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Abstract: The non-contact long pulse thermography method is commonly used to detect the defects
in thermal barrier coatings (TBCs). The profile of interfacial defect in TBCs can be monitored by
infrared camera under the irradiation of the excitation source. Unfortunately, the defect profile is
always blurry due to heat diffusion between the defect area and the intact area. It is difficult to
quantify the size of defect size in TBCs. In this work, combined with derived one-dimensional heat
conduction analytical model, a non-contact long pulse thermography (LPT) method is applied to
quantitatively investigate the interface defects in TBCs. Principal component analysis (PCA) and
background subtraction method are used to improve the contrast of the defect profile in collected
thermal images. By fitting the results between the profile of the interface defect in thermal images
and the predicted shape of the model, the interface defect size can be determined. Furthermore, a
simple extension of proposed method for interfacial defects with irregular shape is presented. The
predicted errors for round defect with diameters of 3 mm, 5 mm and 7 mm are roughly distributed in
the range of 3%~6%, which are not affected by the defect diameter.

Keywords: thermal barrier coatings; long pulse thermography; interfacial defects; fitting background
subtraction; quantitative characterization

1. Introduction

Thermal barrier coatings (TBCs) are widely used to improve the temperature-bearing
capacity of high temperature components in aircraft engines such as high pressure turbine
blades and combustors [1,2]. A typical system of TBCs is composed of a superalloy
substrate, a ceramic topcoat with low thermal conductivity, and a metallic bond coat for
offering adhesion between the topcoat and the substrate [3–6]. In addition, thermally
grown oxide (TGO) is formed in the interface between the ceramic topcoat (TC) and bond
coat (BC) due to oxidation at high temperature [7]. TBCs can effectively provide reductions
in the surface temperature of the superalloy substrate (100–300 ◦C) [8]. Due to the complex
multi-layer structures of TBCs and the harsh service environment, the coating is prone to
interfacial defects such as debonding and buckling. Further propagation of these defects
will lead to spalling failure of TBCs, which seriously threatens the safe application of
TBCs on turbine blades. Many previous studies show that the spallation of TBCs starts
as a separation between TC and BC. Zhen et al. [9] found that delamination cracking
appears in the interior of the TGO layer and the interface area between BC and TGO layers
after thermal cycling. Wei et al. [10] showed that the surface vertical crack expands to
the interface of BC/TGO layers and merges rapidly with the horizontal crack, with the
consideration of TGO growth and ceramic sintering. As the delamination between TC and
BC becomes large enough, buckling appears [11,12], and enough buckling will cause the
spalling of TC. However, some interfacial defects are buried in the bottom of the ceramic
coating, which are hard to directly observe with the naked eye. In order to avoid sudden
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accidents and loss due to the detachment of TBCs, it is very important to develop an
effective way to predict and evaluate the state of defect in TBCs.

Over the years, several nondestructive techniques such as ultrasonic [13], impedance
spectroscopy [14], X-ray computed tomography [15,16], and infrared thermography non-
destructive testing [17,18] have been used to evaluate and identify the state of defect in
TBCs. Impedance spectroscopy and ultrasonic testing are the contact detection methods,
and they are not conducive to defect detection for TBCs in many in-service situations. X-ray
computed tomography is able to analyze the 3D spatial microstructure in nondestructive
mode, but the inspection equipment is relatively costly, and the top ceramic coating need
to be removed from the superalloy substrate for alleviating the effect of X-ray absorption.
The above mentioned nondestructive testing methods are not ideal for the quantitative
characterization of internal defects in TBCs. Infrared thermography testing has become a
hot defect evaluation method due to the advantages of non-contact, high efficiency, direct
detection results, and quantitative characterization of defects [19].

