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Abstract: Corrosion and contamination of metallic structures can cause loss of their functionality as
well as aesthetic values. In this study, we describe a general strategy to prepare superhydrophobic
self-cleaning and anti-corrosion surfaces for metallic structures. As a specific example, a superhy-
drophobic coating (SHC) on aluminum alloy was prepared by a simple etching combined with the
decoration of a low-surface-energy material. The optimal SHC has a water contact angle (CA) at
~157.4◦ and a sliding angle (SA) of ~8.3◦ due to the synergy of binary hierarchical structures and
chemical modification. The SHC showed low adhesion to dry contaminants and a series of liquids,
displaying a good self-cleaning effect. The SHC maintained superhydrophobicity after exposure to
air and humid condition at 60 ◦C for 7 days. In addition, the electrochemical measurements reveal
that the anti-corrosion performance was enhanced by reducing the corrosion current density (Jcorr)
by 1 order of magnitude and increasing the corrosion potential (Ecorr) by 0.527 V as compared to the
bare Al alloy substrate after immersion for 168 h.

Keywords: superhydrophobic; aluminum alloy; etching; self-cleaning; anti-corrosion

1. Introduction

The marine environment is aggressive and corrosive. Marine structures and many
land structures that are made of metals and alloys are commonly exposed to ultraviolet
radiation, chloride-rich liquid or deposit, frequent wet-dry cycles, high humidity and so
on, which can accelerate the corrosion and degradation of the materials especially used in
the offshore platform, drilling pipes, anchor, submarine cable and ship hulls, etc., leading
to reduced service life or even causing disasters [1]. It is estimated that the annual cost
for corrosion in chloride-rich salty conditions (such as marine) can reach up to 700 billion
RMB in China [2]. Along with corrosion, fouling is also a big natural problem. Usually,
fouling is the result of an undesirable accumulation of contaminants or microorganisms
to form a biofilm once they are attached to the surfaces, which will increase the weight
and the drag resistance, leading to increased fuel consumption and even function failure.
Contamination and corrosion of metallic materials in severe environments are big issues in
the world. Thus, there is a great demand to construct an effective corrosion-resistant and
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self-cleaning protective layer on metallic materials to expand their application fields and
prolong their service life.

As a common and effective method to realize antifouling and anti-corrosion, a coating
is introduced as the physical barrier to isolate the metallic substrates from corrosive
attack. In the past decades, chromate-based coatings are considered to be one of the
most effective protective methods [3–5]. However, they have been restricted worldwide
because of the toxic and carcinogenic properties of hexavalent chromium [6,7]. Antifouling
(AF) paints have been widely employed in marine environments by the gradual release
of biocide agents. However, it was found that the additive of organotin is extremely
toxic, which was forbidden in the EU in 2003 and globally in 2008 [8]. In recent years,
the coatings based on organics [9,10] have been developed as alternatives, such as the
epoxy coatings [11–13]. However, 90% epoxy coatings were achieved using diglycidyl
ether of bisphenol A, deriving from bisphenol A. Bisphenol A has been proven to be
harmful to the endocrine system and may cause feminization [14]. In addition, some
organic solvents containing pungent or volatile compounds are widely used during the
preparation of coatings based on organics. Therefore, a green coating that can be prepared
in an environmental-friendly way on metals and alloys is urgently needed.

Inspired by the lotus effect, a superhydrophobic surface with a water contact angle
(CA) more than 150◦ and a sliding angle (SA) less than 10◦ has attached great inter-
est in both academic research and practical applications owing to its unique properties,
involving water-repellency [15–18], self-cleaning [19–21], corrosion resistance [22–28], anti-
icing [29,30], oil-water separation [31,32] and drag reduction [33]. Such surface can be
realized through the synergistic effect of two main factors: modification with low-surface-
energy materials and creation of a certain type of hierarchal micro-nanostructure. Up to
now, numerous effective approaches have been developed to prepare superhydrophobic
surfaces, including sol–gel [34,35], template [36], electrospinning [37], hydrothermal syn-
thesis [26,38], laser fabrication [39], etching [40,41] and electrochemical processes [42]. The
superhydrophobic surfaces with micro-nano structures on the metallic substrates have
also been reported in some previous work [6,16,43–49]. Various mechanical, thermal, and
chemical approaches have been adopted to modify the surface topology to the required
hierarchical micro-nano configurations towards superhydrophobicity. Figure 1 provides a
schematic summary.

