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Abstract: The aim of this research is to achieve a high-quality and long-lasting laser marking of
ammunition, which is of interest to the defense industry. The study is about the effects of speed,
raster pitch and power on the roughness and microhardness of the marked areas of copper samples.
The experiments were carried out with a fiber laser and a copper bromide laser—modern lasers
widely used in industrial production. Laser power, scan speed and raster step were varied to
determine their effects on the resulting microhardness and surface roughness. The lasers operate
in different wavelength ranges, with the optical laser operating at 1064 nm in the near-infrared
region and the copper bromide laser at 511 nm and 578 nm in the visible region, allowing the
influence of wavelengths on the process to be investigated. The roughness and microhardness
velocity dependence for three powers and two pulse durations for the fiber laser were obtained from
the experimental data. The dependence of roughness and microhardness on the raster step for both
types of lasers was also demonstrated.

Keywords: laser marking; roughness; copper; laser surface texturing; raster step; microhardness
measurement

1. Introduction

Copper and its alloys are some of the most widely used materials in industry, with
applications in the production of ammunition, non-magnetic tools and equipment, archi-
tectural elements, sculptures, products requiring high thermal conductivity, electrical and
electronic products, etc. [1–3].

Laser surface texturing is one of the most innovative material processing technologies
nowadays, where new surface properties are obtained, and with significant applications
in tribology, medicine, aeronautics, etc. [4–8]. Laser texturing technology has a number of
advantages, such as non-contact processing, precision, reproducibility, high productivity
and environmental friendliness [9–11].

Among several techniques for laser-induced texturing of metal surfaces, the attention
of researchers has recently focused on the laser surface melting (LSM) technique, inducing
significant changes in the microstructure [12–17].

In a number of articles, the authors research the influence of a number of technological
parameters (average power, pulse sequence frequency, scan speed, defocus, step between
lines, etc.) on the laser texturing process [18–22].

In their publication, M. Naumova and I. Morozova [18] studied the influence of
technological parameters during laser texturing on the surface of brass samples for the
purpose of forming an oxide layer and color marking. The influence of technological
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parameters, such as average power, pulse frequency and scan speed, on the depth of
roughness during the technological process of titanium samples was studied by C. Velotti
et al. [19]. They used a Yb: YAG fiber laser to conduct their experiments. The depth
of roughness was also investigated by D. Gogoi in his master’s thesis, where he uses a
CO2 laser, varying the power and scan speed. In publication [20], the author investigated
the influence of speed, the number of repetitions and the volumetric density of absorbed
energy on the process of laser marking of stainless-steel samples. In article [21], the
researcher analyzed laser texturing of the surface of copper samples by achieving super
hydrophobicity based on certain surface modifications and roughness. The author of a
master’s thesis, [22], performed laser engraving with a CO2 laser and concluded that the
laser power, scanning speed and number of dots per inch have convincing effects on the
samples. In the experiments, it was observed that, as the laser power increased, the surface
roughness increased, while lower and mid-range laser power resulted in better surface
quality with lower roughness.

In [23], the authors used a dual-frequency Nd: YAG green laser for laser texturing
while considering the crucial influence of the scanning speed on the surface roughness. The
authors of [24] performed laser texturing of several materials to study the dependence of
the process on the absorption of laser radiation and the thermal properties of the material.
It was unequivocally shown that the processing of materials strongly depends on the
absorption of laser radiation and the thermal properties of the materials. Of all the laser
machined materials (copper, aluminum, steel and titanium), copper is the most difficult to
machine due to its high reflectivity. This imposes and requires the highest laser power in
the processing area (from 1 kW at a processing speed of 0.1 m/min).

A number of studies also consider issues related to the change in microhardness in the
processing area after laser impact. The authors of [25] investigated the increase in hardness
of a 6 mm thick mild steel substrate after laser processing with 30 W and a fiber laser
(1060 nm) with a beam diameter of 0.4 mm. By laser processing the substrate with a laser
power of 21 W, a 100 µm raster step, 200 kHz frequency and a scan speed of 40 mm/s and
analyzing it with a load of 0.5 kg and hold of 10 s, the highest microhardness achieved for
mild steel was 281.72 HV. The marked zone of greater microhardness has a martensitic grain
structure, which gives an increase of 86% in the surface microhardness of the substrate.
In the analysis in [26], the researchers found that the laser beam treatment introduces a
self-hardening effect on the copper surface, due to which the microstructure of the copper
surface changes and an increase in hardness occurs. In addition, laser processing caused
rapid surface melting and recrystallization of the surface of the copper specimen, resulting
in lower roughness and higher microhardness and corrosion resistance effects in the nature
of the material. The results obtained in [27] show that the change in the overlap of the laser
beam leads to an increased hardness of the copper surface.

