00 0.85 CMAS
D 62.20 0.18 2.43 13.74 11.27 8.76 1.43 HfSiO4
F 68.20 - 0.51 - 4.84 20.52 5.93 CaXHf6−xTa2O17−x

Figure 8 shows a cross-sectional image of Hf6Ta2O17 ceramic corroded by CMAS at
1250 ◦C for 16 h and its corresponding EDS line scan. It can be seen that there is only
anorthite phase (CaAl2Si2O8) in the residual CMAS. The wollastonite phase (CaSiO3)
disappears at 16 h, corresponding to the XRD result (Figure 7). To further characterize the
dense layer, an EDS line scan is performed on the reactive layer and the dense layer in
Figure 8a. The content of Ca element in the dense layer decreases in a gradient manner
with the increase in the depth, as shown in Figure 8b, which proves that the Ca infiltration
in Hf6Ta2O17 ceramic is the result of volume diffusion rather than grain boundary diffusion.
In addition, the Hf element fluctuates in the dense layer, as shown in the dashed circle in
Figure 8b, which may be due to the generation of HfO2 phase or Hf element segregation
in the dense layer. To further determine the composition, TEM is used to characterize the
interface between the reaction layer and dense layer (see Figure 9). Figure 9a,b are the
bright-field (BF) TEM images of CMAS reaction front corresponding to the dashed rectangle
in Figure 8a. It can be seen that there is a distinct interface between the reaction layer and
the dense layer. According to the selected area electron diffraction (SAED) presented in
Figure 9d,e, it can be determined that the product D is HfSiO4 and E is the orthorhombic
Hf6Ta2O17 phase. Furthermore, no other phase structure is found in the dense layer, which
confirms that m-HfO2 is not generated and only Hf element segregation exists. The TEM
EDS mapping between the reactive layer and the dense layer in Figure 9c again proves that
Ca element penetrates into the dense layer and dose not penetrate down along the grain
boundary.
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Figure 9. (a) Cross-sectional BF TEM image of CMAS reaction front corresponding to the dashed
rectangle in Figure 8a; (b) magnified HAADF image of reaction interface indicated by in (a); (c) the
corresponding EDS elemental mapping; (d,e) SAED patterns of D and E in (b).

3.3.2. Characterization of Corrosion Products at 1300 ◦C

Figure 10 shows a cross-sectional SEM image of Hf6Ta2O17 ceramic corroded by CMAS
at 1300 ◦C for 4 h. A new white bulk product I is formed in the reaction layer, and EDS
results in Table 3 confirm that product I is HfO2 phase. After CMAS attack at 1300 ◦C for
16 h (Figure 11), the morphology of the reaction layer and the dense layer has changed
considerably. The reaction layer mainly consists of blocky phase K and there is a small
amount of L phase at the grain boundary. Two kinds of phase structures appear in the dense
layer: O and N, and they are cross-embedded with each other, which further enhances
the dense layer to prevent the CMAS infiltration. Increasing the corrosion time to 50 and
100 h at 1300 ◦C, the corrosion products of Hf6Ta2O17 ceramic show no significant change
except the continuous growth of the dense layer. Combining the EDS mapping results in
Figure 11d with EDS point analysis in Table 4, K and O are determined to be m-HfO2 phase.
Both the L and N phases are rich in Ca, Hf and Ta elements, but the L phase contains more
Hf element and the N phase contains more Ta element. It is speculated that L and N may
be the same substance, but the composition is distinct due to different depths. According to
Figure 11d, the dense layer prevents Ca element from penetrating into Hf6Ta2O17 ceramic.
Figure 12 presents the XRD patterns of Hf6Ta2O17 ceramic corroded by CMAS at 1300 ◦C
for 4, 16, 50 and 100 h. The results show that m-HfO2 has the highest diffraction peak,
followed by a new CaTa2O6 characteristic peak, and a small number of CaAl2Si2O8 and
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HfSiO4 phases. But there is no significant difference in diffraction peak under different
corrosion time. The corrosion products are mainly CaTa2O6 and m-HfO2 for different time.
Based on the above analysis, the CMAS corrosion products of Hf6Ta2O17 ceramic at 1300 ◦C
are m-HfO2 (K, O phase) and CaTa2O6 (L, N phase).
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Table 3. Chemical compositions of the marked regions in Figure 10b.