As the most abundant metallic element in nature, aluminum (Al) and its alloys, as
the representative metallic structural material, have been extensively used owing to their
comprehensive electrical, mechanical and thermal properties, such as good ductility, high
electrical conductivity and low-specific weight [50,51]. It is universally acknowledged
that Al and its alloys can form a very thin native oxide layer around 20 Å under dry and
non-salty conditions, resisting further corrosion occurrence. However, the native oxide
layer is reactive and can be easily penetrated in salt-rich conditions, and accordingly, the
corrosion and contamination will be triggered [52,53]. This will decrease its life span and
cause some major equipment failure. Thus, there is a great demand to construct an effective
corrosion-resistant and self-cleaning protective layer on Al and alloys to expand their ap-
plication fields and prolong their service life. Currently, a number of approaches have been
reported to fabricate superhydrophobic surfaces on Al and its alloys with anti-corrosion
performance [54,55] or/and self-cleaning effect. For instance, Dong et al. [56] created a
self-cleaning superhydrophobic Al alloy surface through the combination of sand peening,
electrochemical oxidation and fluoroalkylsilane modification. Lei et al. [57] produced super-
hydrophobic hierarchical micro-and nanostructure surface on Al alloy by introducing large
spot diameter nanosecond laser treatment followed by chemical treatment of low-surface-
energy agent (triethoxy-1H,1H,2H,2H-perfluorooctylsilane). Grignard et al. [58] achieved
superhydrophobic Al surfaces by electrospinning of the fluorinated diblock copolymer
solution, which is made of poly(heptadecafluorodecylacrylate-co-acrylic acid) (PFDA-
co-AA) random copolymer and polyacrylonitrile (PAN). Palenzuela et al. [40] produced
superhydrophobic Al surface through ferric chloride solution etching and functionaliza-
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tion of perfluoro(polypropyleneoxy)methoxypropyltrimethoxysilane (PFPE). Among the
mentioned approaches, some are easy, fast and economical while a few still face certain
limitations, and it is necessary for the improvement towards some issues such as poor scal-
ability, sophisticated procedure, high cost of chemicals and long processing time. Besides,
fluorinated chemicals are applied in some research to lower the surface energy, which
may have potential harm to the natural environment and human health. Additionally,
research is lacking on the interaction mechanism between superhydrophobic surface and
contaminants or corrosion medium for the self-cleaning effect and corrosion resistance.
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Figure 1. The schematic illustration of the superhydrophobic surfaces obtained by creating the hierarchical micro-
/nanostructures on metallic surfaces through different methods, such as hydrothermal synthesis (Reproduced from [43],
Copyright (2020), [44] Copyright (2017), with permissions from Elsevier), chemical etching (Reproduced from [45], Copy-
right (2011), with permission from Elsevier), laser (Reproduced from [46], Copyright (2020), with permission from Elsevier),
electroless deposition (Reproduced from [47] with permission from The Royal Society of Chemistry), spraying coating
(Reproduced from [48] Copyright (2019), with permissions from Elsevier) and electrochemical processes (Reproduced
with permission from [6]. Copyright (2018) American Chemical Society; Reproduced from [16], Copyright (2015), with
permission from Elsevier) followed by the surface modification using lower energy organic molecules.

Herein, we used a facile, low-cost and green approach to obtain a superhydrophobic
coating (SHC) on the Al alloy surface after decoration with inexpensive myristic acid.
The maximum CA and minimum SA for the as-prepared SHC are 157.4◦ ± 2.1◦ and
8.3◦ ± 0.9◦, respectively. The self-cleaning effect for the SHC was observed by applying the
dry carbon black powder and different kinds of simulated liquid contaminants. Besides,
the heat–humidity resistance and corrosion resistance were also examined. The interaction
mechanism between different kinds of coated surfaces and contaminants or corrosion
medium were systematically investigated. The reported SHC is straightforward to apply
on various metallic materials, which will be of great interest to researchers and engineers
who are engaging in the application of self-cleaning and anti-corrosion surfaces in the
fields of aerospace, marine, civilian industries and so on.

2. Materials and Methods
2.1. Materials and Sample Preparation

Al alloy substrates (ALY120, Shanghai Junsheng Metal Product Co. Ltd., Shanghai,
China) were cut into small pieces (3 cm × 3 cm × 0.2 mm) and polished using abrasive
paper (grit 1000) first to get rid of the native oxidation layer. Next, these polished substrates
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were ultrasonically cleaned in 5 wt.% NaOH (Nanjing Chemical Regent Co., Nanjing,
China), 5 wt.% HNO3 (Nanjing Chemical Regent Co., Nanjing, China) and the deionized
(DI) water sequentially to remove grease before drying under N2 atmosphere. After that,
the cleaned Al alloy substrates were immersed in an aqueous HCl solution (Nanjing
Chemical Regent Co., China) with different concentrations varying from 0 to 350 g/L for
different times (0–12 min). After the immersion, all the etched substrates were rinsed
with DI water thoroughly to remove the residual acids and dried in air. Then, the etched
samples were chemically decorated with molten myristic acid (CH3(CH2)12COOH, MA,
purity: 95%, Sigma-Aldrich, St. Louis, MI, USA) at 70 ◦C for 30 min followed by ultrasonic
treatment in absolute ethanol and DI water for 2 min and 5 min in sequence to remove any
excessive myristic acid. Finally, the samples were heated at 80 ◦C for 60 min in the oven at
ambient atmosphere. For comparison, the bare Al alloy substrates modified by myristic
acid alone without the etching process were also examined (denoted as Al alloy + MA).