As a result of this analysis, we can state that the publications on laser texturing and
marking of copper products are extremely few in number.

For this reason, the aim of our research was to contribute to a more in-depth study of
the process of laser texturing of copper samples by analyzing the influence of some basic
parameters, such as laser radiation power, processing speed, raster step and the influence of
wavelengths for two types of lasers (a fiber laser and a copper bromide laser) on roughness
and microhardness.

2. Materials and Methods

The methodology used here makes it possible to analyze the relationship between
the contrast, roughness and microhardness of some parameters, such as scanning speed
(v), raster step (∆x), power (P) and pulse duration (τ). The sequence for planning and
performing the experiments is as follows:

(a) Setting tasks to be performed in the present experiments:

• Determination of roughness dependence on velocity—Ra = Ra (v)—for a fiber
laser for two pulse durations.
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• Determining the dependence of microhardness on speed—HV = HV(v)—for a
fiber laser for two pulse durations.

• Determining the dependence of roughness on the raster step—Ra = Ra(∆x)—for
a fiber laser and a copper bromide laser.

• Determining the dependence of microhardness on the raster step—HV = HV(∆x)—for
a fiber laser and a copper bromide laser.

(b) Designing matrices for performing the experiments:

For each task, a separate matrix is made with changes to the various technological
parameters. An example matrix is shown in Figure 1. It is suitable for the implementation
of tasks 1 and 2. The rows provide different velocity values for each square. Different
power values are provided along the columns. Matrixes of similar structure are made for
tasks 1–4 (see Figures 1–3).
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Figure 1. Matrix for performing experiments with a fiber laser for τ = 100 ns and τ = 200 ns at varying
marking speed and average power.

Coatings 2023, 13, x FOR PEER REVIEW 3 of 11 
 

 

(v), raster step (Δx), power (P) and pulse duration (τ). The sequence for planning and per-
forming the experiments is as follows: 
(a) Setting tasks to be performed in the present experiments: 

• Determination of roughness dependence on velocity—Ra = Ra (v)—for a fiber la-
ser for two pulse durations. 

• Determining the dependence of microhardness on speed—HV = HV(v)—for a 
fiber laser for two pulse durations. 

• Determining the dependence of roughness on the raster step—Ra = Ra(Δx)—for 
a fiber laser and a copper bromide laser. 

• Determining the dependence of microhardness on the raster step—HV = 
HV(Δx)—for a fiber laser and a copper bromide laser. 

(b) Designing matrices for performing the experiments: 
For each task, a separate matrix is made with changes to the various technological 

parameters. An example matrix is shown in Figure 1. It is suitable for the implementation 
of tasks 1 and 2. The rows provide different velocity values for each square. Different 
power values are provided along the columns. Matrixes of similar structure are made for 
tasks 1–4 (see Figures 1–3). 

 
Figure 1. Matrix for performing experiments with a fiber laser for τ = 100 ns and τ = 200 ns at vary-
ing marking speed and average power. 

 
Figure 2. Matrix for performing experiments with a fiber laser for τ = 100 ns at varying marking 
speed and raster step. 

 

v, mm/s
10 20 30 40 50 60 70 80

4.72
(10)P,

 W

6.61
(14)

9.31
(19.4)

Δx, µm
3 5 7 10 12 15 17 20

15

v,
 m

m
/s

45

90

Δx, µm
3 7 12 17 22 27

30

v,
 m

m
/s

45

90

Figure 2. Matrix for performing experiments with a fiber laser for τ = 100 ns at varying marking
speed and raster step.
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Figure 3. Matrix for performing experiments with a CuBr laser for τ = 30 ns at varying marking
speed and raster step.