Fraction Location
Compositions (at.%)

O Mg Al Si Ca Hf Ta -

C 57.45 0.55 7.99 20.46 12.34 0.69 0.52 CMAS
D 60.76 - 2.17 11.21 12.52 11.55 1.79 HfSiO4
I 65.54 0.01 1.62 3.43 7.51 20.20 1.70 m-HfO2
J 64.46 - 0.78 - 5.61 23.77 5.38 CaXHf6−xTa2O17−x
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Figure 11. (a) A cross-sectional BSE image of Hf6Ta2O17 ceramic after CMAS corrosion at 1300 ◦C for
16 h; (b) the high magnification BSE image corresponding to the dashed rectangle in (a); (c) the high
magnification BSE image corresponding to the dashed circle in (a); (d) cross-sectional EDS mapping
results of Hf6Ta2O17 ceramic.
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Table 4. Chemical compositions of the marked regions in Figure 11.

Fraction Location
Composition (at.%)

O Mg Al Si Ca Hf Ta

C 58.14 3.09 6.13 21.27 8.99 0.91 1.47
K 64.39 0.46 0.90 - 1.58 29.13 3.55
L 63.95 0.08 0.69 2.66 10.42 10.10 12.09
M 59.14 2.36 4.66 19.05 7.87 4.70 2.21
N 56.72 - 0.74 9.32 10.66 3.26 19.29
O 64.86 1.14 0.27 - 0.83 26.98 5.91
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Figure 12. XRD patterns of Hf6Ta2O17 ceramic after CMAS corrosion at 1300 ◦C for 4 h, 16 h, 50 h
and 100 h.

3.3.3. Characterization of Corrosion Products at 1400 ◦C

Figure 13 shows cross-sectional SEM images of Hf6Ta2O17 ceramic corroded by CMAS
at 1400 ◦C for 16 h. The corrosion results are analogous to those of long-time corrosion at
1300 ◦C, and the cross section is also composed of residual CMAS layer, reaction layer and
dense layer. Two notable features are observed at 1400 ◦C. First of all, there are abundant
crystalline phases P in the residual CMAS layer, and new P phase presents a dendritic
structure. It is confirmed that P phase is also CaTa2O6 in Table 5. Secondly, the corrosion
depth increases significantly at 1400 ◦C for 16 h, and the corrosion depth of 140.6 µm is
much greater than that at 1300 ◦C (~34.1 µm). Figure 14 shows XRD patterns of Hf6Ta2O17
ceramic corroded by CMAS at 1400 ◦C for 4, 16, 50 and 100 h. The corrosion products
are mainly CaTa2O6 and m-HfO2. Because of the low XRD detection depth, the CaTa2O6
phase on the surface of the corroded sample is mainly detected, which is consistent with
the cross-sectional BSE results. Based on the XRD and EDS results, the corrosion products
are P, R and U phases (m-HfO2) and T and Y phases (CaTa2O6) at 1400 ◦C.
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Figure 13. (a) A cross-sectional BSE image of Hf6Ta2O17 ceramic after CMAS corrosion at 1400 ◦C
for 16 h; (b) the high magnification BSE image corresponding to the dashed circle in (a); (c) the
high magnification BSE image corresponding to the dashed rectangle in the reaction layer of (a);
(d) the high magnification BSE image corresponding to the dashed rectangle in the dense layer of (a);
(e) cross-sectional EDS mapping results of Hf6Ta2O17 ceramic.

Table 5. Chemical compositions of the marked regions in Figure 13.

Fraction Location
Composition (at.%)

O Mg Al Si Ca Hf Ta

P 58.48 - 1.64 6.96 11.82 1.47 19.63
Q 58.53 0.40 8.07 21.81 9.14 0.71 1.34
R 62.12 0.09 0.58 - 0.44 34.90 1.87
S 59.14 0.21 6.74 20.46 7.99 3.75 1.72
T 58.22 - 1.49 3.45 12.79 10.47 13.59
U 61.95 - 0.53 - 1.37 32.79 3.36
Y 60.72 - 0.25 6.60 10.86 2.69 18.88
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4. Discussion
4.1. The Excellent CMAS Resistance of Hf6Ta2O17 Ceramic

