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Pathogenic biofilm formation is a major issue of concern in various sectors such
as healthcare and medicine, food safety and the food industry, wastewater treatment
and drinking water distribution systems, and marine biofouling [1–3]. Biofilms are ses-
sile bacterial colonies attached to an abiotic or biotic surface and sheltered by a matrix
of self-produced extracellular polymeric substances (EPS), namely proteins (e.g., fibrin),
polysaccharides (e.g., alginate), and eDNA [4]. Despite being genetically identical, in the
biofilm style of life, bacteria exhibit an altered phenotype with respect to metabolic activity,
rate of growth, and gene expression as compared to their planktonic counterparts [5].
Even cells located in different regions of the EPS matrix of the same biofilm experience
different local conditions regarding nutrients and oxygen shortages as well as increased
levels of waste products, secondary metabolites, and secreted factors [6,7]. As a normal
consequence, gene expression in these cells as well as in their free-floating counterparts
differ significantly. In biofilm aggregates, bacterial cells communicate with each other,
somehow similar to multicellular organisms, which enables them to behave like a group in
a coordinated and intricately regulated manner through a mechanism known as quorum
sensing (OS) [8]. This intercellular communication is mediated by signaling molecules
that control the biofilm formation and development, namely N-acyl-homoserine lactones
(AHL) or auto-inducing peptides (AIP) in Gram-negative and Gram-positive bacterial
pathogens, respectively [9–13]. Moreover, the developed communication abilities provide
bacteria with a lot of benefits in host colonization and self-defense against antimicrobials
and host immune system resulting in increased recalcitrance and resilience towards the
most commonly used agents in the anti-infective therapy, which explains the chronic and
recurrent character of biofilm infections. Combined with the selection of multidrug resistant
strains as a result of excessive use and misuse of antibiotics, an acquired pathogenic biofilm
infection can become a life-threatening condition, especially in the case of nosocomial
infections associated with the use of invasive, interventional, indwelling, and implanted
medical devices [14]. Covering of surfaces with nanostructured biofim resistant coatings
appeared as a valuable effective way to address this serious public health problem.

Two main strategies emerged in designing an anti-biofilm nanocoating, the so-called
passive and, active strategies.

The passive strategy aims to impede the settlement of bacteria on a surface (“foul-
ing resistance” approach), or to remove the already attached bacteria (“fouling release”
approach) [13,15]. Surface modulation of bacterial adhesion underlying the passive strat-
egy has to take into account a delicate balance between several surface parameters that
influence adhesion-like surface topography, namely surface roughness and micropores,
physical properties of the substrate—i.e., the mechanical stiffness and wettability based on
the molecular hydrophilic/lipophilic balance—as well as the chemical properties of the
surface such as surface energy, surface charge, and the presence of bioactive molecules
on the substrate [16]. Fouling resistance coatings are obtained by the construction of a
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hydrophilic surface numerous hydrophilic materials, such as poly(ethylene glycol), zwit-
terionic, glycomimetic, and peptidomimetic polymers being employed to this purpose.
The mechanism behind the antifouling effect is based on thermodynamic considerations:
(a) the steric repulsion effect originating in the unfavorable entropy loss occurring when a
foulant compresses the extended polymer brushes thereby restraining the free motility of
the polymer chains, and (b) non-specific foulant adsorption is thermodynamically disfa-
vored since it would involve disruption of the strongly bound hydration shell present at the
hydrophilic surface [13,15]. On the other hand, the fouling release approach was inspired
by the low adhesion and self-cleaning properties of the Lotus leaf resulting from a peculiar
surface topography with dual hierarchical roughness at the micro- and nano-length scales
consisting of micro-bumps of epidermal cells (papillae) coated with a dense covering of
agglomerated nanoscale epicuticular hydrophobic wax tubules [17]. To construct such low
adhesion coatings, low surface energy polymer materials such as silicones and fluoropoly-
mer derivatives were mostly used [18,19], but metallic and metal oxides anti-biofouling
surfaces with nanostructured hierarchical topography have been also developed [20]. Com-
bination of the two passive strategies in a unique platform in order to mitigate the inherent
drawbacks associated with each of them and to achieve a synergic antifouling effect was
reported as well [21]. Several methods to fabricate superhydrophobic coatings with hier-
archical roughness have been developed. From the top–down fabrication techniques, we
mention: (1) templating, which is a replication technique allowing the creation of a surface
topography that is a complementary (negative) replica of an appropriate specially prepared
template [22,23]; (2) lithography, including photolithography, electron beam lithography,
and ion beam lithography, which all share the principle of transferring an image from a
mask to a receiving substrate [24,25]; (3) chemical and plasma etching [26,27]; (4) anodic
oxidation [28]; and (5) laser ablation [29]. In bottom-up methods, the nanopatterning of the
surface is achieved by the controlled sequential deposition of material onto a substrate. The
deposition techniques can be based on (1) purely physical processes such as evaporative
methods, physical vapor deposition with its laser-assisted variants pulsed laser deposition
(PLD) and matrix-assisted pulsed laser evaporation (MAPLE), and electrospinning [30,31];
(2) physicochemical processes such as molecular self-assembly [32,33]; and (3) chemical
processes involving a chemical reaction between appropriate precursors. With regard to
the latter category, the precursors may initially be either in solution this being the case of
sol-gel [34], hydro- or solvothermal [35], and electrochemical [36–38] deposition processes,
or in the vapor phase like in the chemical vapor deposition (CVD) method [39].