(c) Performing experiments and marking of samples:

The marked areas are square shaped with dimensions of 10 mm × 10 mm with
2 mm distance between them. The copper plates are marked with a Rofin F20 fiber
laser (1064 nm) and a CuBr laser (511 and 578 nm). During maceration with a Rofin
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F20 fiber laser on 3 copper plates (Figure 1), 24 planned experiments were carried out
with a changing speed from 10 to 80 mm/s in a step of 10 mm/s and an average power of
4.72 W, 6.61 W and 9.31 W, with constant parameters being the raster pitch, focal length
184 mm, frequency 20 kHz and pulse duration 100 ns, with a pulse duration of 200 ns
for the repeated experiment. When marking the experimental matrix (Figure 2) with a
Rofin F20 fiber laser on the copper plate, 24 planned experiments were carried out with a
changing marking speed of 15 mm/s, 45 mm/s and 90 mm/s and a raster step of 3 µm,
5 µm, 7 µm, 10 µm, 12 µm, 15 µm, 17 µm and 20 µm, with the constant parameters being
average power, focal length 183 mm, frequency 20 kHz and pulse duration 100 ns. For the
laser marking of 3 copper sheets with a CuBr laser, the experimental matrix consisted of
18 experiments with memorized parameters of marking speeds of 30 mm/s, 45 mm/s and
90 mm/s and a raster step of 3 µm, 7 µm, 12 µm, 17 µm, 22 µm and 27 µm, with constant
parameters being an average power of 10 W, a focal length of 300 mm, frequency of 20 kHz
and pulse duration of 30 ns.

(d) Roughness measurement (for each square):

Roughness measurements and the resulting microstructure were examined with an
Olympus model “OLS5100-EAF” laser microscope. The obtained microstructural images
were carried out using a 20× objective, with a magnification of 451×, as the examined area
for each measurement was 644 × 644 µm, with a measurement accuracy of ±0.03 µm.

From the obtained 3D images with the laser system of the microscope, the roughness
Ra and Rz perpendicular to the marking lines with a length of 644 µm and the roughness
Rq for the entire examined area, 644 × 644 µm, were measured. The obtained values are
plotted in tables and graphical dependencies of changes in roughness depending on speed
and raster step during surface laser processing are shown. The built dependencies are
presented in the results.

(e) Microhardness measurement (for each square):

The hardness measurement was carried out according to the Vikes method with Ino-
vatest “Nexus 4000-4302”; its capabilities are presented. The choice of load was established
according to microscopic analysis and surface roughness. The maximum load is 1.961 N,
with 5 consecutive measurements performed in a 200 µm step in the marked area. Mea-
surements took place at a microscopic zoom of 40×. The measured values are tabulated
and averaged over the five measurements of each mark. With the obtained data, graphical
dependencies were built for the influence of speed, pitch and mass on the roughness and
hardness. Comparison charts were also constructed and are presented in Section 3 results.

3. Results

The marked substrates of Cu by fiber and copper-bromide laser were analyzed un-
der a laser microscope and hardness tester for average roughness and micro-hardness,
respectively. To determine the change in roughness (Ra) and hardness (HV) after laser
marking, they were measured in the delivery condition (Figure 4). The initial roughness in
the condition of delivery of the copper plates is in the range of 0.22 µm to 0.64 µm. The
measured hardness as delivered (before laser treatment) for the copper plates is in the range
of 61.2 HV to 67.1 HV.
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Figure 4. Images at 451× magnification of (a) microstructure of the measured hardness of an untreated
surface, (b) measured hardness on a laser-marked surface with an overlap factor, and (c) measured
hardness on a laser-marked surface without overlap.

3.1. Determination of Roughness Dependence on Velocity—Ra = Ra(v)—For a Fiber Laser for Two
Pulse Durations

During the experiments, the speed v varied from 10 mm/s to 80 mm/s. The studies
were at two pulse durations, 100 ns and 200 ns. The following parameters were kept
constant: frequency 20 kHz and raster step 10 µm. A comparison of the marked surfaces
(highest and lowest roughness) can be observed in Figures 5 and 6. The graphical images
in Figure 7 depict the obtained analytical values of the average roughness of the Cu after
the laser treatment for a pulse duration τ of 100 ns (Figure 7a) and 200 ns (Figure 7b). The
graphical analysis is as follows:

• For the three average powers P, with the increasing laser marking speed, a decrease in
the roughness can be observed for τ = 100 ns and τ = 200 ns.