Long pulsed thermography (LPT) is commonly used to detect internal defects [20].
The detection principle of infrared thermography is that the excitation source (such as flash
bulbs, halogen lamps) heats the surface of the sample and the temperature change of the
sample surface is monitored and recorded by an infrared camera. Due to the difference of
the thermal properties of defective and intact region, the temperature in the defective region
is different from that in the intact region. Then, the information of defects can be detected,
such as debond, crack, uneven thickness of coating, delamination and so on. Newaz
et al. [21] investigated the progressive damage assessment in TBCs using PT technique, and
the results verified that coating layering and buckling happens only toward the end of life
and has a very short span. Combining Terahertz-Time domain spectroscopy (THz-TDS)
with the PT technique, the degree of degradation of the thickness of TBCs top coat of
varying service lifespans were quantitatively analyzed [22]. Based on the thermography
method, Kumar et al. [23] collected the thermographic images of TBCs samples exposed
to thermal cycling. The experimental results are consistent with the FEM results, which
verified the delamination form of defect. Shi et al. [24] developed one-way coupling
algorithm (GEMSS) and carried out the investigation of the thermal image collected by
infrared thermography to detect cracks in TBCs. The amount and position of crack with
different lengths can be identified from collected thermal image. Zhu et al. [25] combined
the acoustic emission method with infrared thermography to explore the degradation
mechanism of TBCs corroded by CMAS under thermal shock. The increased abnormal
temperature area with the number of thermal shock cycles can be observed from the thermal
images. The abnormal area was recognized as the spalling location.

Recently, a few quantitative evaluation methods of internal defect size have been
developed for TBCs. Zhuo et al. [26] developed a size estimation method of interior defects,
which added a hypothetical heat flux supplied from surface temperature measured by
step heating thermography. Guo et al. [27] studied the diameter of in-plane defect by LPT,
and proposed a novel method FWHM-1st to quantify the diameter. The error of their
measurement results of defect becomes larger with the decrease in the defect size, and the
minimum error reached 12%. Due to the inevitable fact that heat diffusion blurs the defect
boundary in thermal images, the accurate evaluation of the sizes of smaller defects still
needs to be developed.

In order to further enhance the assessment ability of the size of interfacial defects
in thermal images of TBCs, we proposed a quantification method by fitting the results
between the profile of interface defect in thermal images and the predicted shape of the
model in this paper. First, LPT was used to quantitative investigate the interfacial defects
of TBCs. Then, PCA is applied to extract a reconstructed thermal image from the abundant
thermal images collected by LPT. The background subtraction method was used to reduce
the background influence in the collected thermal images. Furthermore, a one-dimensional
heat conduction analytical model of TBCs with interface defects was derived. By fitting the
results between the profile of interface defect in thermal images and the predicted shape of
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the model, the interface defect size can be determined. At last, a simple extension of current
evaluation method of defect size was presented for interfacial defects with irregular shape.

2. Experiments
2.1. Sample

Two flat-plate test samples with the dimensions of 115 mm × 40 mm ×5 mm were
prepared for the experiment. Each sample was composed of the stainless steel substrate,
precast brass defects, and 7 wt.% yttria-stabilised zirconia (YSZ) coating. In order to
produce interfacial defects in the samples, several cylindrical holes with different diameters
and the same depth of 1.5 mm were drilled in the stainless steel substrate before spraying.
Then, these holes were plugged with copper, which had the same dimensions as holes. The
height of copper billet was slightly less than the depth of the cylindrical holes, therefore,
a paper-thin air gap existed in the interface between the copper billet and stainless steel.
Then, the surface of the stainless steel substrate was polished flat. Finally, the YSZ coating
with a thickness of 200 µm was prepared on the surface of the substrate by air plasma
spraying. The processing parameters for spraying the YSZ coating are given in Table 1.

Table 1. Spraying parameter for YSZ coat.

Voltage (V) Current(A) Primary Gas
Ar (slpm)

Primary Gas
H2 (slpm)

Standoff
Distance (mm)

Feed Rate
(g/min)

75 600 40 15 110 20

Sample 1 is used to propose the image processing method and the quantitative method
of the size of defect. Sample 2 is used to verify the quantitative method. Figure 1 shows
the schematic diagram of the dimension of the sample 1. The center of defects was in the
bisector of substrate. The samples with different sizes of defects were used to investigate
the effect of defect diameters on temperature distribution law. The dimensions of the
in-plane defects are given in Table 2.
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Table 2. Thickness of ceramic coating and the dimension of the interfacial defects.