Compared to other ceramic material in TBCs, Hf6Ta2O17 ceramic exhibits excellent
CMAS resistance. After 100 h CMAS corrosion at 1250 ◦C, the CMAS infiltration depth
of Hf6Ta2O17 ceramic only reaches 32.3 µm. In contrast, the CMAS infiltration depths of
YSZ and YSZ doped by Er element ceramic at 1250 ◦C for 2 h reach 21.97 µm and 10.75 µm,
respectively [31]. The average CMAS infiltration depths of NdPO4, SmPO4 and GdPO4
ceramic at 1250 ◦C for 4 h are 140, 60 and 40 µm, respectively [16]. The CMAS infiltration
depth of nanosized Sm2Zr2O7 ceramic is 47 µm after 48 h CMAS corrosion at 1250 ◦C [32].
As the corrosion temperature rises to 1300 ◦C, CMAS resistance of Hf6Ta2O17 ceramic is
superior than other ceramic material in TBCs. The corrosion depths of Hf6Ta2O17 ceramic
after CMAS attack at 1300 ◦C for 4 and 50 h are 13 and 113.8 µm, respectively. The average
thickness of the reaction layer of La2(Zr0.7Ce0.3)2O7 is 140 µm at 1300 ◦C for 4 h [17]. For
50 h CMAS exposure at 1300 ◦C, the CMAS infiltration depths of 17YSZ and Gd2Zr2O7
ceramics are 700 and 140 µm, respectively [9,30].

4.2. Effect of Temperature and Time on CMAS Corrosion Resistance of Hf6Ta2O17 Ceramic

Temperature and time are important factors affecting the corrosion behavior of
Hf6Ta2O17 ceramic. Figure 15 shows the relative change rates of the CMAS infiltration
depth with the relative increasing rates of temperature and time. The relative increasing
rate x of influencing factors and the change of CMAS infiltration depth y can be expressed
by Equations (2) and (3), respectively [33]:

x =
xi − x0

x0
× 100% (2)

y =
y(xi)− y(x0)

y(x0)
× 100%, (3)

where xi and x0 represent the immediate value and the initial value of an influencing factor,
respectively, and y(x0) and y(xi) are the infiltration depth of CMAS at xi and x0, respectively.
It can be seen that temperature is the most important factor affecting CMAS infiltration,
while time has a less effect on CMAS infiltration depth. A 4% increase in temperature leads
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to a 278% increase in the CMAS infiltration depth. When the time increases by 100%, the
infiltration depth only increases by only 38%.
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Considerable studies have proven that CMAS viscosity decreases with an increase
in temperature, and the CMAS infiltration rate increases with an increase in temperature.
CMAS viscosity is directly related to the CMAS infiltration depth in TBCs at high temper-
ature [8,34,35]. CMAS viscosity at different temperatures can be calculated by using the
Vogel–Fulcher–Tammann (VFT) equation [36]:

log η = A +
B

T − C
(4)

where η is viscosity, A is a constant, B and C are related to the composition of CMAS, and T
is the temperature. The parameter A is assumed to be a constant, which is the value of logη
at infinite temperature. B and C are controlled by the CMAS composition effect, which can
be estimated by using Equations (5) and (6) [8,37]:

B =
7

∑
i=1

[bi Mi] +
3

∑
j=1

[
b1j

(
M11j ·M21j)] (5)

C =
6

∑
i=1

[ci Ni] + [c11(N111 · N211)], (6)

where Ms and Ns refer to the combination of mol% oxides and the unknown coefficients
bi, b1j, ci, c11 are adequate to compute the values of B and C for any individual melt
composition.

According to Equation (4), an increase in corrosion temperature can reduce the CMAS
viscosity by an order of magnitude, leading to an increase in the CMAS infiltration depth.
Consequently, temperature is the most important factor in determining the CMAS corrosion
behavior.

4.3. CMAS Resistance Mechanism of Hf6Ta2O17 Ceramic

Since temperature is the main factor affecting the corrosion behavior of Hf6Ta2O17
ceramic, the CMAS resistance mechanism is divided into two parts: the low-temperature
section at 1250 ◦C and the high-temperature section at 1300–1400 ◦C. At low temperature,
the reaction between Hf6Ta2O17 ceramic and CMAS is not high. The reaction layer has
only a small amount of HfSiO4, and mainly residual CMAS is self-crystallized to form
wollastonite and anorthite, as shown in reaction Equations (7) and (8). This is because a
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large amount of Ca element infiltrates into the dense layer, while Al element is blocked in
the residual CMAS layer, resulting in changes in the composition of residual CMAS and the
easier formation of self-crystallizing products [14]. Hf6Ta2O17 ceramic has excellent CMAS
corrosion resistance at 1250 ◦C, which can be attributed to two aspects. Firstly, Hf6Ta2O17
ceramic at 1250 ◦C has excellent chemical inertness under high temperature, so the molten
CMAS is less destructive to the ceramic. The formation of CMAS self-crystallization
products consumes much of the Ca and Al elements, increasing the CMAS viscosity, thus
impeding the downward infiltration of CMAS. Secondly, the appearance of a reaction
layer and a dense layer effectively inhibits the downward infiltration of molten CMAS; in
particular, the Ca element penetrates the HfSiO4 reaction layer and continues to penetrate
downward to form the CaXHf6-xTa2O17-x dense layer, which suppresses CMAS above the
ceramic. SEM and TEM results also indicate that the Ca elements penetrate downward
through volume diffusion rather than grain boundary corrosion, thus greatly delaying the
CMAS infiltration.