• For the pulse duration of τ = 100 ns: At the power P of 4.72 W with a change in speed
from 10 mm/s to 80 mm/s, the roughness changes from 5.5 µm to 0.38 µm. At the
power of 6.61 W with a change in speed from 10 mm/s to 80 mm/s, the roughness Ra
changes from 5.99 µm to 0.38 µm. At the power of 9.31 W with a change in speed v
from 10 mm/s to 80 mm/s, the roughness Ra changes from 7.65 µm to 0.38 µm.

• For the pulse duration of τ = 200 ns: At the power P of 10 W with a change in speed
v from 10 mm/s to 80 mm/s, the roughness Ra decreases from 6.33 µm to 4.87 µm.
At the power P of 14 W with a change in speed v from 10 mm/s to 80 mm/s, the
roughness Ra increases from 9.5 µm to 6.33 µm. At the power P of 19.4 W with a
change in speed v from 10 mm/s to 50 mm/s, the roughness Ra increases from 14.5 µm
to 10.2 µm.

• When compared with the results of τ = 100 ns pulse duration, it was noticed that
the roughness Ra obtained at 200 ns is more stable, rather than the downfall of the
achieved graph at 100 ns. The reason is the larger pulse energy at a τ = 200 ns pulse
duration than that at τ = 100 ns. At high speeds v of 70–80 mm/s, the roughness Ra of
the marked surface approaches that of the background for τ = 100 ns.
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τ = 100 ns. (a) P = 9.3 W at v = 10 mm/s, and (b) P = 9.3 W at v = 80 mm/s, respectively.
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Figure 7. Graphical representation of the average roughness measurements of the copper sample,
marked with a fiber laser for (a) τ = 100 ns; (b) τ = 200 ns.

3.2. Determining the Dependence of Microhardness on Speed—HV = HV(v)—For a Fiber Laser for
Two Pulse Durations

The graphical representations in Figure 8 depict the obtained analysis values of the
microhardness of Cu after laser processing for a pulse duration of τ = 100 ns (Figure 8a)
and τ = 200 ns (Figure 8b). The graphical analysis is as follows:

• For the three powers, with the increasing laser marking speed, a decrease in the
microhardness can be observed for τ = 100 ns and τ = 200 ns.

• For the pulse duration of 100 ns: At the power P = 4.72 W with a change in speed v from
10 mm/s to 80 mm/s, the microhardness HV changes from 179 to 75. At the power
P = 6.61 W with a change in speed v from 10 mm/s to 80 mm/s, the microhardness
HV changes from 199 to 80. At the power P = 9.31 W with a change in speed v from
10 mm/s to 80 mm/s, the microhardness HV changes from 235 to 84.

• For the pulse duration of 200 ns: At the power P = 10 W with a change in speed v from
10 mm/s to 80 mm/s, the microhardness changes HV from 123 to 82. At the power
P of 14 W with a change in speed v from 10 mm/s to 80 mm/s, the microhardness
HV changes from 160 to 100. At the power P = 19.4 W with a change in speed v from
10 mm/s to 80 mm/s, the microhardness HV changes from 207 to 123.

• When compared with the results of τ = 100 ns pulse duration, it was noticed that the
enhanced microhardness obtained at τ = 200 ns is more stable than that at τ = 100 ns.



Coatings 2023, 13, 1970 7 of 11Coatings 2023, 13, x FOR PEER REVIEW 7 of 11 
 

 

  
(a) (b) 

Figure 8. Graphical representation of the microhardness measurements of the copper plate, marked 
with a fiber laser for (a) τ = 100 ns; (b) τ = 200 ns. 

3.3. Determining the Dependence of Roughness on Raster Step—Ra = Ra(Δx)—For a Fiber Laser 
and a CuBr Laser 

During the experiments, the raster step Δx had values of 3 µm, 5 µm, 7 µm, 10 µm, 
12 µm, 15 µm, 17 µm and 20 µm for the fiber laser. For the copper bromide laser, the raster 
step Δx values were 3 µm, 7 µm, 12 µm, 17 µm, 22 µm and 27 µm. 