2.2. Characterization Methods

The water contact angle (CA) and sliding angle (SA) were investigated using the
contact angle measurement apparatus (Kruss DSA100, Hamburg, Germany) to investigate
the static contact angle and dynamic contact angle at ambient temperature. The volume of
the DI water used for the CA and SA measurements was 5 and 10 µL, respectively. On each
sample, 5–8 positions were conducted, and the average values were reported. To measure
the surface energy, three types of liquids, viz., ethylene glycol, DI water and n-hexadecane,
were used after the well-accepted Owens, Wendt, Rabel and Kalble (OWRK) method. For
each group, 5 samples were tested. For each sample, at least 5 different positions were
measured. It is mentioned that the reported values are apparent surface energy that will
vary with surface roughness.

The surface morphology was characterized by a field emission scanning electron
microscope (FESEM, Gemini 500 and Gemini 300, Zeiss, Germany). The surface roughness
with a maximum scan length of 1000 µm was analyzed using a surface profiler (Alpha-Step
IQ surface profiler, KLA Tencor, Milpitas, CA, USA). For each sample, at least 3 different
locations were measured.

The crystal structures were characterized by X-ray diffraction (XRD, Rigaku TTR III,
Tokyo, Japan) at a scanning rate of 5 ◦/min from 5◦ to 90◦.

The self-cleaning performance was evaluated by applying carbon black and SiO2
nanoparticles (15–20 nm) as simulated solid contaminants and different kinds of liquids
involving methylene blue-dyed water, tea, milk solutions and artificial dirt mixture as dirty
liquid contaminants.

The methylene blue-dyed water, tea and milk solutions were prepared by separately
dissolving methylene blue powder, tea powder and milk powder in DI water. Then the
three solutions were mixed with a mechanical mixer followed by ultrasonication treatment
for 30 min. By visual observation, these solutions are homogeneous and stable.

The artificial dirt mixture consists of 85 wt.% nanoclay, 10 wt.% SiO2 particles (1–5 µm),
2 wt.% NaCl, 1 wt.% carbon black and 2 wt.% cooking oil. The mixture was mixed with
a mechanical mixer and then dispersed in DI water with 15 g/L loading. The mixture
was stirred and ultrasonicated for 30 min before use to ensure good dispersion of the
components in the liquid.

The heat–humidity resistance was assessed in a constant temperature and humidity
chamber (DHS-225, Jiangsu Emerson Experimental Instrument Technology Co. LTD,
Changzhou, China) according to GB/T1740-2007 test standard. The samples were tested
under the condition of 60 ± 1 ◦C and humidity of 96 ± 2% for 7 days.

The corrosion resistance was evaluated by an electrochemical workstation (CHI 660d,
Shanghai Chenhua Instrument Corporation, city, country) equipped with a three-electrode
system (Ag/AgCl as the reference electrode; platinum sheet as the counter electrode; the
sample with an exposed area of 1.0 cm × 1.0 cm as the working electrode). Both the elec-
trochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves were
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measured in the corrosive medium of 3.5 wt.% NaCl solution (pH≈ 6.0) (NaCl, analytically
pure grade, Nanjing Chemical Regent Co., Nanjing, China) at room temperature. All the
tested samples were immersed into the corrosive medium for 60 min to achieve a stable
open circuit potential (OCP) before electrochemical measurements. The EIS measurement
was performed at OCP from 1 to 105 Hz with the perturbation voltage of 5 mV amplitude,
and the corresponding EIS results were analyzed based on the equivalent electrical cir-
cuits fitted by ZSimpWin software (V3.60). To ensure reproducibility, the electrochemical
measurements were required to repeat 3 times.

3. Results and Discussion
3.1. Optimization of Etching Time and HCl Concentration for SHC

The relationship between etching time and CAs in HCl solution at the concentration
of 350 g/L followed by modification of myristic acid was shown in Figure 2a. The CA
increased from 113.1◦ ± 2.3◦ to 153.3◦ ± 2.4◦ with increasing etching time to 5 min. How-
ever, there was only a slight decrease to 150.1◦ ± 2.0◦ with further extending the etching
time to 12 min. Therefore, the optimal etching time for obtaining the coating is 5 min when
treated with HCl solution at 350 g/L concentration. The influence of the HCl solution
concentration on CAs and SAs is shown in Figure 2b. It was found that the bare Al alloy
substrate has a CA of 80.6◦ ± 0.2◦, indicating its hydrophilic nature. The Al alloy substrate
coated with myristic acid alone displays hydrophobicity with a CA of 113.1◦ ± 2.3◦. The
CA can reach 150◦ when the etching solution concentration was beyond 150 g/L. The
coating shows the maximum CA of 157.4◦ ± 2.1◦ and the minimum SA of 8.3◦ ± 0.9◦