2CaO(CMAS) + Al2O3(CMAS) + 3SiO2(CMAS)→ CaAl2Si2O8 + CaSiO3 (7)

Hf6Ta2O17 + xCaO(CMAS) + xSiO2(CMAS)→ xHfSiO4 + CaxHf6−xTa2O17−x (8)

The corrosion behavior of Hf6Ta2O17 ceramic is greatly changed at high temperatures,
and the most remarkable feature is the formation of m-HfO2 and CaTa2O6. The CMAS
corrosion behavior of Hf6Ta2O17 ceramic needs to be divided into two stages at 1300 ◦C: (I)
t < 16 h and (II) 16 h ≤ t ≤ 100 h. During stage I, a small amount of m-HfO2 is precipitated
from the reaction layer, and the corrosion results of the ceramic are basically consistent with
that at 1250 ◦C. During stage II, both the reaction layer and the dense layer are composed of
CaTa2O6 and m-HfO2. The thickness of the reaction layer is basically unchanged, while the
thickness of the dense layer keeps increasing at long-term corrosion. Recent research has
shown that m-HfO2 and CaTa2O6 have extremely low solubility in molten CMAS and will
not generate reaction products, which also suggests that m-HfO2 and CaTa2O6 can form
dense layers that hinder downward infiltration of CMAS [38,39]. The corrosion behavior of
Hf6Ta2O17 ceramic at 1400 ◦C is similar to that of stage II at 1300 ◦C. The difference is that a
large amount of Ta element begins to diffuse upward to the residual CMAS layer, resulting
in the formation of CaTa2O6. Therefore, the corrosion behavior of Hf6Ta2O17 ceramic at
1300–1400 ◦C can be explained from two aspects. Firstly, in terms of thermodynamics,
Hf6Ta2O17 ceramic reacts violently with molten CMAS to generate m-HfO2 and CaTa2O6
at 1300–1400 ◦C, as shown in reaction Equation (9). The Ca element of molten CMAS
plays an important role in the reaction process at this stage. The corrosion kinetics can
also explain the corrosion resistance mechanism of Hf6Ta2O17 ceramic. According to
Figures 4 and 5, CMAS corrosion for a long time is not determined by chemical reaction,
but penetration downward through solid diffusion. Continuous thickening of the dense
layer can effectively improve the corrosion resistance of Hf6Ta2O17 ceramic. At the initial
stage of CMAS corrosion at 1400 ◦C, the CMAS infiltration depth increases sharply, because
the time is too short to generate a thick dense layer. Over time, the dense layer continues to
thicken, and the corrosion rate begins to decrease significantly.

Hf6Ta2O17 + CaO(CMAS)→ 6HfO2 + CaTa2O6 (9)

5. Conclusions

In this paper, the CMAS corrosion behavior of Hf6Ta2O17 ceramic at 1250–1400 ◦C
is investigated, the effects of temperature and time on the CMAS corrosion resistance of
Hf6Ta2O17 ceramic are discussed, and the CMAS resistance mechanism is clarified. Several
conclusions can be drawn, as follows:

(1) Compared with some traditional and novel CMAS-resistant ceramic materials in TBCs,
Hf6Ta2O17 ceramic exhibits excellent CMAS resistance characteristics at short-term
and long-term corrosion;
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(2) Based on the influence of CMAS viscosity, temperature is the most important fac-
tor affecting the CMAS behavior of Hf6Ta2O17 ceramic. At 1250 ◦C, CMAS self-
crystallization products are composed of anorthite CaAl2Si2O8 and wollastonite
CaSiO3. The reaction layer is composed of HfSiO4 and the dense layer is consisted of
CaXHf6−xTa2O17−x. At 1300 and 1400 ◦C, the reaction layer and the dense layer are
composed of CaTa2O6 and m-HfO2.

(3) The CMAS resistance mechanism of Hf6Ta2O17 ceramic varies with temperature. At
1250 ◦C, the formation of CMAS self-crystallization products consisting of anorthite
CaAl2Si2O8 and wollastonite CaSiO3, and the formation of HfSiO4 in a reaction layer
and CaXHf6−xTa2O17−x in a dense layer effectively inhibit the CMAS infiltration. At
1300 and 1400 ◦C, the formation and thickening of CaTa2O6 and m-HfO2 in the dense
layer improve the CMAS corrosion resistance of Hf6Ta2O17 ceramic.
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