The following parameters were kept constant: for the fiber laser—frequency v = 20 
kHz, pulse duration 100 ns and power P = 9.3 W; for the CuBr laser—frequency v = 20 
kHz, pulse duration τ = 30 ns and power P = 5.5 W. A comparison of the marked surfaces 
(highest and lowest roughness) can be observed in Figures 9 and 10. The graphical images 
in Figure 11 depict the obtained analytical values of the average roughness of the Cu after 
the laser treatment for the fiber laser (Figure 11a) and the CuBr laser (Figure 11b). The 
graphical analysis is as follows: 
• For the three speeds v, with the increasing raster step Δx, a decrease in the roughness 

Ra can be observed for the two lasers. 
• For the fiber laser: At the speed v of 15 mm/s with a change in raster step Δx from 3 

µm to 20 µm, the roughness Ra decreases from 30.5 µm to 12.5 µm. At the speed v of 
45 mm/s with a change in raster step Δx from 3 µm to 20 µm, the roughness Ra de-
creases from 24.3 µm to 10.3 µm. At the speed v of 90 mm/s with a change in raster 
step Δx from 3 µm to 20 µm, the roughness Ra decreases from 15.6 µm to 7.3 µm. 

• For the CuBr laser: At the speed v of 30 mm/s with a change in raster step Δx from 3 
µm to 27 µm, the roughness Ra changes from 6.4 µm to 2.1 µm. At the speed v of 45 
mm/s with a change in raster step Δx from 3 µm to 27 µm, the roughness Ra decreases 
from 5.4 µm to 1.6 µm. At the speed v of 90 mm/s with a change in raster step Δx from 
3 µm to 27 µm, the roughness Ra decreases from 3.1 µm to 1.0 µm. 

  
(a) (b) 

Figure 9. Images of the comparison of the highest and lowest roughness Ra of the fiber-marked sam-
ple at τ = 100 ns, (a) v = 90 mm/s, Δx = 3 µm, and (b) v = 90 mm/s, Δx = 20 µm, respectively. 

Figure 8. Graphical representation of the microhardness measurements of the copper plate, marked
with a fiber laser for (a) τ = 100 ns; (b) τ = 200 ns.

3.3. Determining the Dependence of Roughness on Raster Step—Ra = Ra(∆x)—For a Fiber Laser
and a CuBr Laser

During the experiments, the raster step ∆x had values of 3 µm, 5 µm, 7 µm, 10 µm,
12 µm, 15 µm, 17 µm and 20 µm for the fiber laser. For the copper bromide laser, the raster
step ∆x values were 3 µm, 7 µm, 12 µm, 17 µm, 22 µm and 27 µm.

The following parameters were kept constant: for the fiber laser—frequency v = 20 kHz,
pulse duration 100 ns and power P = 9.3 W; for the CuBr laser—frequency v = 20 kHz, pulse
duration τ = 30 ns and power P = 5.5 W. A comparison of the marked surfaces (highest and
lowest roughness) can be observed in Figures 9 and 10. The graphical images in Figure 11
depict the obtained analytical values of the average roughness of the Cu after the laser
treatment for the fiber laser (Figure 11a) and the CuBr laser (Figure 11b). The graphical
analysis is as follows:

• For the three speeds v, with the increasing raster step ∆x, a decrease in the roughness
Ra can be observed for the two lasers.

• For the fiber laser: At the speed v of 15 mm/s with a change in raster step ∆x from
3 µm to 20 µm, the roughness Ra decreases from 30.5 µm to 12.5 µm. At the speed v
of 45 mm/s with a change in raster step ∆x from 3 µm to 20 µm, the roughness Ra
decreases from 24.3 µm to 10.3 µm. At the speed v of 90 mm/s with a change in raster
step ∆x from 3 µm to 20 µm, the roughness Ra decreases from 15.6 µm to 7.3 µm.