Sample Number Diameter of Defect D (mm)

1 Flaw 1: 10; Flaw 2: 8; Flaw 3: 6; Flaw 4: 4; Flaw 5: 2
2 Flaw 1: 7; Flaw 2: 5; Flaw 3: 3

2.2. Experimental Setup and Data Collection

A flow diagram of defect detection by LPT is shown in Figure 2. Two halogen lamps
with a high power of 2 kW were selected as the excitation sources. In order to reduce the
effect of uneven heating, the two lamps were placed symmetrically on both sides of the
test sample, and the space between them was about 1 m. An infrared camera was put in
the middle of the two lamps to capture the temperature evolution of samples surface. The
objective table was used to place the tested sample, and located at the right ahead of the
infrared camera. The spectral range, thermal sensitivity at room temperature and resolution
of the infrared camera were 3.8~4.05 µm, 25 mK, and 320 × 240 pixels, respectively. In
this study, the sampling frequency was 30 Hz, the heating time was 6 s, and the distance
between the sample and the infrared camera was 30 cm.
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Figure 3 shows an infrared image of the sample surface captured by the infrared
camera. The temperature of the defective area was higher than that of the intact area. The
90 frames thermal images in the first 3 s period after removing the thermal excitation source
were used to analyze the characteristic information of temperature. In order to reduce
the effect of environmental noise on the defect identification, the first frame of the images
was used as the background image, and the reconstructed 90 frames thermal sequence
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images were obtained by subtracting background image from the images, including noise
interference signal. To facilitate the following processing, the ratio (T) of temperature data
T extracted from the subtracting background thermal sequence image to Td (Td = 1 ◦C)
was obtained.
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2.3. Principal Component Analysis (PCA)

PCA was used to process thermal image sequences with uneven heating noise and
improve the defect detectability from multiple frames figures [28,29]. Based on the principle
of data dimensionality reduction reconstruction, PCA uses the singular value decomposi-
tion (SVD) to extract the spatial and temporal information containing defect features from
abundant thermal image sequences [28,30]. The SVD is written as follows:

[A] = [U][R][V]T (1)

where [A] is a matrix, whose column vector is composed by each frame image compressed
into a single column. [U] and [V] are the left and right singular matrixes of the matrix
[A]. [R] is a 90 × 90 diagonal matrix with the singular values of matrix [A] in the diagonal
and the elements of matrix [R] are equal to zero on off-diagonal lines. Considering that
data matrix [A] is arranged time variations occur column-wise and spatial variations occur
row-wise, the columns of matrix [U] are composed by the empirical orthogonal functions
(EOF) that can describe the spatial variables of the thermal response data. Matrix [V] can
describe the characteristic time behavior, where the principal component (PC) vectors are
arranged row-wise [31,32].

Corresponding to the three principal components of the 90 frames of thermal im-
ages processed in previous section, the reconstructed thermal sequence images by PCA
algorithm are shown in Figure 4. Conveniently, we denoted the reconstructed image of
the n principal component as PCn. The temperature distribution in PCn is denoted by
TPCn. Figure 4a shows that a reconstructed thermal sequence image of the first principal
corresponds to the three principal components of the 90 frames thermal images processed
in the previous section; the reconstructed thermal sequence images by PCA algorithm are
shown in Figure 4. Conveniently, we denoted the reconstructed image of the n principal
component as PCn. The temperature distribution in PCn is denoted by TPCn. Figure 4a
shows that a reconstructed thermal sequence image of the first principal component PC1,
which contains most of the complete defect characteristic information of the 90 frames
thermal sequence images. It is easy to identify the defect location. The reconstructed
thermal sequence image of the second principal component PC2 is greatly affected by noise,
and some defects are difficult to identify (see Figure 4b). In Figure 4c, the defect shape in
the reconstructed thermal sequence image of the third principal component PC3 is severely
distorted. Therefore, the reconstructed thermal sequence image of PC1 is selected for the
following procedure. Line 1 marked by a dotted line in Figure 4a is used to the following
quantitative analysis of defects.
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2.4. Subtracting Fitting Background

Two excitation lamps were placed symmetrically on both sides of the sample to
reduce the effect of uneven heating. However, with the symmetrical distribution of the
lamps, the effect of uneven heating was still existent. Figure 5 shows the temperature
distribution along line 1 in Figure 4a. The temperature of the sample surface at the defect
region is obviously higher than that at the intact region. Due to the uneven heating, the
temperatures at both ends of the sample surface are higher, and the temperature in the
central region is lower than that at both ends. To solve the adverse effect of uneven heating
on defect detection, an image processing method of background subtraction is proposed in
this section.