after treating with the HCl solution at the concentration of 200 g/L for 5 min followed
by modification of myristic acid. Further increasing HCl concentration caused a slight
decrease in CA (153.3◦ ± 2.4◦) and a dramatic increase in SA (19.9◦ ± 5.8◦). The optimal
SHC can be obtained after etching at 200 g/L concentration in HCl solution for 5 min
followed by modification of myristic acid. The apparent surface energy of various samples
is reported in Table S1.
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To visualize the water repellency for SHC, water droplets impinged onto the coating
surfaces continuously to investigate the dynamic moving process. The corresponding
image and video were presented in Figure S1 and Video S1. It is obvious that the water
droplet can slide off the SHC easily due to its superhydrophobic nature. To further in-
vestigate the interaction between the water and coating surface, the SHC displayed the
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mirror-like phenomenon (Figure S2 and Video S2) once immersed in water. This indicates
that the surface wetting has been effectively prevented due to the presence of a layer of air
between water and the sample surface.

3.2. Surface Morphology and Reaction Mechanism

It can be found that there are some scratches caused by sandpaper polishing on the Al
alloy surface with a CA of 80.6◦ ± 0.2◦ (Figure 3(a1,a2)). After treatment with HCl solution
alone, the Al alloy surface was fully covered by dispersed micro-sized pits of around 1 µm
in size (Figure 3(b1–b3)). With higher magnification, nanoscaled cubic structures with the
size of 100–200 nm were obtained. They were distributed uniformly on the etched surface
(Figure 3(b4)), resulting in the binary hierarchical structure on such roughened surface.
Accordingly, the CA was decreased to 0◦, indicating its superhydrophilicity. The surface is
relatively smooth after modification with myristic acid (MA) (Figure 3(c1,c2)) with a CA of
113.1◦ ± 2.3◦. However, it is still too smooth to achieve a highly hydrophobic surface. There
was no obvious surface morphology change between the SHC surface (Figure 3(d1–d4))
and etched Al alloy (Figure 3(b1–b4)), which indicates that a small amount of myristic acid
assembled onto the SHC does not alter the surface structural features. The CA for SHC
was increased to 157.4◦ ± 2.1◦, which can be attributed to the air trapped inside such a
hierarchical structure that reduces the real contact area between liquid and solid surfaces.
The FESEM images for the samples after etching in 350 g/L HCl solution with different
etching times and treating with myristic acid are shown in Figure S3.
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The surface roughness for the corresponding samples is shown in Table S2. For the
bare Al alloy substrate, its roughness value was 90.12 ± 11.01 nm. After modification with
MA, its roughness changed slightly to 119.28± 12.31 nm. However, for the Al alloy after the
etching treatment, the surface became extremely rough, reaching up to 526.86 ± 13.25 nm.
Interestingly, the surface roughness of the etched Al alloy was decreased to some extent
after the modification with MA (425.16 ± 10.58 nm). It is noted that superhydrophobicity
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requires both the low-surface-energy modification and surface rough structure as explained
by the Cassie–Baxter model.

To investigate the effect of etching treatment on the surface morphology of Al alloy,
the XRD measurement was used to examine the crystal structure. The results show that the
surface conversion treatment does not affect the bulk materials’ crystal structure (Figure S4).
No additional peaks were detected other than the ones belonging to the Al alloy.

The formation mechanism for SHC on Al alloy surface has been reported according
to the previous study [45]. Al can be easily oxidized to Al3+ with the existence of oxygen,
especially in an acidic solution. After the oxidation, Al3+ will be released due to the
attack by Cl− in HCl solution. Then the released Al3+ can react with CH3(CH2)12COO−

immediately to form Al carboxylate during the modification of myristic acid according to
the following chemical reaction [59,60]:

Al3+ + CH3(CH2)12COO− → Al[CH3(CH2)12COO]3

The etching of HCl creates a micro-nanostructure and the formed Al carboxylate takes
on hydrophobic tails CH3(CH2)12COO− on such roughened surface, leading to the fulfil-
ment of both rough structure and low-energy surface required for superhydrophobicity.