As the opposite of the antibiofouling passive strategies [15], active strategies aim either
to kill bacteria by destroying vital cellular structures such as the plasma membrane or by
interfering with crucial metabolic processes or to mitigate the increase in recalcitrance and
virulence associated with biofilm development by disrupting the molecular mechanisms
and signaling pathways that control the different stages of the biofilm life cycle. There are
two types of active antibiofilm coatings, namely contact killing or non-leaching and drug
eluting. The therapeutic agent can be either covalently tethered on the coating’s surface
(contact killing) or entrapped mechanically or via intermolecular bonding within the coat-
ing’s bulk acting like a drug reservoir which is gradually depleted (drug eluting) [40–43].
Structurally, there are several types of nanocaotings such as self-assembled monolayers
(SAMs), multi-layered layer by layer (LbL) deposited coatings, polymer brushes or ionotrop-
ically cross-linked hydrogels [44]. Nanostructured active antibiofilm coatings can target
all main mechanisms responsible for the acquired increased recalcitrance of biofilm bac-
teria towards antibiotics, namely alteration of cell membrane permeability resulting in
decreased drug uptake and increased drug export, enzymatic destruction of the antibiotic
molecule, and the modification/absence of the antibiotic targets [45,46]. There is a wide
variety of antimicrobial agents: antibiotics of various classes and mechanisms of action,
antimicrobial peptides, antimicrobial enzymes, quorum sensing inhibitors, efflux pumps
inhibitors, nucleotide second messenger signaling modulating molecules, persister cell for-
mation inhibitors, quorum quenching agents, biofilm dispersal inducers, bacterial genetic
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biodiversification inhibitors, polycationic biocides, N-halamine compounds, chlorhexidine,
usnic acid, silver and silver ions, and a series of natural products such as resveratrol and
essential oils [3,12,46].

Advanced smart engineered nanocoatings fulfill a series of key requirements needed
especially for biomedical applications [47].

First, we will discuss the striking advantageous features of multi-task drug
releasing nanocoatings.

A. Modulation of release kinetics in order to keep the concentration of the antimicrobial
agent within the therapeutic window as long as necessary can be achieved using
polyelectrolyte multi-layered nanocoatings (PEMs) formed by LbL deposition of
oppositely charged polymers [48].

B. Smart nanocoatings which are able to undergo structural changes in sharp response
to particular endogenous (e.g., small changes in microenvironmental temperature,
pH, enzyme activity, or redox potential) or exogenous externally applied (electrical,
ultrasonic, photothermal, magnetic, and mechanical) stimuli, thereby triggering the
release of their therapeutic payload [49]. The most advantageous variant of this
approach is represented by the bacteria-responsive coatings, which release their drug
payload only when surrounded or in contact with bacteria [50], thereby mitigating
unwanted side effects, resistance development, and futile drug use.

C. Multi-release coatings which can simultaneously deliver different antimicrobials with
different action mechanisms. The aim of this approach is to achieve synergic effects
and to reduce induction of bacterial resistance since several mutations should occur
simultaneously in the same bacterial cell.

D. Multi-property coatings fulfil a series of requirements which are of primordial im-
portance in clinical applications such as biocompatibility, lack of toxicity and im-
munogenicity, mechanical strength, resistance to corrosion and wear, anticoagulation,
enhanced bone-integration, and improved overall tissue-integration [47].

Second, the latest trends in the field of antibiofilm coatings refer to the so-called multi-
approach coatings, which join in a unique nanoplatform both contact killing and drug
eluting strategies. In operating these unique integrating platforms, the two strategies can
be applied either simultaneously or sequentially, that is, one at a time. In the latter case,
depending on the initial status of the nanocoating, two strategies emerged, namely the “kill
and repel” and the “resist and kill” surfaces [51]. One of the “kill and repel” approaches is
based on a pH-induced chemical switching strategy from an initial antibacterial cationic
form of the surface to a fouling resistance zwitterionic form [52]. On the other hand, the
“resist and kill” approach is illustrated here by the following example [53]. A multi-layered
coating was constructed by LbL self-assembly of alternate layers of oppositely charged
polyanionic heparin and polycationic chitosan. At the top of this coating another multi-
layered coating of cross-linked polyvinylpyrrolidone/poly(acrylic acid was deposited by
hydrogen bond interactions. The highly hydrated and thus fouling resistant top coating
undergoes controlled degradation in a predetermined time frame(24 h), living behind the
outermost polycationic and thus contact killing chitosan layer of the inner multi-layered
coating [53]. By making the switching process from the initial bactericidal status to the non-
fouling status reversible, self-healing or self-regenerating “kill and repel” surfaces, which
can go through several bacteria killing/surface regeneration cycles without significant
reduction in the initial bactericidal activity, could be obtained [40,44,54,55].

The aim of the present Special Issue is to highlight the latest achievements in the field
of engineered nanostructured coatings, regardless of structure and morphology, chemical
composition, action mechanism or fabrication method, but with a special focus on the
applications in the biomedical and food industry fields.
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