The process of subtracting fitting backgrounds consists of two steps: fitting back-
ground and background subtraction. Figure 6 shows the three-dimensional thermal images
of flaw 1 in the sample 1. The three-dimensional size of defect can be identified as an
abnormal rise region of temperature. The thermal data of the intact region is used to predict
the thermal background in the defective region. A quadratic equation is proposed to fit the
data of the thermal background:

Tfit = a + bx/lp + c(x/lp)
2 (2)
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where Tfit is the thermal background fitted by the thermal data of the intact region in
Figure 6a. a, b, and c are the fitting parameters. x denotes the pixel points and lp is one pixel.
Next, we subtract the raw PCA image sequence TPC1 with the thermal background Tfit:

TPf = TPC1 − Tfit (3)

where TPf is the thermal data in pixel points after subtracting the fitting background.
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Figure 6a shows a three-dimensional thermal image of PC1. The corresponding
temperature values at two ends of the sample surface are different due to the uneven
heating. To decrease this effect, a subtracting fitting background method is proposed. As
shown in Figure 6b, a thermal image processed by the subtracting fitting background
method can effectively reduce the local uneven heating noise. The processed images of this
section are used to quantitative characterization analysis in the next section.
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Figure 6. Three-dimensional thermal images of flaw 1 in the sample 1: (a) a raw thermal data
extracted from PC1; (b) a thermal data extracted from PC1 after subtracting fitting background.
Plane coordinates are represented by x-axis and y-axis. Vertical axis is used to record the value
of temperature. Red line represents the coordinate range in y-axis, where the temperature has an
abnormal rise.

3. Results and Discussion
3.1. Temperature Curve in the Defective Region after Subtracting the Fitting Background

To quantitatively analyze the lateral dimension of defects from the thermal images,
the temperature distribution along line 1 was extracted from the thermal sequence image of
PC1 after subtracting the fitting background. Figure 7 shows the temperature distribution in
line 1 around defects with different diameters. The uneven background temperature can be
effectively eliminated by algorithm processing of subtracting the fitting background. Due
to the effect of the interface defect at the bottom of the ceramic coating on the distribution
of the surface temperature of ceramic coating, the temperature in the defect area is higher
than the intact region during the heating process by the heat source. After removing the
source of motivation, the heat flows from the high temperature defect area to the low
temperature intact area. Then, in collected infrared thermographs, the boundary of the
high temperature area is fuzzy because the temperature changes from the heat flow. Also,
the effect of interface defect on the transitive distance leads to the blurring of boundaries.
Therefore, the sloping boundary of high-temperature area can be seen in Figure 7, and form
the transition region between high and low temperature. When the lateral dimension of a
defect is larger than 6 mm, the temperature distribution of the defective region presents a
platform zone with undulating waveform. Note that the width of platform zone is a little
less than the width of interfacial defect due to the transition region between high and low
temperature. The width and height of the platform zone gradually decrease by decreasing
the lateral dimension of a defect. When the lateral dimension of a defect is less than 6 mm,
the transition regions distributed in the both sides of the high temperature area infinitely
approach. Then, the platform zone disappears and reduces to an arch. The width and
height of the arch also gradually decrease with decreasing the lateral dimension of a defect.
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3.2. Heat Transfer Model of Interface Defect

The surfaces of defective and intact regions radiate heat outward during the sample
heating by an excitation source. At the same time, the temperature difference between
the defective region and the intact region leads the heat to flow transversely between the
two regions (see Figure 8). Heat conduction can be represented by two processes, which
are thermal diffusion in the vertical direction and transverse direction. According to the
experimental results, the surface temperature of sample at the defective region is higher
than that at the intact region during heating by an excitation source and cooling. Therefore,
the temperature difference in the vertical direction is far less than that in the transverse
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direction. Coating material at the defective region can be seen as a heat source when the
excitation source is turned off. The temperature difference at the moment just turning
off the excitation source is the most obvious. After a period of cooling, the temperature
difference disappears gradually. In this work, we ignore the effect of heat diffusion in the
vertical direction, and assume an ideal situation that the temperature on the surface of
ceramic coating has a distribution as shown in Figure 9 at the moment just turning off the
excitation source. The superscripts defect and intact represent variable in the defective and
intact region.
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Figure 9. Temperature distribution on the surface of ceramic coating at the moment just turning off
the excitation source.