3.3. Wettability

The wettability of a solid surface is related to the surface structure and its chemi-
cal state [61], which can be described by the Wenzel model [62,63] or the Cassie–Baxter
model [64]. In the Wenzel model, the CA for a hydrophilic surface, which has an intrinsic
CA below 90◦, decreases with the increase in roughness, and the surface becomes more
hydrophilic. It can be seen from Figure 4a that the CA on bare Al alloy is 80.6◦ ± 0.2◦,
indicating its hydrophilicity. After the etching treatment, the surface becomes rough, and
the CA was remarkably decreased to 0◦, as shown in Figure 4b. In this state, capillarity
occurs, causing water droplets to fill the grooves on the rough hydrophilic surface. The CA
was increased to 113.1◦ ± 2.3◦ after modification with myristic acid alone (Figure 4c), while
the surface becomes superhydrophobic with a CA of 157.4◦ ± 2.1◦ and a SA of 8.3◦ ± 0.9◦

after etching in 200 g/L HCl solution for 5 min and treating with myristic acid (Figure 4d).
It is known that both models can result in a high CA for the coating surfaces. However,
only the Cassie–Baxter model could lead to a low SA [65], and the formation of the optimal
SHC can be theoretically explained based on this model. In this model, the water droplets
could not penetrate the hierarchical micro-nanostructure due to the trapped air inside the
coating surfaces and thus can slide off the SHC surface easily. Therefore, the CA on SHC
can be expressed by Cassie–Baxter equation [66]:

cos θγ = f1cos θ1 + f2cos θ2 (1)

where θγ is the apparent CA; f 1 and f 2 are the areal fractions of component 1 and 2
(f 1 + f 2 = 1); θ1 and θ2 are the corresponding intrinsic CAs, and here, θ2 = 180◦ when air is
entrapped. Therefore, the Equation (1) can be re-written as follows:

cos θγ = f1(cos θ1 + 1)− 1 (2)
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Given that the θγ is 157.4◦ ± 2.1◦ and θ1 is 113.1◦ ± 2.3◦, the f 1 is 0.1264. This means
that the air/water interface occupies ~87% of the SHC when the water droplet is placed
on it.

3.4. Durability and Heat–Humidity Resistance

To evaluate the durability in the air atmosphere, the as-prepared SHC had been ex-
posed to ambient conditions for 6 months before the water wetting behavior was examined
again. The whole process of dynamic behavior for DI water (5 µL) on such surface was
recorded with a CCD camera which was built in the contact angle equipment (Video S3).
It can be clearly observed that the shape of the water droplet changes once it contacts the
SHC surface (Figure 5(a3)) and deforms when the contact area was increased between the
water droplet and coating surface during the whole compression process (Figure 5(a4,a5)).
When the needle tip is lifted, the droplet can retract from the surface (Figure 5(a6,a7)) and
recover to the spherical shape as before (Figure 5(a1,a8)). After the compression and lifting
process, the SHC surface remains unwetted. This indicates that the SHC has excellent
long-term durability in ambience, and the surface wetting can be effectively prevented.
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The change of CA for SHC, after exposure to a constant temperature and humidity
chamber at 60 ± 1 ◦C with humidity of 96 ± 2% for 7 days, is displayed in Figure 5b.
The CA was slightly reduced from 157.4◦ ± 2.1◦ to 154.5◦ ± 3.0◦. Nevertheless, it still
maintained its superhydrophobicity. The corresponding image for the dynamic behavior
of the water stream on the SHC after continuous heating and steam humidification was
shown in Figure 5c. The reflected water jet flow can bounce off from the SHC without
leaving any traces behind (Figure 5c and Video S4), indicating that the obtained SHC can
tolerate water not only at ambient temperature but also at a relatively higher temperature
and humidity atmosphere for a long time.

3.5. Self-Cleaning Performance

The dirt removal tests for different samples by applying dry carbon black as sim-
ulated contaminants are shown in Figure 6. The tested samples were sprinkled with a
layer of carbon black powder and placed at an inclined angle of 5◦ (Figure 6(a1,b1,c1)).
The water droplets were applied continuously to remove the contaminants. When the
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droplets were dropped onto these samples, the carbon black adhered to the bare substrate
(Figure 6(a2–a4)) and bare Al alloy modified by myristic acid (Figure 6(b2–b4)) with water
together. However, the carbon black was taken away, and a dry and clean trace was left
on the SHC (Figure 6(c2–c4)) when the droplet rolled off the contaminated surface. This
could be ascribed to the two main reasons: the joint action of high capillarity, which was
induced by water, and weak adhesion between contaminants and SHC. The dirt removal
process is presented in Video S5. After spraying more water, the SHC was as dry and clean
as before (Figure 6(c5)), while the untreated bare Al alloy substrate (Figure 6(a5)) and Al
alloy modified by myristic acid alone (Figure 6(b5)) were still contaminated.
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interactions of contaminating particles with different kinds of wettability surfaces: (a1–a6) Al alloy substrate; (b1–b6) Al
alloy + MA; (c1–c6) SHC.