• For the CuBr laser: At the speed v of 30 mm/s with a change in raster step ∆x from
3 µm to 27 µm, the roughness Ra changes from 6.4 µm to 2.1 µm. At the speed v
of 45 mm/s with a change in raster step ∆x from 3 µm to 27 µm, the roughness Ra
decreases from 5.4 µm to 1.6 µm. At the speed v of 90 mm/s with a change in raster
step ∆x from 3 µm to 27 µm, the roughness Ra decreases from 3.1 µm to 1.0 µm.
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3.4. Determining the Dependence of Microhardness on Raster Step—HV = HV(∆x)—For a Fiber
Laser and a Copper Bromide Laser

The graphical images in Figure 12 depict the obtained analytical values of the micro-
hardness of the Cu after the laser treatment for the fiber laser (Figure 12a) and the copper
bromide laser (Figure 12b). The graphical analysis is as follows:

• For the three speeds v, with the increasing raster step ∆x, a decrease in the microhard-
ness can be observed for the two lasers.

- For the fiber laser: At the speed v of 15 mm/s with a change in raster step ∆x from
3 µm to 20 µm, the microhardness HV decreases from 126 to 95. At the speed v of
45 mm/s with a change in raster step ∆x from 3 µm to 20 µm, the microhardness
HV changes from 143 to 137. At the speed v of 90 mm/s with a change in raster
step ∆x from 3 µm to 20 µm, the microhardness HV increases from 157 to 293.

- For the CuBr laser: At the speed v of 30 mm/s with a change in raster step ∆x
from 3 µm to 27 µm, the microhardness HV decreases from 320 to 165. At the
speed v of 45 mm/s with a change in raster step ∆x from 3 µm to 27 µm, the
microhardness HV changes from 273 to 130. At the speed v of 90 mm/s with a
change in raster step ∆x from 3 µm to 20 µm, the microhardness HV increases
from 216 to 112.

• Microhardness when marking with a CuBr laser is about 20% greater than when using
a fiber laser. The reason is that the pulse power Pp for a copper bromide laser is
9.17 kW, while for a fiber laser it is only Pp = 4.65 kW.

• For both lasers, microhardness HV gradually decreases with increasing speed v and
raster step ∆x.
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Figure 12. Graphical representation of the microhardness HV measurements of the marked sample
with (a) fiber laser, (b) CuBr laser.

4. Conclusions

The results show that the surface roughness Ra and microhardness HV for laser
marking are dependent on laser parameters, like power P, pulse duration τ, scanning speed
v and raster step ∆x. It was noticed that with the increase in the power P and pulse duration
τ, the roughness Ra and microhardness HV increased too, whereas, with the increase in
the scanning speed v and raster step ∆x, a decrease in the values of roughness Ra and
microhardness HV were obtained.

Also, results were obtained for the impact of basic technological parameters, such as
scanning speed v and raster step ∆x, to optimize the process of laser marking of copper
specimens with various lasers—a fiber laser and a CuBr laser. Specific values for the change
in roughness and microhardness in the studied ranges of variation in the technological
parameters were also obtained from the dependency graphs and analyses:

• The surface roughness Ra and microhardness HV from speed v for three powers of
laser radiation at pulse duration τ = 100 ns for the fiber laser. For the studied speed
interval from 10 mm/s to 80 mm/s, it was found that with increasing speed, the
roughness sharply decreases for all three powers, as the roughness changes from
5.50–7.65 µm to 0.38 µm, i.e., decreases 15–20 times. The microhardness decreases
about 2.5 times in the studied speed interval.

• The surface roughness Ra and microhardness HV from speed v for three powers of
laser radiation at pulse duration τ = 200 ns for the fiber laser. Again, as the speed
increases, the roughness decreases, but the reduction is about 30% for the whole range
of speeds, i.e., significantly slower compared to the pulse duration τ = 100 ns. It is
found that the microhardness at pulse duration τ = 100 ns is about two times greater
than that at pulse duration τ = 200 ns.

• The surface roughness Ra and microhardness HV from the raster step ∆x for three
speeds v for the fiber laser. When changing the raster step from 3 µm to 20 µm,
the roughness decreases by 2.5 times, and the microhardness decreases by nearly
two times.

• The surface roughness Ra and microhardness HV from the raster step for three speeds
v for the CuBr laser at τ = 30 ns. When changing the raster step from 3 µm to 27 µm,
the roughness decreases by three times, and the microhardness decreases by about
1.9 W times.

The results are suitable for obtaining a complete picture of the laser marking process
and can be applied to the analysis of other technological processes related to laser surface
treatment. The results are suitable for the field of mechanical engineering and the military
industry, where surface treatments and tribological characteristics are of utmost importance.
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