A schematic diagram of heat conduction in the ceramic coating with interface defect
during cooling process is shown in Figure 10. The differential equation of heat conduction
on the surface of coating at the x axis direction is written as follows

ρc
∂Tmodel(x,−e1, t)

∂t
=

∂

∂x

(
kT

∂Tmodel(x,−e1, t)
∂x

)
(4)

where ρ, c and kT are the density, thermal capacity and the thermal diffusion coefficient of
ceramic coating, respectively.
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The initial condition and boundary condition are written as follows

Tmodel(x,−e1, 0) = φ(x) (5)

Tmodel(−L/2,−e1, t) = Tmodel(L/2,−e1, t) = Tintact
0 (6)

where φ(x) is the temperature distribution on the surface of coating during cooling process
and it presents a form of step function (see Figure 9). L and d are the length of the sample
and the defect size in the model, respectively.

Then, an analytical expression of surface temperature can be derived as

Tmodel(x,−e1, t) =
k
∑

n=1
An exp

(
−a2(nw)2t

)
sin(nwx + ϕ)

An = 2
L

L/2∫
−L/2

φ(x) sin(nwx + φ)dx n = 1, 2, 3, ..., k
(7)

where a and ϕ are the constants. w is the fundamental frequency. Equation (7) is composed
of cumulative sum and has a form of Fourier Series of φ(x).

After subtracting the fitting background, the temperature at the intact region Tintact
0

is equal to zero. The temperature difference at the moment just turning off the excitation
source is the most obvious. Then, we assume that the cooling time t is infinitely near zero.
Then Equation (7) can be simplified as the discrete form of φ(x) and written as

Tmodel = Tdefect
0 +

m
∑

n=1
Tdefect

0 an cos(2nxπ/L) + Tdefect
0 bn sin(2nxπ/L) for n = 1, 2, 3, . . . , m

an = 1
L

L/2∫
−L/2

T cos(2nxπ/L)dx

bn = 1
L

L/2∫
−L/2

T sin(2nxπ/L)dx

(8)

Keep the value m as five, the variation of temperature function curve with different
values of d is shown in Figure 11. It is worth noting that the changing trend of the
temperature function curves with the decrease of d is the same as that shown in Figure 7.
When the value of d is larger than 12, the distribution of Tmodel at the area between −d/2
and d/2 presents a platform zone with undulating waveform. The width and height of
the platform zone gradually decrease with decreasing d. When the value of d is less than
12, the platform zone reduces to an arch. After that, the width and height of the arch also
gradually decrease with decreasing d.
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Figure 11. The discrete form of the Fourier series expansion of Equation (8) with different value of d:
(a) d = 4 pixel; (b) d = 8 pixel; (c) d = 12 pixel; (d) d = 16 pixel and (e) d = 20 pixel.

3.3. Quantitative Analysis of Defect Size

Here we obtain the value of d corresponding to the defect size D of the flaw in sample
1 by editing the arithmetic to fit the Equation (8), with temperature curve shown in Figure 7.
It should be noted that the change of curve shape from platform zone to arch with the
decrease of d is remarkable, as shown in Figures 7 and 11. Therefore, only the change of the
curve shape with different d is used to identify the corresponding D in this work. To avoid
the effect of height difference between function curve of the model and temperature curve
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of the experiment on quantitative analysis of defect size, we make the parameter Tdefect
0

automatically achieve the best match when the value of d is fixed.
Figure 12 gives the temperature curves of the experiment and the corresponding

function curves with different d. R-square is used to represent the degree of fitting between
curves of the model and the experiment. The right of Figure 12a shows the values of R-
square with different value of d when D is equal to 10 mm. R-square has a maximum value
of 0.98 when d is equal to 11.4. The left of Figure 12a gives the temperature curves of the
experiment and best matched function curve. It is worth noting that the two curves do not
have good match in the platform zone of temperature curves due to the uncontrollable effect
of noise in infrared thermal image. For the rest of the defect size, the determination process
of corresponding d is the same as that of D = 10 mm. When the maximal degree of fitting
in function curves is achieved, d can be confirmed for each temperature curve. Figure 13
shows that the relationship between D, and d is directly proportional, approximatively. The
linear fitting formula can be written as follows:

D/lm = 0.49323 + 1.0812d/lp (9)

where lm is equal to 1 mm and lp is one pixel. Therefore, based on the directly proportional
relationship between D and d, quantitative analysis of defect size by surface temperature at
the defective region is feasible.
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function curve with best degree of fitting (left). Degree of fitting of function curve vs. different value
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Now, the defect size in the sample 2 can be estimated by using the aforementioned
image manipulation and Equation (9). Firstly, the thermal image of defect in the sample 2 is
dealt with in three processes: subtracting background image, PCA, and subtracting fitting
background. Secondly, the temperature curve in the line across the center of the three flaws
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is extracted. The parameter d is determined by edited arithmetic fitting the Equation (8)
with the extracted temperature curve. At last, the predicted defect diameter in sample 2
is obtained by Equation (9). Table 3 gives the predicted diameter and actual diameter of
defect in sample 2. For the defect with diameters of 3 mm, 5 mm, and 7 mm, the predicted
defect diameters are 3.1509 mm, 4.7232 mm, and 7.2205 mm. It should be noted that the
predicted errors are roughly distributed in the range of 3~6%, which are not affected by
defect diameter. Table 4 gives the measuring error of the interfacial defect size in TBCs
predicted by the method of Guo et al. [27] is larger than 12%. The error sharply increases
with the decrease of the size of defect. When the defect diameter is 3 mm, the error reaches
25%. Compared with the results obtained by Guo et al. [27], the proposed model in this
work can give a more accurately evaluation of the interfacial defect size in TBCs by the
collected thermal image.

Table 3. The predicted diameter and actual diameter of defect in this work.

The Actual Defect Diameter (mm) The Predicted Defect Diameter (mm) Error

3 3.1509 5%
5 4.7232 5.5%
7 7.2205 3.2%

Table 4. The predicted diameter and actual diameter of the prepared interfacial defect in TBCs
measured by the method of Guo et al. [27].

The Actual Defect Diameter (mm) The Predicted Defect Diameter (mm) Error

3 2.53 25%
5 4.55 15.4%
7 6.52 12%

Ideally, the proposed method in this work can give a more accurate result for the
diameter of round interfacial defects when enough training data are used to determine
the parameter in Equation (9). Due to the inevitable effect of noise in infrared thermal
images, this method may fail when the defect size is too small to identify. At this time, the
improvement on the resolution of infrared cameras can break this limit. Furthermore, the
size of interfacial defect cannot be determined directly by the proposed method when the
defect shape is not regular. This is another limitation of this evaluation method. In order to
solve this problem, a simple extension of the proposed method is presented. As shown in
Figure 14, a defect with irregular shape is divided into different areas by five black lines.
The distance between two adjacent lines is same, which is denoted by M. The points of
intersection between the defect profile and these lines are represented by solid black dots.
The distance between the solid dot A and B is determined by the proposed method in this
work (Note that the distance between the solid dot A and B corresponds to diameter D
of round defect). The same operation is used to determine the distance between the solid
dots in the rest of the lines. After that, the solid dots are connected by red lines, then a red
broken line that replaces the defect profile is extracted (see Figure 14). Here, we use the
area surrounded by red broken line to estimate the defect area, which can be divided into
four trapezoidal regions by the five black lines. The lengths of the upper side and lower
side for each of trapezoidal regions are determined by the proposed method in this work,
then the area surrounded by red broken line can be obtained eventually. It is worth noting
that the red broken line will be closer to the defect profile when more black lines are used
to split the defect area. Therefore, a more accurate assessment of the area size of defect with
irregular shape can be obtained, as shown in Figure 15.
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Figure 14. Schematic diagram of irregular defect. Five equidistant black lines are used to divide the
area of irregular defect. A red broken line is extracted to replace the irregular defect profile.
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4. Conclusions

In this work, the size of interface defects in TBCs is evaluated quantitatively by LPT.
PCA and the method of background subtraction is proposed for improving the contrast of
defects in collected infrared thermal image. The shapes of extracted temperature curves
in the defective region change from platform to arch with the decrease in defect diameter.
Based on the change rule of the shapes, an algorithm is edited to find the best matching
result between the profile of interface defect in thermal images and the predicted shape of
the model, and the interface defect size can be determined. For a defect with diameters of
3 mm, 5 mm, and 7 mm, the predicted defect diameters are 3.1509 mm, 4.7232 mm, and
7.2205 mm. The predicted errors are roughly distributed in the range of 3%~6%, which
are not affected by the defect diameter. Furthermore, a simple extension of the proposed
method to evaluate the size of the irregular shape defect is presented. A reconstructed
broken line is presented to replace the irregular defect profile, and the area surrounded by
the broken line can be estimated by the proposed method. Ideally, the broken line can be
infinitely close to the defect profile when sufficient lines are used to split the defect area.
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