There are generally three kinds of dynamic interaction between a liquid droplet and
the solid surface, namely droplet pinning, sliding and rolling. A rolling liquid droplet
can carry away contaminants much easier and faster. For the superhydrophobic surface,
the size of contaminating particles is usually bigger than that of the surface microfeatures,
making the contaminants only in contact with the tips of the microstructures. With a smaller
actual contact area, the adhesive force between the contaminants and superhydrophobic
surface is far smaller than that between the water droplet and the contaminant particles.
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As a result, the contaminants can be captured by the rolling water droplets on SHC to
achieve the cleaning effect (Figure 6(c6)). In contrast, the contact area between the smooth
hydrophobic surface (Al alloy + MA) and the contaminant particles is much larger, and the
adhesion between the dirt and the solid surface is higher due to no or less air trapping. The
adhesion between the water and such solid surface is stronger too, and the water droplet is
more likely to slide down than to roll off. As a result, the cleaning is much less effective
(Figure 6(b6)). For the hydrophilic surface (Al alloy substrate), it is very difficult for liquid
droplets to slide off the surface due to their high adhesion with the surface, let alone take
away the contaminants on the surface (Figure 6(a6)).

The SHC was immersed into different kinds of liquids to test the self-cleaning effect
for liquid contaminants. Before dipping into the liquid contaminants, the SHC was dry
and clean, as shown in Figure 7(a1,b1,c1,d1). Then the SHC was immersed into methylene
blue-dyed water (Figure 7(a2)), tea (Figure 7(b2)), milk (Figure 7(c2)) and an artificial
dirt mixture (Figure 7(d2)) for several seconds. After immersion, the SHC was taken out
from these liquid contaminants and remained dry and clean without any contaminated
traces (Figure 7(a3,b3,c3,d3)). The corresponding detailed process was shown in Video S6.
Comparison with the bare Al alloy sample is displayed in Figure S5.
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Figure 7. Dirt repellency test of SHC in different liquids: (a1–a3) methylene blue-dyed water; (b1–b3) tea; (c1–c3) milk;
(d1–d3) artificial dirt mixture.

The self-cleaning performance for SHC after heat–humidity resistance was shown in
Figure 8. The applied water droplets can clean the dust (applying SiO2 nanoparticles as
contaminants) when rolling off the surface, showing an excellent self-cleaning performance
by the SHC. The process was shown in Video S7 in the supporting information.
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The above results demonstrate that the as-prepared SHC has the potential to prevent
Al alloy from being contaminated in practical applications.

3.6. Corrosion Resistance

As a powerful electrochemical technique, electrochemical impedance spectroscopy
(EIS) was used to estimate the anti-corrosion performance for different samples. As shown
in Nyquist plots (Figure 9a), there is only one capacitive loop for each tested sample, and all
these capacitive loops show the imperfect semicircles, which are ascribed to the existence of
dispersing effect. Generally, when the diameter of the capacitive loop is larger, the corrosion
resistance of the sample is better. It can be observed that the diameter of the capacitive loop
for SHC is much larger than that of bare Al alloy substrate. After immersion in corrosive
medium (3.5 wt.% NaCl solution) for 24 h, the SHC exhibited the capacitive behavior with
a slight decrease in the diameter of the capacitive loop while it is still higher than that of the
bare surface. The above results demonstrated that the as-prepared SHC could effectively
protect the bare Al alloy substrate against corrosion. The corresponding Bode impedance
plots and Bode phase plots are shown in Figure 9b,c. Larger impedance modulus |Z|
at the low-frequency end means better corrosion resistance. As illustrated in Figure 9b,
the impedance modulus at the lowest frequency (1 Hz) was increased from 3.498 × 103

to 2.111 × 104 Ω·cm2 as the surface changed from hydrophilic (bare Al alloy substrate) to
superhydrophobic (SHC). Besides, the corresponding value of 1.803 × 104 Ω·cm2 for SHC
after immersion for 24 h is still much higher than that of the bare surface. From Figure 9c,
the SHC possesses a relatively higher as well as wider phase angle in the intermediate
frequency domain, suggesting a better ability to protect the underneath substrates.

The corresponding equivalent circuit models are fitted to better understand the cor-
rosion process for different samples according to the obtained EIS results (Figure 9e). In
these circuit models, Rs is the electrolyte resistance; CPEdl and Rct, respectively, represent
the constant phase element related to the double-layer capacitance and charge transfer
resistance between the substrate and electrolyte; CPEc and Rc denote the constant phase
element of coating capacitance and coating resistance. In order to obtain more accurate fit-
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ting results, the constant phase element (CPE) was applied to displace the pure capacitance
in view of the dispersing effect. The CPE can be expressed as follows:

ZCPE =
1

Y0
× (jω)−n (3)

where Yo is the magnitude, n the exponential term (the value between 0 and 1), j the imagi-
nary root andω the angular frequency (ω = 2πf). The fitted parameters according to the
EIS data are listed in Table 1. In the initial immersion state, the corrosion process occurred
at the interface of the substrate and electrolyte for the bare Al alloy and the interface of
coating and electrolyte for SHC, respectively, according to their equivalent circuit models.
The Rct for the bare substrate is 4.238× 103 Ω·cm2, and the Rc for SHC is 2.666× 104 Ω·cm2,
which indicates that the presence of such SHC surface has provided effective isolation to
prevent the corrosive medium from contacting the underlying substrate. With increasing
immersion time to 24 h, the corrosive medium began to penetrate the coating to some
extent, causing the corrosion at two interfaces: substrate and electrolyte, and coating and
electrolyte. The corresponding values of Rct and Rc are 2.376 × 104 and 4.321 × 103 Ω·cm2.
It is commonly known that the Rct value is indicative of the effectiveness of corrosion
inhibition. Although the Rc for SHC was reduced from 2.666 × 104 to 4.321 × 103 Ω·cm2

after immersion for 24 h, its Rct value is more than 5 times higher than that of bare Al alloy.
This implies that SHC can possess anti-corrosion improvement for bare substrate even after
a long immersion time.
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Table 1. The fitted parameters from EIS results.

Samples Rs
(Ω·cm2)

CPEdl
Rct

(Ω·cm2)

CPEc

Rc (Ω·cm2)Yo-dl ndl
Yo-c

(S·sn·cm−2)
nc(S·sn·cm−2)

Bare Al alloy 7.270 9.179 × 10−6 0.8647 4.238 × 103 - - -
SHC (initial) 7.131 - - - 3.725 × 10−6 0.8795 2.666 × 104

SHC (24 h) 7.531 5.521 × 10−6 0.7374 2.376 × 104 1.479 × 10−6 0.8920 4.321 × 103

The potentiodynamic polarization curves for the samples after immersion in 3.5 wt.%
NaCl electrolyte with different immersion times are shown in Figure 9d. Generally, a lower
corrosion current density (Jcorr) and a higher corrosion potential (Ecorr) indicate better
anti-corrosion performance [67]. The Jcorr and Ecorr obtained by Tafel extrapolation are
displayed in Table 2. It is evident that Jcorr decreased sharply from 1.070 × 10−5 A·cm−2

for bare Al alloy substrate to 3.171 × 10−7 A·cm−2 for SHC. The corresponding Ecorr
shifted to the positive direction from −1.160 to −0.620 V during the initial immersion time,
indicating good protection against corrosion for the Al alloy. To assess the durability of the
prepared SHC, the potentiodynamic polarization curve after immersion in 3.5 wt.% NaCl
solution for 24 h was also obtained in Figure 9d. There is no considerable change for Jcorr
(5.123 × 10−7 A·cm−2) and Ecorr (−0.626 V) of SHC after immersion for 24 h as compared
to those at its initial immersion, suggesting its long-term reliability to prevent the bare Al
alloy from being corroded. Additionally, their corresponding corrosion inhibition efficiency
(η) can be calculated by the equation below:

η =
J0
corr − Jcorr

J0
corr

× 100 (4)

where the J0
corr and Jcorr are the corrosion current density of the substrate and coating. Based

on our data, the η for SHC reached up to 97% for the initial immersion state and remained
high (95%) after immersion for 24 h. This further confirms that the as-prepared SHC has
a promising potential in corrosion protection against the bare Al alloy. Additionally, we
have made a comparison with previously reported anti-corrosion superhydrophobic Al
and its alloy surfaces. Feng et al. [68] produced a superhydrophobic surface on Al alloy,
and the Jcorr of such superhydrophobic surface (5.01 × 10−5 A·cm−2) was reduced by
only 1 order of magnitude as compared with the clean bare Al alloy (7.26 × 10−4 A·cm−2).
Saleema et al. [69] obtained a superhydrophobic Al alloy surface, but there was no signifi-
cant difference in Jcorr for both hydrophilic surface and superhydrophobic surface, which
implies that there is no substantial improvement in the anti-corrosion performance. The
above results indicated that the presence of our prepared SHC could hinder the corrosive
medium from reaching the bare Al alloy substrate effectively.

Table 2. Electrochemical parameters of potentiodynamic polarization curves and their inhibition efficiency.

Samples Ecorr (V vs. Ag/AgCl) Jcorr (A·cm−2) Inhibition Efficiency (η %)

Bare Al alloy −1.160 1.070 × 10−5 -
SHC (initial) −0.620 3.171 × 10−7 97
SHC (24 h) −0.626 5.123 × 10−7 95

The electrochemical measurements for SHC after immersion in 3.5 wt.% NaCl solution
for 168 h are shown in Figure S6. The SHC presents a much larger capacitive loop than
that of bare Al alloy substrate in Nyquist plots (Figure S6a). Additionally, the SCH shows a
distinct larger impedance modulus (9.737× 103 Ω·cm2) at the lowest frequency (Figure S6b)
and a higher and wider phase angle in the middle frequency (Figure S6c). In addition,
the SHC still displayed a relatively lower Jcorr (5.319 × 10−6 A·cm−2) and higher Ecorr
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(−0.633 V) as compared with the bare Al alloy. All the above results prove that the as-
prepared SHC can effectively protect the bare substrate during long-term immersion.

The mechanism of the enhanced anti-corrosion performance for SHC might be related
to the interface contact modes between sample surfaces and corrosive medium, as illus-
trated in Figure 10. The air trapped inside SHC can act as an isolation layer, generating
a three-phase interface of solid–liquid–air. Additionally, its solid–liquid contact area, i.e.,
the area between the sample surface and corrosive medium, will be drastically reduced
(Figure 10b) as compared to that of the bare Al alloy substrate (Figure 10a). Accordingly,
the corrosion occurrence on the bare substrate is greatly retarded by the formation of SHC.
Another reason why SHC can enhance the corrosion resistance for the bare Al alloy is
ascribed to the capillarity. It is reported that water can easily transport against gravity
on rough structured surfaces with CAs of more than 150◦. In consequence, the corrosive
medium can be squeezed out of such rough structures by the Laplace pressure, and thus
the bare substrate can be prevented from corrosion effectively [70].
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It has to be cautioned that the current work only displays the corrosion resistance of
SHC against a single corrosive medium such as salty water. For the SHC to be applied to
the marine environment, further investigations (e.g., anti-fouling and biological corrosion)
might be necessary using actual or simulated marine solutions.

4. Conclusions

In this study, a general strategy to prepare superhydrophobic self-cleaning and anti-
corrosion metallic surfaces on metallic structures has been briefly discussed. As a specific
example, we demonstrated the construction of SHC on an Al alloy substrate using a
simple etching method followed by the modification of molten myristic acid (MA). The as-
prepared optimal SHC shows superhydrophobicity with the CA ~157.4◦ and the SA ~8.3◦,
resulting from the synergistic effect of both roughened surface and chemical modification.
The SHC possesses a self-cleaning effect not only for the dry contaminants but also for the
liquids such as methylene blue-dyed water, tea, milk solutions and artificial dirt mixture.
Moreover, the SHC remains superhydrophobic after exposure to ambient conditions for
6 months or a higher temperature of 60 ◦C with 96% humidity for 7 days, indicating its
excellent long-term durability in ambience and heat–humidity conditions. Furthermore,
the electrochemical measurements prove that the SHC has improved corrosion resistance
for the bare substrates. This simple method can provide a straightforward route to develop
SHC on various engineering metallic substrates in the fields of self-cleaning and anti-
corrosion applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/coatings11070788/s1, Figure S1: Water repellency for SHC, Figure S2: The mirror-like
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phenomenon for SHC submerged in water, Figure S3. The FESEM images for the samples after
etching in 350 g/L HCl solution with different etching times and treating with myristic acid. (a1–a3):
2 min; (b1–b3) 5 min; (c1–c3) 8 min; (d1–d3) 10 min; (e1–e3) 12 min., Figure S4: The XRD patterns
of different samples: (a) bare Al alloy; (b) etched Al alloy; (c) Al + MA; (d) SHC., Figure S5: Dirt
repellency test of bare Al alloy substrate as a reference sample: (a1–a3) methylene blue-dyed water;
(b1–b3) tea; (c1–c3) milk; (d1–d3) artificial dirt mixture, Figure S6: Electrochemical measurements
for SHC after immersion in 3.5 wt.% NaCl solution for 168 h. (a) Nyquist plots, (b) Bode impedance
plots, (c) Bode phase plots, (d) potentiodynamic polarization curves, Table S1: The apparent surface
energy of different samples., Table S2: The surface roughness of different samples., Video S1: The
dynamic moving process for the water droplets impinged onto the SHC surface, Video S2: The
mirror-like light reflection forms for the SHC when immersion into the water, Video S3: 5 µL of a
water droplet placed onto SHC after exposure for 6 months, indicating its low adhesion with water,
Video S4: The dynamic behavior of water droplets on the SHC after heat–humidity treatment, Video
S5: Self-cleaning test on different samples: the contaminant (carbon black powder) adhered to both
(a) Al alloy substrate and (b) Al alloy + MA when the water droplet was dripped onto the surfaces.
In contrast, the powder on (c) SHC was taken away, and the surface was cleaned along the path of
the water droplet movement, Video S6: The SHC possessed a self-cleaning effect for different liquid
contaminants, including methylene blue-dyed water, tea, milk and artificial dirt mixture, Video S7:
The self-cleaning performance for SHC after heat–humidity resistance.
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